Project Appendix

This document will contain sample calculations and sources to the PV study carried out on the university:

I. Sample Calculation

A. **Solar roof analysis:** The calculations for size, cost, AC output and 25yr output (with degradation) of solar system.

Roof space location: Memorial Art Gallery

Total roof space =
$$35286 \text{ ft}^2$$

Convert to m² = 35286ft² *
$$\frac{0.0929m^2}{ft^2}$$
 = 3278m²
Solar DC system size = Solar roof area (m²) * $\frac{1KW}{m^2}$ * Module efficiency (15%)
= 3278m² * $\frac{1KW}{m^2}$ * 0.15
= 492KW

Cost of the system: Solar system sizes and their respective prices were collected from the Solar Liberty (the largest solar energy installer in NY state) project proposal as shown in table 1. It was plotted as shown in figure 1 and the prices of the solar units in this study were extrapolated from the data mentioned.

System Size/KW	Cost (Post-incentive)		
15.84	\$44,510		
56	\$135,360		
104.4	\$224,460		

Table 1: Set of proposed solar system sizes with their respective sizes

Figure 1: Cost of system versus size of system.

Use equation of the line of fig.1 to get cost of system

= 2025.5 * 492 KW + 15785 = \$ 1,011,777

AC System Output

Regarding the AC System Output, it was derived from the <u>PVWatts Calculator</u> with all the parameters being default except for array type which is fixed (roof mount).

AC system output =
$$592,821 \frac{\text{KWh}}{\text{yr}}$$

2/1/2021

Caution: Photovobak system performance predictions calculated by PVWbtb[®] Indude many inherent assumptions and unortaintides and do not reflect vertations batewarn PV technologies nor site-specific chamidantics uscylt as represented by PWWatb[®] Inputs. For example, PV modulate with batter performance are not differentiated within PVWatb[®] from lasses referming modulate. Doin NBL and pinutes companies provide more supplicitated PV Model at https://amu.mel.gov/bate.allow Model at https://amu.mel.gov/bate.allow PV system.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NELL report: The Error Report.

Disclaimse: The FVWatty® Hodel ("Model") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Allance for Sustainable Energy, LLC ("Allance") for the U.S. Department Of Energy ("DDC") and may be used for any purpose whatsoever.

The names DOE/NEEL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to andone or promote any entity that adopts or uses the Model. DOE/NEEL/ALLIANCE shall not provide

any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

OF DIF YOLK OF REY GUERRE, INFRIDUCT OF THEN WINDING OF REV MODEL YOU AGREE TO INDEMNITY OUTINES, ARTHER AND ENFLUTES, OUTINES, ARTHER, AND ENFLUTES, OUTINES, ARTHER, AND ENFLUTES, OUTINES, READINALL ATTORNES INDEMNITY OF THE MODE, ISO MONEL INDEMNITY OF THE MODE, ISO MONEL INDEMNITY, INDEMNITY OF THE PRODUCE OF DORINALLIALIZATION OF PRODUCE OF DORINALLIALIZATION OF PRODUCE OF DORINALLIALIZATION OF PRODUCE OF DORINALLIALIZATION INDEMNITY, INDEMNITY OF INDEMNITY, INDEMNITY,

The energy output range is based on analysis of 30 years of historical weather data for nearby, and is intended to provide an indication of the possible interannual variability in generation for a fixed (open nack) PV system at this location.

RESULTS

584,433 kWh/Year*

System output may range from 667,076 to 602,901 kWh per year near this location.

Month	Solar Radiation (KWh/m ² /day)	AC Energy (kWh)	Value (‡)	
January	1.97	25,493	1,642	
February	3.19	36,317	2,339	
March	4.44	52,191	3,361	
April	5.14	57,311	3,691	
May	6.24	69,311	4,464	
June	6.23	65,851	4,241	
July	6.32	68,264	4,396	
August	6.03	64,147	4,131	
September	5.22	54,636	3,519	
October	3.33	38,404	2,473	
November 2.42		28,506	1,836	
December	1.88	24,003	1,546	
nnual	4.37	584,434	\$ 37,639	

Location and Station Identification

Requested Location	university of rochester
Weather Data Source	Lat, Lon: 43.13, -77.62 0.7 ml
Latitude	43.13° N
Longitude	77.62° W
PV System Specifications (Commercial)	
DC System Size	492 KW
Module Type	Standard
Аггау Туре	Fixed (roof mount)
Array Tilt	20°
Array Azimuth	180°
System Losses	14.08%
Inverter Efficiency	96%
DC to AC Size Ratio	1.2
Economics	
Average Retail Electricity Rate	0.064 \$/kWh
Performance Metrics	
Capacity Factor	13.6%

https://pvwatts.nrei.gov/pvwatts.php

25yr System Output

This study then assumes the solar systems have a lifespan of 25yrs at degrades at the rate of 2% Year 1 and 0.2% Years 2-25.

