
UNIVERSITY OF ROCHESTER

Final Report | October 2021

V11 - Revised 1/10/2022

contents

Section A Executive Summary

Section B System Overview

- Rate Summary

Section C Task 1 - Execution Process

Section D Task 2 - Evaluation of Potential ECMs

- Overview

~ Total Project Summary **Table**

~ ECM Summary (Energy Usage **Table**) ~ ECM Summary (Simple Payback **Table**)

- Lighting Improvements Overview

- Laboratory HVAC Systems Overview

Heat Recovery Heat Pumps OverviewPhotovoltaic System Overview

- Retro-Commissioning Overview

Section E Energy Data Analysis

Section F Extrapolation Summary

~ Extrapolated ECMs Table | Detailed

Extrapolated Project Impact Summary TableSummary of Savings by Project Types Table

- Overview Energy Conservation Vision Impact Summary

Appendix 1 Lighting Improvements

- Calculations

- Cut Sheets

Appendix 2 Laboratory Airflow Optimization

- Summary & Calculations

- Scope of Work & Cost Estimates

Appendix 3 Heat Recovery Heat Pump

- Summary & Calculations

- Scope of Work & Cost Estimates

Appendix 4 RCX Scoping Survey

Appendix 5 Photovoltaic System

- River Campus

- Medical Center

- South Campus

~ Eastman Campus

Appendix 6 EMIS Savings and M&V Plan

Appendix **7** Extrapolated Results by ECM

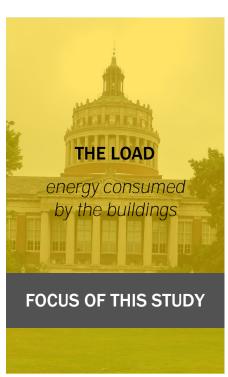
Section A

Executive Summary

Executive Summary

The transformation and distribution of energy is important to the growth of the University and our impact on the environment. Improving system efficiency, as our infrastructure ages and grows to meet new demands, is essential to controlling both capital expenses and operating costs. In the spirit of Meliora (Ever Better) we have been inspired by previous projects and best practices to develop a comprehensive strategy that will allow us to reduce purchased energy and lower greenhouse gas emissions.

Vision


A sustainable utility and energy system which balances reliability, economics, and efficiency.

Study Goals

Provide information which can be used to plan for energy conservation across campus. This includes projected capital costs, energy, and greenhouse gas emissions (GHG) savings. The study also provides supporting information and procedures to guide the execution of energy conservation measures (ECM).

Methodology / Scope of the Study

This Energy Conservation Assessment and Plan outlines a series of steps to identify, develop and implement energy conservation focused improvements on campus which balances sustainability with fiscal responsibility. The study primarily focused on River Campus and the Medical Campus, however the results of the study, including the process and technical recommendations, may apply to all UR Campuses.

As energy moves through the distribution system it is transmitted and transformed via equipment such as pumps, boilers, chillers, and generators, etc. Each step through the system results in additional energy losses which are multiplied by preceding losses, with an effect analogous to compound interest. Therefore, lowering energy consumption in the building reduces our purchase energy by the amount saved in the building plus that of all the transformational losses that were avoided along the way. To achieve this compounded savings this report will

focus primarily on building level energy conservation. As a result, the focus of the Energy Conservation Assessment and Plan is reducing THE LOAD within the buildings.

This Plan is divided into three task sections:

- 1. Execution Process for delivering Energy Conservation Project A detailed procedure for how projects will be identified, validated, developed and implemented. This section also provides options for funding, identifies external funding sources, and provides key financial metrics to qualify potential projects for investment.
- 2. Potential Energy Conservation Measures (ECMs) The major energy consuming systems on University Buildings are lighting systems and HVAC systems. Due to the unique requirements of the University buildings, simultaneous heating and cooling, ventilation comprise a significant portion of a building's energy usage. Also due to the age of the University, it is common to find inefficiencies from aging infrastructure, specifically legacy HVAC controls and steam systems. The following are a list of common Energy Conservation improvements for University Buildings.
 - 1. Lighting Upgrades to LED
 - 2. HVAC Controls Upgrades and Retro-Commissioning
 - 3. Laboratory Ventilation Optimization
 - 4. Heat Recovery Heat Pumps
 - 5. Photovoltaic systems
- 3. Energy Data Analytics, and Reporting / Dashboard A detailed plan for the Energy Management Information System (EMIS) system including requirements, and qualifications for various energy dashboard platforms. The objective is to develop a solution to increase awareness of energy usage in a visual easy to use dashboard which also has functionality to assist in billing, energy management and predictive analytics.

ECM Execution Process

The assessment of these ECMs was completed in three parts.

Part 1 | A detailed technical assessment of a limited number of conservation measures including Lighting, Laboratory HVAC systems, Heat Recovery Systems, and Photovoltaic Systems for select buildings. The detailed investigation has resulted in actionable projects which the University can further develop to help start this program. Additional energy savings measures including controls upgrades, and steam to hot water conversions were not included in this task but are measures that would realize additional savings to the University.

For select buildings, a Retro-Commissioning scoping survey was performed. This survey briefly reviewed building systems and noted observations which would indicate that the building may benefit from a retro-commissioning project and what the savings potential may be.

Part 2 | The results of the detailed technical assessments are extrapolated based on building use and area to other buildings on campus. This outlines the potential for energy savings for these common measures across campus.

Part 3 | This analysis projects the expectations for a complete energy conservation program. This analysis includes estimates for HVAC Controls Upgrades, Retro-Commissioning, and photovoltaic systems. The objective of this effort is to provide the University with realistic targets for energy conservation goals over the next 10 years.

ECM Evaluation Method

The team evaluated the potential cost and savings associated with likely Energy Conservation Measures (ECMs) which may be included in future projects. The evaluation of these ECMs was on a campus-based approach where

select representative areas are evaluated than extrapolated to estimate the potential cost/savings across the campus. The following is a list of ECMs, and the selected buildings used to establish the representative areas.

ECM	# Buildings	Building Names
Laboratory Controls	3	Kornberg, Del Monte, BMEO
Lighting Upgrades	6	Kornberg, ACF, Wilder, Fauver, Schlegel, Wallis
Heat Recovery 3		Kornberg, Del Monte, BMEO
Retro-Commissioning	3	RRL, Douglass, Danforth
PV Rooftops	51	ESM, MC, RC, SC

ECM Results for Recommended ECMs in buildings evaluated

ECM	Annual Avoided Building Energy Costs ¹	Annual Avoided CO2	Project Capital Cost	Simple Payback	Page Number
	Dollars	Metric Tons	Dollars	Years	#
Lighting Upgrades Recommended	\$139,466	131	\$1,674,741	12.0	34, 43, 44
Laboratory Controls Recommended	\$215,997	594	\$814,114	3.8	52, 57, 58
Heat Recovery Heat Pumps	\$390,167	1,437	\$2,247,127	5.8	59, 69, 70
Retro-Commissioning (Median) ²	\$153,627	485	\$254,430	1.7	92, 100, 101
Total	\$899,257	2,648	\$4,990,412	5.5	27, 32, 33

⁽¹⁾ Annual Avoided Building Energy Costs - this is the purchased utility cost plus overhead for internal delivery.

Result Summary for Solar Rooftop Assessment

ECM	Annual Avoided Building Energy Costs ¹	Annual Avoided CO2	Project Capital Cost	Simple Payback	Page Number
	Dollars	Metric Tons	Dollars	Years	#
PV Rooftops	\$1,150,464	1,827	\$21,857,109	19.0	71, 82, 83

⁽¹⁾ Annual Avoided Building Energy Costs – this is the purchased utility cost plus overhead for internal delivery.

Note that the economics for solar projects vary based on available incentive programs and procurement models. The information provided here should be considered conservative for planning purposes. A summary of incentive programs and procurement models are provided, which may provide a more favorable return on investment. The conclusion to draw from this analysis is when a roof is being considered for replacement, the project team should consider a photovoltaic array and utilize this document to benchmark the potential size and production before exploring incentive programs.

A summary of incentive programs can be found on pages: 87-90

⁽²⁾ Retro-Commissioning (Median) – the median value is determined by calculating the median of the high and low values presented in the Total Project Summary.

ECM Results for Recommended ECMs extrapolated across campus

ECM	Annual Avoided Building Energy Costs ¹	Annual Avoided CO2 ³	Project Capital Cost	Simple Payback	Page Number
	Dollars	Metric Tons	Dollars	Years	#
Lighting Upgrades Recommended	\$1,391,084	2,650	\$20,221,963	14.5	34, 715
Laboratory Controls Recommended	\$930,581	3,043	\$5,981,652	6.4	52,717
Heat Recovery Heat Pumps	\$1,591,123	6,250	\$14,538,192	9.1	59, 719
Retro-Commissioning (Median) ²	\$2,905,259	9,205	\$4,183,386	1.4	92, 721
Total	\$6,818,048	21,149	\$44,925,193	6.6	108, 115

- (1) Annual Avoided Building Energy Costs this is the purchased utility cost plus overhead for internal delivery.
- (2) RCx median value is determined by calculating the median of the high and low values presented in the Total Project Summary.
- (3) See "Extrapolated Project Impact Summary" table on page 117 for total emission savings calculations. These proportionally distributed to individual ECMs according to the ECM's energy savings.