Year	Degradation	Cumulative	Degraded	Undegraded	
	(%)	Degradation (%)	Production (%)	Production (%)	
1	2		100	100	
2	0.2	2	98	100	
3	0.2	2.2	97.8	100	
4	0.2	2.4	97.6	100	
5	0.2	2.6	97.4	100	
6	0.2	2.8	97.2	100	
7	0.2	3	97	100	
8	0.2	3.2	96.8	100	
9	0.2	3.4	96.6	100	
10	0.2	3.6	96.4	100	
11	0.2	3.8	96.2	100	
12	0.2	4	96	100	
13	0.2	4.2	95.8	100	
14	0.2	4.4	95.6	100	
15	0.2	4.6	95.4	100	
16	0.2	4.8	95.2	100	
17	0.2	5	95	100	
18	0.2	5.2	94.8	100	
19	0.2	5.4	94.6	100	
20	0.2	5.6	94.4	100	
21	0.2	5.8	94.2	100	
22	0.2	6	94	100	
23	0.2	6.2	93.8	100	
24	0.2	6.4	93.6	100	
25	0.2	6.6	93.4	100	
		Total	2,396.8	2,500	

Table 2: Derivation of 25yr average production factor for solar systems

25 Year Average Production Factor $=\frac{2396.8}{2500} * 100 = 95.9\%$

25yr system output for Memorial Art Gallery = $14,212,883 \frac{\text{KWh}}{\text{yr}}$

Cost of electricity per KWh = Cost of
$$\frac{\text{system}}{25\text{yr}}$$
 Output
= $\frac{\$1,011,777}{14,212,883 \text{ KWh}} = \frac{\$0.07}{\text{KWh}}$

		Available				
		Solar Roof	Solar DC			25 yr Output
	Total roof space	space	System	Cost of	AC System Output	including PV
	(10 ³ *ft ²)	(10 ³ *m ²)	Size (KW)	System (\$)	(KWh/Year)	degradation (KWh)
Memioral Art						
Gallery	35	3	492	1,011,777	592,821	14,212,883
South Campus	180	17	2,515	5,109,071	2,987,497	71,625,241
Middle Campus	11	1	149	317,383	176,993	4,243,407
Eastman	62	6	864	1,766,772	1,026,321	24,606,046
River Campus	442	41	6,162	12,497,632	7,319,665	175,488,968
Medical Center	496	46	6,911	14,013,834	8,209,381	196,819,909
Total	1,226,580	113,953	17,093	34,716,469	20,312,678	486,996,455

Table 3: Solar roof analysis of University's buildings

B. GHG Emissions Reduction: PURCHASED ELECTRICITY

In this analysis, the energy data for FY18 was used to determine how solar PV could offset GHG emissions by 1,2,5,10,15 and 20% respectively. The following calculations are performed: GHG emitted, saved, the cost and size of the solar system to offset the GHG emitted. Thereafter an offset comparison is done between solar and tree planting. A sample calculation would be shown for 10% GHG emission (GHGE) reduction.

Reduction in purchased electricity = (1.0 - 0.1) * yearly purchased electricity by the university $= 0.9 * 147989128 \frac{\text{KWh}}{yr} = 133,190,215 \frac{\text{KWh}}{yr}$ CO₂ emitted in $\frac{\text{tons}}{yr} = \text{CO}_2$ emission factor¹ $\left(\frac{\text{lb}}{\text{MWh}}\right) *$ purchased electricity reduction $= \frac{253.1\text{lb}}{\text{MWh}} * 133190.215 \frac{\text{MWh}}{yr} * 0.0005 \frac{\text{tons}}{\text{lb}} = \frac{16,855 \text{ tons}}{yr}$

¹ NYUP power profile from the EPA provided the CO₂ emission factor. <u>https://www.epa.gov/egrid/power-profiler#/</u>

 CO_2 Savings_{R=10} in $\frac{tons}{yr} = GHGE_{R=0} - GHGE_{R=10}$

 $GHGE_{(R=0)}$ is the CO₂ emitted throughout the FY18

 $CO_2 \text{ Savings}_{R=10} \text{ in} \frac{\text{tons}}{\text{yr}} = \text{GHGE}_{R=0} - \text{GHGE}_{R=10}$ = 18728 - 16855 = 1873

Following the same method to size and cost of solar system in section I.A.

Therefore, Size of solar system required for offset = 11,372 KW

Price of system = \$23,050,518

What if trees were used to offset the emissions $Tree \text{ quantity} = \frac{\frac{CO_2 \text{ Savings}_{R=10}}{tons \text{ to lb conversion rate}}}{Mature \text{ tree } CO_2 \text{ uptake rate}} \frac{\frac{lb}{tree}}{yr}$ $1873 \frac{\text{tons}}{yr}$

$$= \frac{\frac{1075 \text{ yr}}{\text{0.0005tons}}}{\frac{\text{lb}}{\frac{50 \text{ lb}}{\frac{\text{tree}}{\text{yr}}}} = 74,912 \text{ trees}$$

Assuming it costs \$1500 to plant a mature tree.

Cost of planting trees = 74912 trees
$$*\frac{\$1500}{\text{tree}} = \$112,368,145$$

In the study the cost per tons of CO₂ avoided was calculated.

$$\frac{Cost}{tons of CO_2 avoided} = \frac{Cost of system - Cost of Electricity Not Spent}{CO_2 savings over lifetime}$$
$$= \frac{\left[\$133,190,215 - \left[\frac{(147,989128 - 133,190,215) KWh}{yr} * \frac{\$0.06}{KWh} * 25yr\right]\right]}{1873\frac{tons}{vr} * 25yr} = \frac{\$21}{tons}$$

Note:

- The rate of \$0.06/KWh is the electricity rate which is a combination of the variable and fixed charge to the university.
- \$21 per tons of CO₂ avoided means it costs \$21 to avoid a ton of CO₂

% GHG P Reduction (Purchased Electricity	GHG emission (tons/yr)	GHG Savings (tons/yr)	Solar PV - GHG Offset		Trees for GHG Offset	
	(KWh/yr)	CO ₂ - Purchased	CO ₂ - Purchased Electricity	Solar DC Size (KW)	Cost of System (\$)	Trees Qty	Cost of planting trees
0	147,989,128	18,728	-	0	0	-	-
1	146,509,237	18,541	187	1,137	2,319,258	7,491	11,236,814
2	145,029,345	18,353	375	2,274	4,622,732	14,982	22,473,629
5	140,589,672	17,792	936	5,686	11,533,151	37,456	56,184,072
10	133,190,215	16,855	1,873	11,372	23,050,518	74,912	112,368,145
15	125,790,759	15,919	2,809	17,059	34,567,884	112,368	168,552,217
20	118,391,302	14,982	3,746	22,745	46,085,250	149,824	224,736,290

Table 4: GHG Emission analysis for the university at different rates

C. Maximum Solar Rooftop Solar PV investment

From Table 3 above,

Fully Utilized PV Rooftop System Size is 17 MW at a cost of \$35M. 25-year cumulative output = $4.87*10^8$ kWh over 25 years

Value of 25 – year cumulative output =
$$4.87 * 10^8 kWh x \frac{\$0.06}{KWh} = \$29.2M$$

25 – year return on investment = $\frac{value}{cost} = \frac{29.2}{35} = 0.834$

Figure 2. 25 Year Cumulative Annual Cashflow

D. Energy Comparison of 'River Campus' Peers

Boston University

Utilities Management : <u>http://www.bu.edu/cpo/what-we-do/energy/energy-sources/</u>

- It purchases its electricity from third parties and local distribution company, Eversource Energy.
- It purchases its natural gas and is transported by the local gas company, National Grid.

- Low temperature and hot water are handled by <u>Boston Water and Sewer Commission</u> **Purchase RECs** : http://www.bu.edu/sustainability/what-were-doing/bu-wind/

Bucknell University

Co-generation: <u>https://forthemedia.blogs.bucknell.edu/bucknell-earns-performance-excellence-in-electricity-renewal-certification/</u>

On-site solar and wind: <u>https://www.bucknell.edu/life-bucknell/sustainability/energy-water-transportation</u>

Planned Solar expansion: https://forthemedia.blogs.bucknell.edu/bucknell-exploring-solar-project-with-encore-renewable-energy/

• Bucknell University is exploring the installation of a 2.1 peak megawatt (MWp) solar project in partnership with Encore Renewable Energy of Burlington, Vt.