Energy Management and Data Analytics Software

Energy Management and Data Analytics Software

UR seeks to leverage software to track, analyze, optimize and report energy usage.

Phase I – Energy Management Information System (EMIS)

This software tracks, coordinates and analyzes building energy usage data, energy conservation measures, facilitates communication to stakeholders and the community. There are multiple views into the system presenting varying levels of detail by login credentials plus public facing portals without passwords.

The EMIS integrates all of the following functions and services:

- Metering data consolidation, historical data, and tools (verification, alarm, etc.).
- Analytics analytic graphs and reports that analyze where and how our energy is consumed.
- Dashboard communication for students, faculty, and staff.
- Funding reports to verify energy savings on energy conservation projects for external incentives.
- Operational Data potential to expand dashboards for building managers insight into operational data.
- Improved energy management resulting in reduced energy consumption and costs.
- Student and faculty engagement in our energy to support academic and student interests.
- Improved UEM administrative efficiency.

As part of the study, EMIS requirements were determined, and vendors were identified. This enabled UR to issue an RFP to solicit EMIS vendors. Wendel assisted UR during the selection process and eSight Energy was selected and implemented as URs new EMIS. See Page 102 for more detail.

Energy Management Information System Energy Savings Estimate.

The EMIS system does not reduce energy consumption simply by being installed. The savings come from utilizing a tool to help identify opportunities, facilitate projects and help measure results. Studies by the US Department of Energy have shown that on average organizations exhibit about a 4% energy savings one year after implementing an EMIS as part of an overall effective strategy to reduce energy consumption. The savings listed below are based on a more conservative estimate of 1% local campus energy savings. One could think of this more as a goal as it still requires action from stakeholders to make reality.

Source: https://betterbuildingssolutioncenter.energy.gov/sites/default/files/EMIS_in_2019-Are_Building_Analytics_Ready_to_Go_Mainstream.pdf

Result Summary for Phase 1 Energy Management Information System

ECM	Annual Avoided Building Energy Costs ¹	Annual Avoided CO2	Project Capital Cost	Simple Payback	Page Number
	Dollars	Metric Tons	Dollars	Years	#
EMIS System	\$368,753	1,865	\$1,426,399	4	102, 107

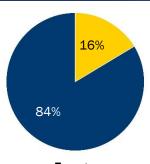
⁽¹⁾ Annual Avoided Building Energy Costs – this is the purchased utility cost plus overhead for internal delivery.

Phase II – Fault Detection and Diagnostics (FDD) software.

The EMIS operates primarily at the building level. UR has determined that the next phase of this process is to implement FDD software at the equipment level. FDD is software that works in conjunction with the Building Automation Systems to analyze the operation of the HVAC equipment such as Air Handlers, Pumps, Terminal units, etc. to determine if the equipment is operating correctly and efficiently. It will notify operators when there are faults or concerns with equipment operation so these can be addressed. This has been shown to have a substantial improvement in building energy efficiency and human comfort. While FDD software was outside the scope of this plan, it was identified as a near future area to investigate.

Executive Summary Conclusion

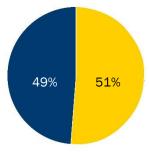
The University should invest in an Energy Management Information System which will provide better visibility into building energy usage and direct actions to manage and reduce energy consumption. The University will benefit from the implementation of key Energy Conservation Measures. Among them, Retro-commissioning can act as a gateway for developing building specific ECMs not identified in this report. Sustained long term savings will be achieved through a balance between transformative changes such as Heat Recovery Heat Pumps and LED Lighting and operational improvements such as Retro-commissioning and Laboratory Ventilation Optimization



Section B

System Overview

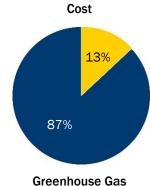
Overview



The University's connected campus consumes over 3 Million mmBtus of energy annually, which equates to approximately 19,500 homes. This energy usage is comprised of two major sources: electric and natural gas. Effective management of these resources require a balance between energy usage, energy cost and Greenhouse Gas (GHG) impacts.

	ENERGY	COST	GHG
	(mmBtu)	(\$)	(MT CO2e)
ELECTRIC	504,976	\$9,205,600	19,867
NATURAL GAS	2,568,000	\$8,782,560	136,155

Table B1- Summary of total utilities FY18


Energy

The Central Utilities Plant transforms these utility energy resources into usable energy sources for our buildings primarily through the Central Utilities Plan and the Mid Campus Chiller Plant.

The Central Utility Plant primarily consumes natural gas and provides electricity, steam, hot water and chilled water. The Mid Campus Chiller Plant consumes electricity and provides chilled water to the medical campus. These utilities are provided to the buildings via the University's utility distribution system.

The transformation of energy from purchased utilities (i.e. electric and natural gas) to usable utilities (i.e. chilled water and hot water) has inherent efficiency losses. Therefore, by saving energy at the building level, more purchased energy is actually saved. The following chart shows the relationship between building energy usage and the purchased energy needed to provide those utilities.

Electric

Natural Gas

BUILDING VS. PLANT ENERGY USAGE (MMBTU)

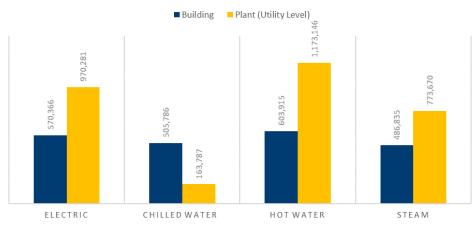
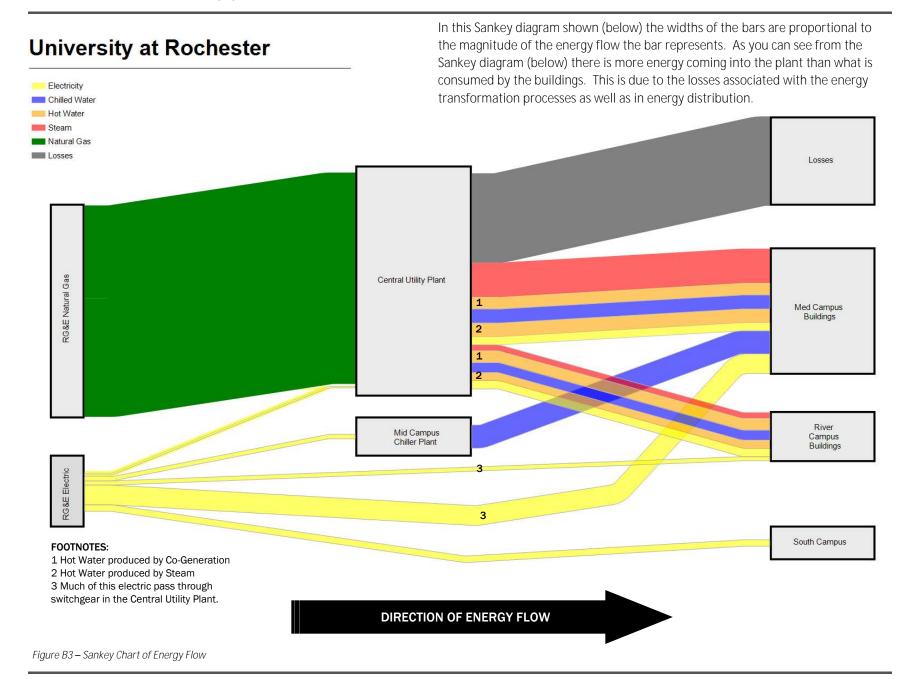



Figure B1- Summary charts of total utilities FY18

Figure B2 - Summary of projected input energy (plant) vs. consumed energy (building)

The following are conversion factors, efficiencies, billing rates and emissions rates used to assess changes to energy usages on campus. Data sources are as follows:

- Conversion Rates | industry standards
- Building to Plant Ratios | 2018 plant and building utility data reflected in the Sankey chart above.
- Building Utility Rates | Provided by UR.
- Purchased Utility Rates | Provided by UR.
- Emissions Rates | eGRID 2018 for electric and industry standard conversions for Natural Gas.

BUILDING UTILITY RATES are defined as the fully burdened utility rate, paid by the buildings, which includes purchased utility cost plus the overhead costs associated with the UR/UEM generation & distribution system. This is the rate applied to the projected saving when assessing the return on investment associated with a project impacting a building's capital and operating budgets.

PURCHASED UTILITY RATES are defined as the rates paid by UR to the utility service providers. This includes the commodity and delivery of utilities to UR. This is the rate applied to the projected saving when assessing the return on investment associated with a project impacting UEM's capital and operating budgets.