Carnegie Mellon University

Purchase of RECs: <u>https://www.cmu.edu/environment/energy-water/energy-</u> mix/index.html#:~:text=Renewable%20Energy%20Progress,of%20the%20university's%20elec tricity%20requirements.

• Carnegie Mellon University purchases Renewable Electricity Credits (RECs) of wind power from the Prairie Breeze wind energy farm in Nebraska.

On-site solar:

https://www.sunnyportal.com/Templates/PublicPageOverview.aspx?page=c2d8c09a-37f3-4891-83ae-b790b938274f&plant=a3842dd0-2d36-4b89-bff6-4a19f0c3d37b&splang=en-US

Case Western Reserve University (CWRU)

Cogeneration, On-site, On-site Wind: <u>https://case.edu/sustainability/campus/energy</u> It buys its electricity from **The Medical Center Company (MCCo)**, a district energy system notfor-profit corporation.

Duquesne University

Co-generation: <u>https://understandingchp.com/files/2016/06/SolarTurbines_dscp-</u> <u>DuquesneUbniv.pdf</u>

Duquesne operates a natural gas-fired power plant that produces approximately 75 percent of the power used for electricity and nearly 100 percent of the heating and cooling of the University's facilities.

Purchase RECs: <u>https://www.duq.edu/news/releases/epa-again-designates-duquesne-as-green-power-champion</u>

It purchases the remainder of its energy needs from renewable sources- a combination of energy generation and renewable energy purchasing led to the University's 100-percent reliance on clean energy. It is procuring renewable energy certificates from Direct Energy.

Massachusetts Institute of Technology

Cogeneration: <u>https://sustainability.mit.edu/mit-central-utilities-plant</u>

On-site solar and wind: https://sustainability.mit.edu/site-renewable-energy

It has five rooftops solar photovoltaic (PV) systems designed to produce an estimated 80,000-kilowatt hours (kWh) of clean energy annually.

Off-site solar: https://sustainability.mit.edu/site-solar-farm,

Northwestern University

Purchase RECs: <u>https://isen.northwestern.edu/northwestern-honored-for-renewable-energy-use</u>

Off-site solar and Solar expansion:

https://news.northwestern.edu/stories/2020/05/northwestern-and-clearway-announcehistoric-partnership-to-bring-clean-renewable-energy-to-illinois/

Northeastern University

Energy generation: At Northeastern, 527,258 MMBTUs of energy for heating and cooling are generated from on-site combustion. Of this total, the two main sources are Natural Gas (96.8%), and Oil -distillate fuels (3.2%). Northeastern purchases non-electric energy from renewable sources.

https://facilities.northeastern.edu/wp-content/uploads/2018/03/NEU-Sustainable-Action-Plan.pdf

Syracuse University

On-site Solar: <u>https://sustainability.syr.edu/campus/energy/</u> Purchase PECs:

Purchase RECs:

https://sustainability.syr.edu/campus/energy/#:~:text=Starting%20in%202005%2C%20SU%20h as,to%20lower%20SU's%20carbon%20footprint

- SU has voluntarily purchased electricity each year from renewable sources. Currently 35%, or 41,000,000 kWh, of Green-E Certified American Wind is purchased.
- It buys the rest of its electricity of retail electric suppliers. <u>https://sustainability.syr.edu/wp-content/uploads/2017/06/Syracuse-University-commits-to-purchasing-at-least-20-percent-of-its-electricity-from-renewable-energy-sources.pdf</u>

The University of Chicago- <u>https://sustainability.uchicago.edu/sp/</u> Energy Profile:

https://d3qi0qp55mx5f5.cloudfront.net/sustainability/uploads/images/UChicago OS GHG Em issions Inventory Overview FY12-FY17.pdf

- Natural gas and electricity usage in campus buildings contributes to approximately 70 percent of the University's greenhouse gas emissions.