Conversion Rates

Electric	0.003412	mmBtu per kWh		
Chilled Water	12,000	Btu per tonhr		
Steam	1,194	Btu/lb		
Boiler System Efficiency	72%	-		
Plant Efficiency Ratios				
Chilled Water	49%	Portion of CHW produced by electric chillers		
Chiller Elec.	0.65	kW/ton		
Chiller Steam.	0.0037	mmBtu/Tonhr		
Chiller NG.	0.0052	mmBtu/Tonhr		
Total Heating System Eff.	67%			
Building Utility Rates				
Electric	\$0.09	\$/kWh		
Chilled Water	\$6.28	\$/ton-day		
Chilled Water	\$21.81	\$/mmBtu		
Steam	\$14.60	\$/mmBtu		
Hot Water	\$10.50*	\$/mmBtu (Note: \$14.60 to be used in future)		
Purchased Utility Rates				
Electric	\$0.0650	\$/kWh		
Natural Gas	\$3.210	\$/dTh		
Natural Gas	\$3.210	\$/mmBtu		
CO2 Emissions Rates				
Electric	295.94	lb/MWh, (0.1342 MTC02/MWh), (0.03936 MTC02/mmBTU)		
Nat. Gas	116.38	Ib/mmBtu, (1.800 MTCO2/MWh), (0.5279 MTCO2/mmBTU)		

Table B2 - Summary of utility rates

^{*}The steam rate and the hot water rate are the same per mmBTU with steam being evaluated at 1,000 BTU/lb The all in building steam and hot water rate fluctuates every month, with \$14 to \$15 per mmBTU typical.

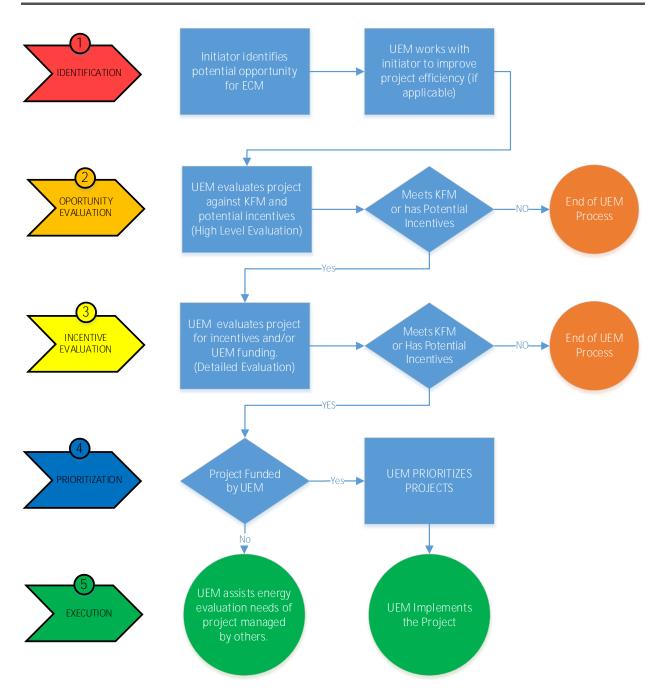
Section C

Execution Process

Task 1

EXECUTION PROCESS (TASK1)

The goal of the Energy Conservation Assessment and Plan is to optimize (or minimize) energy usage and consumption to reduce our impact on the environment and reduce UR operating expenses. This reduction in consumption can occur at University buildings, utility generation facilities, and other energy sources, Collaboration between departments to cost effectively increase energy efficiency will create a win-win solution that will benefit the University.


This section expands on the overall strategy by outlining an execution plan to take ideas from concept to a potential opportunity through to a completed project. The following steps are part of the process:

- 1. Identification of opportunities, which can come from multiple stakeholder groups.
- 2. High-level evaluation of those opportunities against identified key financial metrics (KFMs)¹ and funding opportunities to quickly identify viable projects.
- 3. Provide a detailed evaluation of viable potential opportunities against various incentive programs to determine if the opportunity qualifies for additional financial incentives.
 - Evaluation against KFMs will be reviewed in detail during this phase.
- 4. Prioritization Evaluation of opportunities based on KFMs.
- 5. Outlining of the execution process necessary to implement screened opportunities and ensure that projects are completed that meet the overall Energy Management & Conservation Plan requirements.

¹ Key Financial Metrics are defined in Step 2 of this section.

UEM – Utilities and Energy Management

KFM – Key Financial Metrics

ECM - Energy Conservation Measure

Figure C1 – Process flow chart showing the decision-making process for assessing projects.

STEP 1 | IDENTIFICATION OF OPPORTUNITIES

UEM engineers will manage an on-going effort to identify opportunities for energy savings. This effort will be comprised of efforts internal to UEM as well as working with potential opportunity initiators outside of UEM. These outside initiators could include facility managers & supervisors and outside energy advisors. The goal of these efforts would be to develop opportunities for energy savings within the University building systems.

OPPORTUNITY: Is defined as an idea for energy conservation which may develop into energy conservation measures (i.e. energy savings projects)

There are three ways an opportunity may be identified and brought to the UEM Energy Engineer for consideration.

Option 1 | A small group of opportunities, also referred to as seed ECMS , are identified as part of the energy conservation and management plan. These opportunities will be prequalified/prescreened as part of the plan. In addition, the plan will outline facilities and systems that will likely provide the best next level of opportunities to be further defined and screened based on building and system types across the campus.

Option 2 | A stakeholder (facility director, project manager or other) identifies an opportunity that they would like to be reviewed by the UEM Energy Engineer. The reasons for review may include:

- Evaluation of a design idea or value engineered options to assess the long-term cost/benefit analysis.
- Evaluation of incentives options for a project
- Evaluation of an opportunity to be implemented by UEM as an Energy Conservation Measure.

Option 3 | UEM or their consultants, may identify an opportunity either through daily operations or via targeted engineering studies.

STEP 2 | EVALUTION OF THE OPPORTUNITIES

The UEM Energy Engineer will gather information and review the opportunity with the initiator and other stakeholders to further develop the opportunity and potentially improve the project efficiency. The UEM Energy Engineer will then perform a high level evaluation of the project to determine if the project is likely to meet the KFMs (Note: The KFMs are defined below).

The UEM Energy Engineer will then review the project to determine if there are incentives available. If the project meets the KFMs, including potential incentives, then UEM will sponsor the project under the Energy Solutions Initiative and move into a more detailed assessment of the project. If the project does not meet the KFMs it may be pursued as a Capital Project, at which point UEM would provide support recommending energy efficient solutions and assist with possible funding either through incentives or covering the incremental costs of the energy efficiency improvements.

STEP 2 (cont.) | DEFINITION OF KEY FINANCIAL METRICS (KFMs)

The KFMs can be defined in several ways. The following are several options for stakeholder consideration. A Primary KFM based on simple payback and a Secondary KFM bounded by carbon reduction goals were selected.

Primary Metric | Simple Payback

Projects will be evaluated first based on the cost of energy saved at the <u>building level</u> vs. the total project cost. A Target Simple Payback Period would be established. Projects that exceed the limit would not be considered. Projects that meet the criteria will be prioritized from the lowest to highest simple payback. Funding will be limited based on available funds for the fiscal year.

- Target Simple Payback Period | Goal Less than 10 years
 - Total project cost include material, labor, engineering, project management and other costs. The impact of incentives would be included in the payback calculation (see below for further details).
 - Utility rates are updated annually.

Secondary Metric | GHG Emissions

Projects will also be evaluated based on the total project cost vs. the greenhouse gases (GHG), in carbon dioxide equivalent (CO_2e), saved <u>at the plant</u>. Projects with similar simple paybacks will be evaluated based on the best \$/MTCO2e.

STEP 3 | INCENTIVE PROGRAM EVALUATION

Incentive programs are available from various agencies to help incentivize the implementation of energy efficient projects and reduce energy consumption and greenhouse gas emissions. These incentives can provide reductions to the costs of a project, enhancing the projects ability to meet key financial metrics.

In New York State, the bulk of the energy efficiency incentive programs are managed by the New York State Energy Research & Development Authority (NYSERDA). The electric and gas utilities across the state also offer certain incentives for energy efficiency improvements to clients in their service territory. For the University of Rochester, Rochester Gas & Electric, a combined gas and electric utility, is the utility that would provide these incentives.

The following is a listing of current applicable incentive programs offered by NYSERDA and RG&E as of November 2020.

New York State Energy Research & Development Authority (NYSERDA)

REV Campus Challenge

Program description: The REV Campus Challenge program is available to two- and four-year public and private colleges in New York State. The program provides its members with a range of benefits including:

- Gain access to member-exclusive programs and competitions, including NYSERDA's FlexTech
 Program and any future programs launched under the REV Campus Challenge
- Receive recognition for clean energy accomplishments
- Engage with a diverse network of peers, from sharing stories about successes and struggles, to learning best practices and pitfalls from other institutions, to attending educational member workshops and events
- Access helpful resources selected by the REV Campus Challenge for their relevance to clean energy and sustainability at New York State colleges and universities

Goals and Commitments:

The REV Campus Challenge recognizes the diversity of New York State's colleges and universities and understands that one specific clean energy goal may not be a best fit for every Challenge member.

There are no pre-determined institutional targets, goals, or commitments associated with the REV Campus Challenge. Recognition will be obtained by making progress toward and achieving individual campus clean energy goals.

Note: UR has the distinction of being a REV Campus Challenge Leader and was recently featured in a spot light article which can be found here: https://www.nyserda.ny.gov/All-Programs/Programs/Programs/REV-Campus-Challenge/Membership-Information/Meet-the-Members

Program Website: https://www.nyserda.ny.gov/All-Programs/Programs/CampusChallenge

Flexible Technical Assistance (FlexTech) Program

Program description: The FlexTech program shares the cost to produce an objective, site-specific, and targeted study on how best to implement clean energy and/or energy efficiency technologies. A NYSERDA FlexTech Consultant can work with the university to complete the energy study.