Campus-scale heating system: <u>https://www.gienergyus.com/project-university-of-chicago</u> <u>https://www.burnsmcd.com/projects/chiller-plant--combined-utility-plant</u>

University of Notre Dame

Co-generation and Campus-scale heating system:

https://www.contractormag.com/plumbing/article/20884260/notre-dame-expands-withgreen-energy-in-mind https://m.nd.edu/notrodame/sustainability// (nowor, plant

https://m.nd.edu/notredame/sustainability/ /power plant

On-site solar and Purchase RECs: <u>https://news.nd.edu/news/notre-dame-backed-solar-project-breaks-ground-in-st-joseph-county/</u>

- Notre Dame currently maintains three solar arrays separate from I&M: a 10-kilowatt array atop Fitzpatrick Hall, a 50-kilowatt array atop Stinson-Remick Hall and a 140-kilowatt array on Kenmore Street in South Bend.
- Indiana Michigan Power (I&M) solar project will provide clean energy credits equal to 10 percent of the University of Notre Dame's total demand for electricity.

On-site Wind: <u>https://m.nd.edu/notredame/sustainability/ /wind turbines</u>

Existing Hydro capacity:

<u>https://facilities.nd.edu/projects/current-major-projects/hydroelectric-plant/</u> <u>https://news.nd.edu/news/hydroelectric-plant-groundbreaking-moves-notre-dame-closer-to-</u> <u>sustainability-goals-and-seitz-park-renovation/</u>

Extra Sources for University of Notre Dame's utilities

- <u>https://www.nd.edu/stories/notre-dame-ceases-to-burn-coal/</u>
- <u>https://green.nd.edu/mission/strategy/</u>
- <u>https://green.nd.edu/get-involved/energy-emissions/energy-conservation-at-notre-dame/</u>

Monroe Community College

Cogeneration:

https://www.monroecc.edu/fileadmin/SiteFiles/GeneralContent/depts/sustainability/documen ts/Cogeneration Narrative 9-30-2015 .pdf

- MCC is in an agreement with Monroe Newpower, to purchase all of the electricity and heat produced by the new plant.

Cornell University

Cogeneration: <u>https://fcs.cornell.edu/departments/energy-sustainability/utilities/district-energy-combined-heat-power</u>

On-site and off-site solar and existing hydroelectric:

https://sustainablecampus.cornell.edu/campus-initiatives/buildings-energy/campusenergy/renewable-energy

Planned solar expansion: <u>https://cornellsun.com/2020/04/15/new-cascadilla-solar-farm-sustainability-powers-10-of-cornell-universitys-annual-electricity-usage/</u>

RIT:

Purchase REC: <u>https://www.rit.edu/news/us-environmental-protection-agency-recognizes-rit-green-power-leadership</u>

On-site/Off-site solar and on-site wind: <u>https://www.rit.edu/sustainablecampus/energy</u>

Green energy rating STARS Ratings: <u>https://reports.aashe.org/institutions/participants-and-reports/</u> % RE in grid:

<u>https://www.collegeconsensus.com/rankings/best-green-universities/</u> <u>https://www.epa.gov/greenpower/green-power-partnership-top-30-college-university</u>

(Carnegie Mellon University, RIT, Northwestern University, Boston University) **Bucknell U:** <u>https://reports.aashe.org/institutions/bucknell-university-pa/report/2019-09-</u> 23/OP/energy/OP-6/

Case Western U: <u>https://reports.aashe.org/institutions/case-western-reserve-university-oh/report/2018-03-02/OP/energy/OP-6/</u>

Duquesne U: <u>https://duq.edu/news/releases/epa-again-designates-duquesne-as-green-power-champion</u>

MIT : <u>https://news.mit.edu/2017/solar-plant-delivering-promises-carbon-emissions-0323</u>

Syracuse University: <u>https://www.epa.gov/greenpower/green-power-partner-list</u>

U Notre Dame:

https://news.nd.edu/news/notre-dame-backed-solar-project-breaks-ground-in-st-josephcounty/

"Indiana Michigan Power (I&M) broke ground recently on a \$37 million solar project that will provide clean energy credits equal to 10 percent of the University of Notre Dame's total demand for electricity..."

https://news.nd.edu/news/hydroelectric-plant-groundbreaking-moves-notre-dame-closer-tosustainability-goals-and-seitz-park-renovation/

The facility, which will be primarily underground, is expected to generate about 7 percent of the University's electrical needs

Cornell University: <u>https://sustainablecampus.cornell.edu/news/renewable-energy-covers-100-cornells-power-use-first-time-over-100-years</u>