For universities to take advantage of the FlexTech program they must be members of the REV Campus Challenge. The University of Rochester is a REV Campus Challenge member. REV Campus Challenge members receive additional benefits above the normal FlexTech program. These additional benefits include a higher cost share for members – 60% NYSERDA cost share for members as opposed to 50% for non-members on most studies. FlexTech provides cost-shared funding up to \$500,000 for REV Campus Challenge members to work with energy consultants to better understand and pursue clean energy opportunities on their campuses and develop future action plans. Integrate energy efficiency into capital planning projects and make cost-effective, data-driven decisions that meet campus' clean energy goals.

	Technical Assistance Services	Standard NYSERDA: Cost Share	REV Campus Challenge Member: NYSERDA Cost Share ¹²	NYSERDA Cost Share Cap per Project		
	Level 1+ Energy Study			up to \$10,000 per building		
Primary Services	Targeted or Comprehensive Energy Study Targeted or Comprehensive RCx Study Climate Action Plan or Sustainability Plan Clean Heating and Cooling Study Energy Master Planning Energy Advisor Services	50%	60%	up to \$500,000 or 10% Annual Energy Expenditure, which ever is less		
Ē	Energy Storage (ES)	75%	75%	up to \$100,000 or 10% Annual Energy Expenditure, whichever is less		
	The following supporting services are eligible if completed in combination with any of the primary services above.					
	Investigation of renewable energy technologies					
	Complete greenhouse gas emission inventory	50%				
rvices	Installation of permanent meters or permanent sub-meters		60%	\$10,000		
Supporting Services	Establish reporting protocol and report to voluntary third-party certification organizations	REV CC Only				
oddns	Utilize a student intern	REV CC Only	up to \$10,000 of intern fees			
	Develop curriculum/student clean energy engagements	REV CC Only	75%	\$10,000		
	L. Colleges and Universities must be REV Campus Challenge members to receive a cost-share of any kind. 2. Supporting Services are only eligible for a NYSERDA cost-share if completed in combination with a Primary Service.					

Chart C1 - NYSERDA Technical Assistance Services

Program Website: https://www.nyserda.ny.gov/All-Programs/Programs/FlexTech-Program

Program Contact: flextech@nyserda.ny.gov

NY-Sun Program

Program description: The New York State Energy Research and Development Authority (NYSERDA) provides financial incentives and financing options through the NY-Sun Incentive Program for the installation of new grid-connected solar photovoltaic (solar electric) systems.

Funding for the program has been allocated by the New York State Public Service Commission through the Clean Energy Fund (CEF) with additional funding made available through the Regional Greenhouse Gas Initiative. Incentives are granted on a first-come, first-served basis, and applications will be accepted through December 31, 2023, or until funds are fully committed.

The program relies on contractors and builders to implement new solar electric systems for customers seeking incentives through the program. Contractors are responsible for the contract with the customer,

while builders are responsible for the installation of the system. A company approved as both a contractor and builder is responsible for all aspects of the project. Before a contractor and builder can work together, they must establish a contractor-builder relationship agreement through the program.

Incentives are only available for new solar electric systems that are designed and installed by participating contractors and builders. Incentives in the nonresidential and commercial/industrial programs will allow for payment assignment and/or full assignments.

Program Website: https://www.nyserda.ny.gov/All-Programs/Programs/NY-Sun

Program Contact: info@nyserda.ny.gov

Real Time Energy Management (RTEM) Program

Program description: RTEM is a cutting-edge technology that continuously sends your site's live and historical performance data to an advanced cloud-based or on-site system. RTEM technologies analyze that data and recommend actionable insights, resulting in lower operating and utility costs, and lead to a smarter building with greater comfort, appeal and marketability. For industrial customers, RTEM helps improve the bottom line by limiting energy consumption while maintaining productivity.

RTEM helps you transform the way you manage, consume and buy energy. NYSERDA will cost share up to 30% of your overall RTEM capital expenses plus 20% - 30% of the RTEM service fees for up to five years and provide the tools and support you need to reap the benefits of building performance optimization.

UR is a qualified self-directed RTEM Service Vendor. The OSISoft PI system is a qualified RTEM System Vendor owned by UR. If a new Digital Control System (DCS) or Building Automation System (BAS) project at UR is utilizing the PI system in some fashion it is a good candidate for RTEM incentives.

The current version of the program is ending June 30th 2021. No new applications can be accepted to the current version. The new version needs to be researched to see how applicable it is to UR. It will focus on tenant spaces which may not suite UR.

Program Website: https://www.nyserda.ny.gov/All-Programs/Programs/Real-Time-Energy-Management

Program Contacts: Alexander Jahn

E: alexander.jahn@nyserda.ny.gov | E: rtem@nyserda.ny.gov

Cody Glavey-Weiss | EIT, CMVP

TRC, Advanced Efficiency Solutions - Project Manager

NYSERDA - Independent Contractor

1359 Broadway, 19th Floor | New York, NY 10018-7842

P: (212) 971-5342 x3803 | C: (646) 647-5431 | F: (518) 862-1091

E: Cody.Glavey-Weiss@nyserda.ny.gov

Energy Advisor Program

Program description: The NYSERDA Energy Advisor Program is an extension of the FlexTech program. The difference is the Energy Advisor Program is a high level FlexTech application with a high level scope of work defined to be accomplished over a period of 12 - 24 months. An estimated total budget is also defined. Once approved by NYSERDA and the work scopes become more defined, periodic work plans for each scope of work item with a more detailed description and budget. Work plans are submitted and approved via email with the NYSERDA project manager.

Program Website: https://www.nyserda.ny.gov/All-Programs/Programs/FlexTech-Program

Program Contact: Tiffany Nicolella

P: 518-862-1090 x 3548 | E: Tiffany.Nicolella@nyserda.ny.gov

On-Site Energy Manager Program

Program description: NYSERDA's On-Site Energy Manager (OSEM) program offers a 75 percent cost-share for industrial and commercial facilities or multifamily buildings to hire a dedicated, full-time on-site energy manager. Projects may include operations and maintenance improvements, energy efficiency upgrades, water saving improvements, and more. The energy manager can be either a new permanent hire or a contractor. You may select a contractor from NYSERDA's current list of Flexible Technical Assistance (FlexTech) Consultants.

Program Website: https://www.nyserda.ny.gov/all-programs/programs/On-site-energy-manager

Program Contact:

E: <u>on-site-energy-manager@nyserda.ny.gov</u>

Community Thermal Systems

Program Opportunity: Heat pumps are frequently installed to serve the needs of a single building. To leverage economy-of-scale and to expand clean energy options for customers who have insufficient footprint space to serve their own needs, heat pumps can be integrated with a network of distribution pipes to serve multiple buildings in a configuration referred to as Community Thermal or District Thermal.

Community Thermal systems can address the needs of new construction projects as well as retrofits of existing buildings, and can be applicable to single-owner campuses such as:

- Colleges/universities
- Medical campuses
- Residential complexes
- Or even multi-owner nodes (such as downtown corridors).

NYSERDA has been authorized to administer a \$15 million program to support development and demonstration of low-carbon Community Thermal Systems installations.

This program drives exploration of business models that can cost-effectively grow this market to scale through support for:

- Scoping
- Design
- Construction

NYSERDA has a total of \$15,000,000 available under this PON and plans to award multiple contracts over multiple rounds. NYSERDA is accepting proposals in the following categories:

Category	Total NYSERDA Funds Available**	Maximum NYSERDA Funding Per Award	Total Project Cost Share Required
Category A: Site-Specific Scoping Study	\$2,000,000	\$100,000	Not Required
Category B: Site-Specific Design Study	\$4,000,000	\$500,000	50%

Category C: Site-Specific	\$8,000,000	\$4,000,000	50%
Implementation Project			
Category D: Market			
Studies/Best Practice	\$1,000,000	\$250,000	Not Required
Guidebooks			

Wendel, in collaboration with the University of Rochester, submitted an application to NYSERDA under this program in March of 2021. It is anticipated that NYSERDA will be making selections of winning proposals and announcing for the first round of applications sometime in May of 2021.

Program Website: https://www.nyserda.ny.gov/Researchers-and-Policymakers/Clean-Heating-and-Cooling/Clean-Thermal-District-Systems

Program Contact:

P: 518-862-1090 Ext 3377 | E: Dana.Levy@nyserda.ny.gov

Rochester Gas & Electric (RG&E)

Commercial and Industrial Rebate Program

Program description: The RG&E Commercial and Industrial Rebate Program is designed to help businesses save energy and money by offering rebates to make projects more affordable and shorten payback periods. Upgrading to newer energy efficient equipment can reduce operational costs and enhance the reliability, safety, comfort, and appearance of a business. Rebates are available for retrofits, add-ons, major renovation, and new construction projects.

The RG&E commercial and industrial rebate program is broken into two parts, Prescriptive Rebates and Custom Rebates.

Prescriptive Rebates:

Lighting

- Interior and exterior LED lamps and fixtures
- · Lighting controls

HVAC & Plumbing

- · Steam traps and steam trap surveys
- · Pipe Insulation
- · Unitary HVAC, heat pumps, split systems
- · Boilers, furnaces and unit heaters
- Infrared heaters
- · Water heaters
- Controls DCV, thermostats, boiler reset
- · Energy management system guest room
- VFD's for fans and pumps
- Tune-ups boilers and chillers

Process Systems

 Compressed air – VSD compressors, air dryers, zero-loss drains

Kitchen Equipment & Refrigeration

- Ovens
- · Insulated holding cabinets
- Fryers
- · Griddles
- Steamers
- Ice-makers
- Dishwashers
- · Cooler and freezer door strips
- · EC motors for refrigeration
- · Controls evaporator fan, anti-condensation

^{**}NYSERDA reserves the right to reallocate funds among categories and to close any given category while keeping remaining categories open.

Prescriptive rebates are based on the specific systems being applied for and the rebate values are described on RG&E's website in their Rebate Catalogs.

Custom Rebates:

For projects not listed under the prescriptive programs but have energy savings, they may qualify under a custom rebate program. Examples of equipment that may qualify for a custom rebate include but are not limited to:

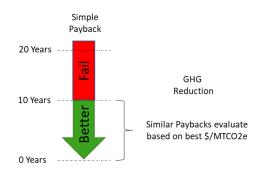
- Building envelope improvements
- Energy management systems
- Lighting and lighting controls (non-prescriptive)
- · Laundry equipment
- Combined heat and power (CHP)
- Refrigeration system improvements
- · Process related equipment
- · Heat recovery
- · Snow-making equipment

For custom rebates, the current incentive rates effective January 3, 2020 are: \$0.13 per kWh saved and \$1.50 per therm saved.

Program Website:

https://www.rge.com/wps/portal/rge/saveenergy/businesssolutions/commercialandindustrial/rebates

Program Contact: Franklin Energy


P: 888-316-8023 | E: clenergysavings@franklinenergy.com

STEP 4 | EVALUATING AND PRIORITIZING PROJECTS

UEM will evaluate and prioritize potential projects for energy savings against KFMs. The KFMs will consider several factors as defined in Step 2 and culminate with an effective simple payback for each opportunity. Each project will be evaluated against an effective simple payback of no more than 10 years. Projects with the lowest primary KFM will be prioritized first, subject to funding availability, logistics, and impact on reliability.

For individual projects, which do not pass the KFMs but have non-energy benefits or will be incorporated into larger building projects, additional capital can be provided by the facility or department to bring the project within the KFMs. Conversely the incremental cost associated with enhancement to an existing project, which is in development, may be considered, should the incremental cost and savings pass the KFM.

STEP 5 | EXECUTION PROCESS

STEP 5A | EXECUTION PROCESS OF UEM MANAGED PROJECTS

Design Phase

Once a project has been approved and funded for execution, UEM will generate design, specification, and construction documents in accordance with the University of Rochester Design Standards. As part of the execution phase, UEM will develop 50% and 90% design packages for key stakeholder reviews. The 50% design submission will include construction cost estimates based on either pricing obtained on past projects of a similar nature or from estimates provided by contractor walk-throughs. Savings calculations and analysis will be more rigorous than what was provided during the Investigation phase. Schematic plans and preliminary outline specs will also be included in the 50% package. UEM will submit the 50% design package for review so a determination can be made early on if the project should proceed with finalization of design. UEM will not proceed to development of the 90% until authorization and approval of the 50% is obtained by key stakeholders.

Upon approval of the 50% design package, UEM will develop and submit the 90% design package to key stakeholders for review. The 90% design package will include finalized savings analysis and calculations, updated installation labor and material costs, finalized plans and specs, documentation that may be required to secure a commitment for utility incentives, and the design and implementation requirements for future performance management and monitoring.

Upon approval of the 90% submission, UEM will then finalize installation costs and develop a construction cost proposal. The construction cost proposal represents submission of the final design (100% design). Installation costs included in the construction cost proposal will be, whenever possible, based on obtaining competitive pricing from at least three qualified bidders.

If this is not possible (in the case of building management control system upgrades) UEM will ensure that the pricing obtained is firm, final, and at fair market value (by making comparisons to similar work done in other buildings by either the same or alternative companies). When competitive bid pricing is possible, UEM will generally recommend the bidder that provides the best value to the University. Projects will not go out to bid until the bid list is reviewed and approved by UEM and key stakeholders.

Implementation Phase

Projects implemented under this program will vary in size from small to potentially large projects. UEM shall provide or obtain, as part of the Implementation phase, all services associated with the procurement, installation and commissioning of new equipment and systems based on the needs, size, and complexity of the project.

These services may include the following:

- CA Services UEM or their designee will provide contract administration services as necessary during the construction phase of the project.
- CM Services UEM or their designee will provide construction management services as necessary during the life cycle (i.e. pre-construction, construction) of the project. Based on the size and complexity of the project this may require a part-time or a full-time construction manager.
- Technical Support Services During Construction UEM or their designee will provide technical support services during the construction period to support construction activities, as necessary.

 Technical Support Services During Start-up and Commissioning – UEM or their designee will provide technical support to oversee and assist with start-up, commissioning, and training.

UEM's responsibilities during Implementation may include:

- Construction sub-contractor, selection, and award with UR stakeholder review and approval
- Obtaining all required permits and approvals
- Securing utility incentives and facilitating final documentation and inspections
- Construction management and administration activities
- Commissioning and functional testing, including all associated documentation
- Ensuring all performance monitoring protocols and measurement tools are in place, active and effectively demonstrating savings
- Project close-out and turnover to facility operations personnel. This includes all as-builts, O&M
 manuals and other system/equipment documentation regarding operation, maintenance, and warranty
- Training of facility operations and building personnel

Based on the size and complexity of the project these UEM responsibilities may be delegated as appropriate.

Performance Management Phase

The intent of Performance Management is to provide the University with diagnostic tools for the purposes of maintaining and monitoring system efficiencies and performance post-implementation. The protocols and diagnostic tools must meet the requirements of the key stakeholders and any providers of incentives including but not limited to the electric and gas utility, Rochester Gas & Electric.

This will be addressed as early on as possible in the Identification and Design phases of the program so they can be identified, accepted, and designed prior to incorporation during the Implementation phase. The methodology employed will vary depending on the complexity of the energy saving measure, however the fundamental activities will most likely include:

- Utility Review and Acceptance: UEM will identify an appropriate methodology for on-going measurement and verification and obtain acceptance from both key stakeholders and Rochester Gas & Electric (for purposes of securing incentives) prior to the Implementation phase.
- Trending: During the Implementation phase, UEM will define which equipment, system trends and
 operating profiles shall be monitored for purposes of demonstrating on-going performance parameters.
 UEM will verify and document, during commissioning, that all trends are defined, archived, and accessible
 within the Building Management System.
- Reporting: UEM will define a format for concise reporting of performance for individual measures and aggregate projects. This may include designing quick view graphic displays, easily accessible from the EMIS, which provide a concise summary of performance data being monitored.
- Training: UEM will provide training to the Operations staff, as well as all primary stakeholders within each building, on use and interpretation.
- Building Level Performance: UEM will provide a projected range of building level energy use, by commodity, and perform a post construction analysis to demonstrate the actual savings captured due to the interactive effects of all measures implemented within a building.

STEP 5B | EXECUTION PROCESS OF UEM ASSISTED PROJECTS

Design Phase

UEM will assist non-UEM projects during the design phase by providing consulting support on energy efficient approaches and technologies that may be used to enhance a projects overall energy efficiency and carbon reduction.

UEM will also assist in applying for and obtaining grant, incentive, or rebate funds as appropriate for energy efficient technologies used in the project.

Implementation Phase

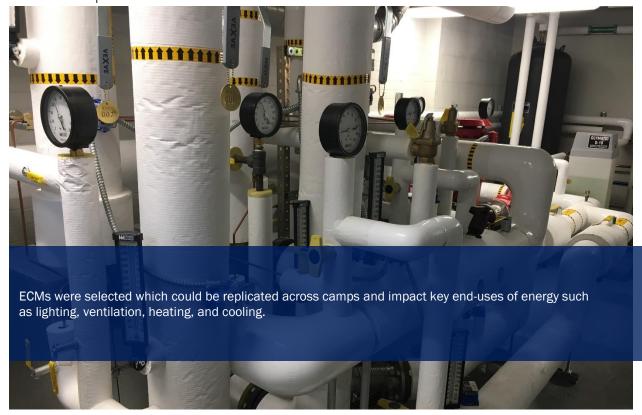
UEM will assist during the implementation phase by providing technical support on energy approaches and technologies as requested during construction, start-up and commissioning activities.

Performance Management Phase

The intent of Performance Management is to provide the University with diagnostic tools for the purposes of maintaining and monitoring system efficiencies and performance post-implementation. The protocols and diagnostic tools must meet the requirements of the key stakeholders and any providers of incentives including but not limited to the electric and gas utility, Rochester Gas & Electric.

This will be addressed as early on as possible in the Identification and Design phases of the program so they can be identified, accepted, and designed prior to incorporation during the Implementation phase. The methodology employed will vary depending on the complexity of the energy saving measure, however the fundamental activities will most likely include:

- Utility Review and Acceptance: UEM will identify an appropriate methodology for on-going measurement
 and verification and obtain acceptance from both key stakeholders and Rochester Gas & Electric (for
 purposes of securing incentives) prior to the Implementation phase.
- Trending: During the Implementation phase, UEM will define which equipment, system trends and
 operating profiles shall be monitored for purposes of demonstrating on-going performance parameters.
 UEM will verify and document, during commissioning, that all trends are defined, archived, and accessible
 within the Building Management System.
- Reporting: UEM will define a format for concise reporting of performance for individual measures and aggregate projects. This may include designing quick view graphic displays, easily accessible from the BMS, which provide a concise summary of performance data being monitored.
- Training: UEM will provide training to the Operations staff, as well as all primary stakeholders within each building, on use and interpretation.
- Building Level Performance: UEM will provide a projected range of building level energy use, by commodity, and perform a post construction analysis to demonstrate the actual savings captured due to the interactive effects of all measures implemented within a building.


Section D

Evaluation of Potential ECMs

Task 2

TASK 2 | EVALUATION OF POTENTIAL ECMS

This section outlines Energy Conservation Measures (ECMs) within the UR buildings. To understand the potential cost/savings associated with ECMs, a strategy was developed by Wendel, UR and NYSERDA, to perform a detailed investigation on key ECMs for representative buildings and extrapolate those results across the other campus buildings (see section 6 for the extrapolation). The following ECMs were selected at the buildings indicated.

LIGHTING | Six (6) representative buildings were selected which have different building uses. Please see the table below for a list of the building. The lighting survey comprised of a review of reflective ceiling plans and a room-by-room walkthrough to confirm fixture types. Lighting loggers were placed in select spaces. This coupled with facility staff interviews were used to establish run hours. ASHRAE Level 2 calculations were performed, and cost estimates were developed based on recent pricing for material and labor from similar projects. Results from the six (6) buildings will determine an existing and proposed watts per square foot as well as cost per square foot. This data was used to extrapolate the savings and cost across the remaining campus buildings.

Building Abbreviation	Туре	
Ambulatory Care Facility	Hospital	
Fauver	Office/Sports	
Kornberg	Lab/Research	
Schlegel Hall	Classroom/Office	
Wallis	Office	
Wilder	Dorm	

STEAM TO HOT WATER CONVERSION | ON HOLD (because input study was delayed due to Covid-19)

LABORATORY HVAC SYSTEMS | Three (3) representative lab buildings were selected. Please see the table below for a list of the buildings. Wendel performed a detailed review of each of the selected laboratory facilities, and working collaboratively with UR EH&S staff, assessed two scenarios for target air change rates. Wendel evaluated the energy savings potential of reducing air flow using ASHRAE Level 2 HVAC calculation models. Cost estimates were developed based on recent pricing for material and labor from similar projects and extrapolated on a square footage basis to the rest of campus.

Building Abbreviation	Туре
Del Monte	Lab/Research
GCHaS	Classroom/Lab/Office
Kornberg	Lab/Research

HVAC RETRO-COMMISSIONING PLAN | Three (3) representative lab buildings were selected by using the existing metering system to identify large simultaneous heating and cooling loads and higher than anticipated EUIs. Please see the table below for a list of the buildings. Wendel performed a scoping survey to provide preliminary justification for investment in a Retro-Commissioning Project. Wendel evaluated the energy savings potential using rule of thumb estimates. Cost Estimates were developed based on recent pricing for material and labor from similar projects and extrapolated on a square footage basis to the rest of campus.

Building	Туре
Rush Rhees Library	Library
Danforth Dining Hall	Dining, Kitchens
Fredrick Douglass	Classrooms, Dining,
Commons	Kitchens

HEAT RECOVERY SYSTEMS | Three (3) representative lab buildings were selected by using the existing metering system to identify large simultaneous heating and cooling loads. Please see the table below for a list of the buildings. Wendel evaluated options for a Heat Recovery Chiller or Heat Pump. Wendel evaluated the energy savings potential using ASHRAE Level 2 HVAC calculation models. Cost Estimates were developed based on recent pricing for material and labor from similar projects and extrapolated on a square footage basis to the rest of campus.

Building Abbreviation	Туре
Del Monte	Lab/Research
GCHaS	Classroom/Lab/Office
KMRB	Lab/Research

PHOTOVOLTAIC SYSTEMS (PV) | Wendel reviewed information regarding roof ages and evaluate the cost benefit of providing a PV system on roofs as they are replaced. The analysis used roof area, assumptions for spacing and available percentage roof space, as well as PV Watts energy productions estimates for

one building were completed. The results from the one building were then proportioned to all of potential solar buildings. Cost estimates based on current typical costs per Watt installed.

Wendel also performed a deep analysis for one building currently in design for a major retrofit project. Wendel assessed current option for financial assistance and provide production estimates, opinion of probable costs and a summary of currently available rebate programs.

UNIVERSITY OF ROCHESTER

ENERGY CONSERVATION MEASURE (ECM)

PROJECT IMPACT SUMMARY

for the ECMs Surveyed and Recommended

	Plant Level Summary									
	Building Level Energy Savings									
Α	Electrical Energy Savings	1,093	mmBtu/Year	= E x .003412						
В	Chilled Water Savings	19,983	mmBtu/Year	from detailed summary recommended total						
С	Steam Savings	29,244	mmBtu/Year	from detailed summary recommended total						
D	Total Energy Savings	50,321	mmBtu/Year							
	Building Level Utility Savings									
Ε	Electrical Energy Savings	320,440	kWh/Year	from detailed summary recommended total						
F	Chilled Water Savings	1,665,278	Ton-Hour/Year	= B x 1,000,000 / 12,000						
G	Steam Savings	24,492	klbs/Year	= C x 1,000,000 / 1,194(BTU/lb) / 1,000						
Н	Water Savings	-	kGal/Year	from detailed summary recommended total						
			Purchased Utility Savin	gs						
1	Electrical Energy Savings	851,413	kWh/Year	= E (F x 49% from electric chillers x .916kW/ton)						
J	Natural Gas Savings	47,995	mmBtu/Year	= C / 67% [HTG eff. (F x 51% from electric steam x .0052mmBtu/ton)						
K	Total Energy Savings	50,900	mmBtu/Year	= I x .003412 J						
L	Cost to Savings Ratio (Cost/mmBtu)	\$98		cost from detailed summary recommended total / K						
			Building Cost Savings ((\$)						
M	Electrical Dollar Savings	\$28,840		= E x Building Electric Rate						
Ν	Chilled Water Dollar Savings	\$435,748		= F x Building Chilled Water Rate						
Ο	Steam Dollar Savings	\$426,960		= G x Building Steam Rate						
Р	Simple Payback		Years	cost from detailed summary recommended total / (M N 0)						
			chased Utility Cost Savi	5 (1)						
Q	Electrical Dollar Savings	\$55,342	Per Year	= I x Utility Electric Rate						
R	Natural Gas Savings	\$154,065	Per Year	= J x Utility Natural Gas Rate						
S	Avoided Carbon Tax	\$132,396	Per Year	= W x Y						
T	Simple Payback	15	Years	cost from detailed summary recommended total / (Q R S)						
	Impact on CO2e Emissions									
U	Electrical Emissions Savings	114	MT CO2e	= I /1000 x 295.94 lbs/MWh x 0.000453592 [lbs to MT						
V	Natural Gas Emissions Savings	2,534	MT CO2e	= J x 116.38 lbs/mmBtu x 0.000453592 [lbs to MT						
W	Total Emissions Savings	2,648	MT CO2e	= U V						
Χ	Cost to Savings Ratio (Cost/CO2e)	\$1,885		cost from detailed summary recommended total / (U)						

Y Carbon Tax Assumed to be: \$50.00 Per MT CO2e

Table 1-2

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE (ECM) ENERGY SAVINGS SUMMARY 10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Line No.	Building	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Building Electric Savings (kWh)	Building Chilled Water Savings (mmBtu)	Building Steam Savings (mmBtu)	Total Building Savings (mmBtu)	Emissions Reduction (MT of CO ₂) ⁵	Cost / mmBtu Saved	Line No.
				4000						4400	
Y	1	Kornberg	Lighting Upgrades Option A	\$850,838	612,702	65	-331	1,825	57	\$466	1
0	2	Kornberg	Lighting Upgrades Option B	\$1,145,668	784,624	84	-424	2,337	73	\$490	2
0	3	ACF	Lighting Upgrades Option A	\$656,793	657,653	30	-444	1,830	54	\$359	3
Y	4	ACF	Lighting Upgrades Option B	\$673,351	790,176	36	-533	2,198	65	\$306	4
N	5	Wilder Hall	Lighting Upgrades Option A	\$75,937	16,598	0	-10	47	1	\$1,628	5
0	6 7	Wilder Hall	Lighting Upgrades Option B	\$75,937	16,598	0	-10	47	1	\$1,628	6
N		Fauver Stadium	Lighting Upgrades Option A	\$31,694	17,791	2	-10	53	2	\$598	- 1
0	8	Fauver Stadium	Lighting Upgrades Option B	\$47,210	18,587	2	-10	55	2	\$853	8
N	9	Schlegel Hall	Lighting Upgrades Option A	\$214,466	134,945	14	-73	402	13	\$534	9
0	10	Schlegel Hall	Lighting Upgrades Option B	\$230,651	140,276	15	-76	418	13	\$552	10
Y	11	Wallis Hall	Lighting Upgrades Option A	\$150,553	98,975	11	-53	295	9	\$511	11
0	12	Wallis Hall	Lighting Upgrades Option B	\$189,192	109,605	12	-59	326	10	\$580	12
0	13	Kornberg	Laboratory Airflow Optimization Option A	\$396,668	44,444	1,108	1,443	2,703	136	\$147	13
Y	14	Kornberg	Laboratory Airflow Optimization Option B	\$396,668	48,514	1,233	1,703	3,102	159	\$128	14
0	15	Del Monte	Laboratory Airflow Optimization Option A	\$234,246	122,805	2,762	3,537	6,717	337	\$35	15
Y	16	Del Monte	Laboratory Airflow Optimization Option B	\$234,246	124,439	2,813	3,619	6,856	344	\$34	16
0	17	BMEO	Laboratory Airflow Optimization Option A	\$183,200	58,553	398	509	1,107	54	\$166	17
Y	18	BMEO	Laboratory Airflow Optimization Option B	\$183,200	88,370	626	884	1,811	91	\$101	18
Y	19	Kornberg	Heat Recovery Heat Pump	\$922,885	-770,069	5,662	8,173	11,207	626	\$82	19
Y	20	Del Monte	Heat Recovery Heat Pump	\$752,029	-557,929	4,062	5,876	8,034	449	\$94	20
Y	21	BMEO	Heat Recovery Heat Pump	\$572,213	-448,516	3,273	4,733	6,476	362	\$88	21
0	22	Eastman	Eastman Campus Rooftop Solar	\$1,066,718	738,717	0	0	2,521	99	\$423	22
0	23	Medical	Medical Campus Rooftop Solar	\$9,739,809	5,905,583	0	0	20,150	793	\$483	23
0	24	River	River Campus Rooftop Solar	\$7,947,170	4,818,644	0	0	16,441	647	\$483	24
0	25	South	South Campus Rooftop Solar	\$3,103,412	2,148,787	0	0	7,332	288	\$423	25
0	26	DDH	Retrocommissioning Best Case	\$18,200	41,050	140	281	561	30	\$32	26
Υ	27	DDH	Retrocommissioning Median	\$24,400	35,919	123	246	491	26	\$50	27
0	28	DDH	Retrocommissioning Worse Case	\$30,600	30,788	105	211	421	22	\$73	28
0	29	RRL	Retrocommissioning Best Case	\$78,380	394,099	2,037	5,038	8,420	480	\$9	29
Y	30	RRL	Retrocommissioning Median	\$165,130	295,947	1,413	3,473	5,896	334	\$28	30
0	31	RRL	Retrocommissioning Worse Case	\$251,880	197,795	789	1,908	3,372	189	\$75	31
0	32	FDC	Retrocommissioning Best Case	\$36,600	2,390	763	1,679	2,450	144	\$15	32
Y	33	FDC	Retrocommissioning Median	\$64,900	1,912	668	1,454	2,129	125	\$30	33
0	34	FDC	Retrocommissioning Worse Case	\$93,200	1,434	573	1,230	1,808	106	\$52	34
				Total Measure Cost ¹ (\$)	Annual Electric Savings (kWh)	Annual Chilled Water Savings (mmBtu)	Annual Fuel Savings (mmBtu)	Total Annual Savings (mmBtu)	Emissions Reduction (mT of CO ₂)	Cost / mmBtu Saved	
			Total Selected Project⁴:	\$4,990,412	320,440	19,983	29,244	50,321	2,648	\$99	
			Project Contingency (included in Total Measure Cost) ² :	\$191,002							

NOTES:

Project Contingency (included in Total Measure Cost)²: Pricing Escalation Reserve (included in Total Measure Cost)³:

1. TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below: Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration

\$191,002

- 2. This is the project contingency which is managed by the Owner.
- 3. Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.
- 4. Total Selected Project is based on the Y or Yes values in the Selection Column.
- 5. Emissions savings based on rates outlined in section 2.

Table 1-3

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE (ECM) PAYBACK SUMMARY | BUILDING UTILITY COST 10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Building	Line No.	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Annual Electric Savings ⁵ (\$)	Annual Chilled Water Savings ⁵ (\$)	Annual Steam Savings ⁵ (\$)	Annual O&M Savings (\$)	Total Annual Savings ⁵ (\$)	Simple Payback Period	Purchased Utility Electric Savings ⁶	Purchased Utility Nat. Gas Savings ⁶	Purchased Utility Payback Period ⁷	Line No.
Y		4		*050.000	AFF 440	\$4.400	* 4.004	#0.004	400.400	440	***	A4 507	00.0	
0	Kornberg	2	Lighting Upgrades Option A	\$850,838	\$55,143 \$70,616	\$1,422 \$1,821	-\$4,831 -\$6,186	\$8,391 -\$1,146	\$60,126 \$65,105	14.2 17.6	\$39,938	-\$1,537 -\$1,968	22.2 23.3	2
0	Kornberg ACF	3	Lighting Upgrades Option B	\$1,145,668 \$656,793	\$59,189	\$1,821	-\$6,481	-\$1,146 \$3,036	\$56,390	11.6	\$51,145 \$42,799	-\$1,968	16.1	3
Y	ACF	4	Lighting Upgrades Option A	\$673,351	\$71,116	\$776	-\$0,461	\$5,628	\$69,732	9.7	\$51,423	-\$2,103	13.8	4
N N	Wilder Hall	5	Lighting Upgrades Option B	\$75,937	\$1,494	\$10	-\$1,767 -\$153	-\$180	\$1,172	64.8	\$1,080	-\$2,52 <i>1</i> -\$50	73.7	5
0	Wilder Hall	6	Lighting Upgrades Option A Lighting Upgrades Option B	\$75,937	\$1,494	\$10	-\$153 -\$153	-\$180	\$1,172	64.8	\$1,080	-\$50	73.7	6
N	Fauver Stadium	7	Lighting Upgrades Option A	\$31.694	\$1,494	\$41	-\$155 -\$140	-\$10U \$71	\$1,574	20.1	\$1,060	-\$50	28.4	7
0	Fauver Stadium	8		\$47,210	\$1,601	\$43	-\$140	-\$354	\$1,215	38.9	\$1,212	-\$45	40.5	8
		9			\$1,673	\$313	-\$1,064	-\$354	\$1,215	19.1	\$8,796	-\$47	25.4	9
N O	Schlegel Hall Schlegel Hall	10	Lighting Upgrades Option A	\$214,466 \$230,651	\$12,145	\$313	-\$1,064	-\$176 \$91	\$11,218	19.1	\$9,144	-\$339 -\$352	26.2	10
Y	Wallis Hall	11	Lighting Upgrades Option B Lighting Upgrades Option A	\$150,553	\$8,908	\$230	-\$1,106 -\$780	\$1,251	\$9,608	19.3 15.7	\$6,452	-\$352 -\$248	24.3	11
0	Wallis Hall	12		\$189,192	\$9.864	\$254	-\$760	\$1,251	\$9,608	20.1	\$7,144	-\$246 -\$275	27.5	12
0	Kornberg	13	Lighting Upgrades Option B Laboratory Airflow Optimization Option A	\$396,668	\$4,000	\$24,164	\$21,072	\$105	\$49,236	8.1	\$4,803	\$7,690	31.8	13
Y	Kornberg	14	Laboratory Airflow Optimization Option B	\$396,668	\$4,366	\$26,886	\$24,867	\$0	\$56,120	7.1	\$5,283	\$9,022	27.7	14
0	Del Monte	15	Laboratory Airflow Optimization Option A	\$234,246	\$11,052	\$60,221	\$51,634	\$0	\$122,907	1.9	\$12,752	\$18,876	7.4	15
Y	Del Monte	16	Laboratory Airflow Optimization Option B	\$234,246	\$11,200	\$61,333	\$52,838	\$0	\$125,371	1.9	\$12,732	\$19,307	7.3	16
0	BMEO	17		\$183,200	\$5.270	\$8,671	\$7,434	\$0	\$21,374	8.6	\$4,493	\$2,718	25.4	17
Y	BMEO	18	Laboratory Airflow Optimization Option A Laboratory Airflow Optimization Option B	\$183,200	\$7,953	\$13,648	\$12,906	\$0	\$34,507	5.3	\$6,825	\$4,672	15.9	18
Y	Kornberg	19	, , , , , ,	\$183,200	-\$69,306	\$13,648 \$123,458	\$12,906	-\$3,150	\$170.321	5.4	-\$40,276	\$4,672	325.6	19
Y	Del Monte	20	Heat Recovery Heat Pump Heat Recovery Heat Pump	\$752,029	-\$50.214	\$88,576	\$85,788	-\$3,150	\$170,321	6.2	-\$40,276	\$30,989	432.4	20
Y	BMEO	21	Heat Recovery Heat Pump	\$572,213	-\$40,366	\$71,362	\$69,109	-\$2,520	\$98,215	5.8	-\$23,501	\$24,964	391.1	21
0	Eastman	22	Eastman Campus Rooftop Solar	\$1,066,718	\$66,485	\$71,302	\$0	-\$4,048	\$62,436	17.1	\$48.017	\$0	22.2	22
0	Medical	23	Medical Campus Rooftop Solar	\$9,739,809	\$531.503	\$0	\$0	-\$32,362	\$499.140	19.5	\$383.863	\$0	25.4	23
0	River	24	River Campus Rooftop Solar	\$7.947.170	\$433.678	\$0	\$0	-\$26,406	\$407.272	19.5	\$313,212	\$0	25.4	24
0	South	25	South Campus Rooftop Solar	\$3,103,412	\$193,391	\$0	\$0	-\$11,775	\$181,616	17.1	\$139,671	\$0	22.2	25
0	DDH	26	Retrocommissioning Best Case	\$18,200	\$3,695	\$3,062	\$4,100	\$0	\$10,856	1.7	\$2,911	\$1,443	4.2	26
Y	DDH	27	Retrocommissioning Median	\$24,400	\$3,233	\$2,679	\$3,587	\$0	\$9,499	2.6	\$2,547	\$1,263	6.4	27
0	DDH	28	Retrocommissioning Worse Case	\$30,600	\$2,771	\$2,079	\$3,075	\$0	\$8,142	3.8	\$2,183	\$1,082	9.4	28
0	RRL	29	Retrocommissioning Worse case	\$78,380	\$35.469	\$44.411	\$73.560	\$0	\$153.440	0.5	\$29.134	\$25.549	1.4	29
Y	RRL	30	Retrocommissioning Median	\$165,130	\$26,635	\$30,810	\$50,708	\$0	\$108.154	1.5	\$21,677	\$17,618	4.2	30
0	RRL	31	Retrocommissioning Worse Case	\$251,880	\$17,802	\$17,210	\$27,856	\$0	\$62,868	4.0	\$14,220	\$9,688	10.5	31
0	FDC	32	Retrocommissioning Best Case	\$36,600	\$215	\$16,648	\$24,509	\$0	\$41,372	0.9	\$1,474	\$8,572	3.6	32
Y	FDC	33	Retrocommissioning Median	\$64,900	\$172	\$14,567	\$21,235	\$0	\$35,974	1.8	\$1,278	\$7,432	7.5	33
0	FDC	34	Retrocommissioning Worse Case	\$93,200	\$129	\$12,486	\$17,961	\$0	\$30,576	3.0	\$1,082	\$6,291	12.6	34
- J	100	J-	neaccontinuosioning worse case	\$55,255	W120	¥12,700	\$11,001	40	\$00,010	0.0	Ψ±,002	Ψ0,201	14.0	5-7
			Total Selected Project⁴:	\$4,990,412	\$28,840	\$435,748	\$426,960	\$7,710	\$899,257	5.5	\$55,342	\$154,065	23.8	

Project Contingency (included in Total Measure Cost)²: \$191,002

Pricing Escalation Reserve (included in Total Measure Cost)³: \$191,002

^{1.} TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below: Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration

^{2.} This is the project contingency which is managed by Owner.

^{3.} Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.

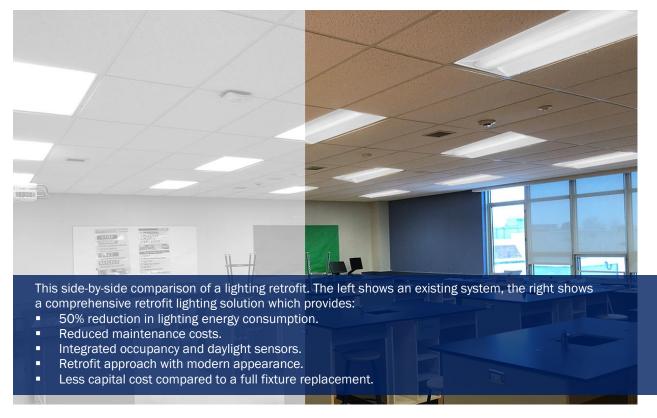
^{4.} Total Selected Project is based on the Y or Yes values in the Selection Column.

^{5.} Cost savings based on the by BUILDING UTILITY RATES are defined as the fully burdened utility rate, paid by the buildings, please refer to Section 2 for additional details regarding the applied utility rates.

^{6.} Cost savings based on the by PURCHASED UTILITY RATES are defined as the rates paid by UR to the utility service providers, please refer to Section 2 for additional details regarding the applied utility rates.

^{7.} PURCHASED UTILITY PAYBACK PERIOD this is the payback period based on the cost sayings applying the PURCHASED UTILITY RATES

Section D


Evaluation of Potential ECMs

Lighting

Lighting Improvements

ECM# 01

Lighting projects are often the engine that drive energy conservation projects. Typical lighting retrofit projects will provide a 50% reduction in energy usages associated with lighting systems. Savings can be further enhanced by incorporating advance lighting controls such as occupancy sensors, vacancy sensors and daylighting harvesting.

A BASE LIGHTING PROJECT will address lighting opportunities by leveraging low cost retrofit solutions to reduce energy and O&M costs. The benefit of this approach is the savings generated by the lighting improvements, which can be used to offset the cost of more expensive improvements (such as HVAC upgrades). The trade-off is the existing fixtures are reused without any improvements to aesthetics or controls.

Conversely, many Universities have requested a VALUE-ADD LIGHTING PROJECT and the market has responded with many manufacturers now providing retrofit kits that will upgrade fixtures while also improving aesthetics and controls. The trade-off here is that these improvements typically are more expensive, leaving less capital for other improvements.

It has been our experience that most projects balance both a BASE LIGHTING PROJECT and a VALUE-ADD LIGHTING PROJECT approach, where through collaboration with stakeholder's areas such as mechanical rooms will only utilize a BASE LIGHITNG PROJECT solution, while labs and office may utilize a VALUE-ADD LIGHTING PROJECT solution. We believe the University will likely leverage some variation of both solutions as projects are developed across the campus.

INVESTIGATION

Wendel evaluated six (6) University of Rochester buildings to investigate the existing lighting systems and determine opportunities to save energy. The six buildings where selected by the University and Wendel based on the following criteria:

- Differing use types that which are representative of the major space types found within the University.
- Buildings that are accessible
- Buildings with an area less than 200,000 sqft.

A lighting survey was performed by reviewing reflective ceiling plans and a walkthrough (partial room by room) to confirm existing fixture types, quantities and lighting controls. During the survey, quantities and conditions of existing lighting fixtures were documented. The current level of energy efficiency was evaluated, and upgrades were identified.

INVESTIGATION APPROACH

Wendel conducted a survey of the lighting system to identify fixture types, assess type of lighting system, quantify the number of each fixture type, assess space types, and run hours. Wendel performed field surveys of all accessible spaces. We were not able to enter high risk laboratories or each residence room. In these instances, we will use available drawings and nearby representative spaces to extrapolate fixture counts to those spaces. These site visits were done in collaboration with the facility staff. We utilized lighting loggers to determine operating schedules and control. All captured data was incorporated into the baseline energy model to simulate existing building conditions and will incorporate the system's effects on other building system's consumption.

Map Ref.	Campus	Building Name	Building Type	Area	% LED
1	Medical Campus	Kornberg	Lab Research	235,914	<5%
2	Medical Campus	Ambulatory Care Facility (ACF)	Hospital	224,609	<5%
3	River Campus	Wilder Hall	Dorm	78,822	~30%
4	River Campus	Fauver Stadium	Office/Sports	63,097	~70%
5	River Campus	Schlegel & Gleason Hall	Classroom/Office	115,832	~20%
6	River Campus	Wallis Hall	Office	49,598	~5%

Table E1: Building Information

Figure E1: Buildings for Lighting Study on Medical Campus Map

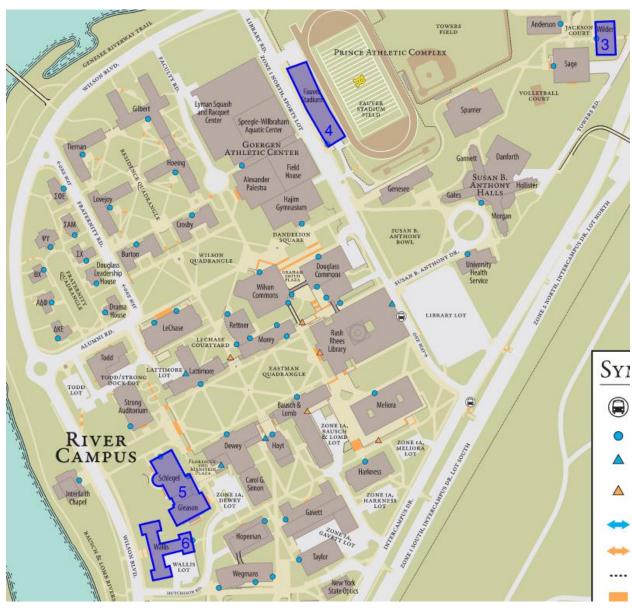


Figure E2: Buildings for Lighting Study on River Campus

EXISTING CONDITIONS

Kornberg Medical Research Building is a five (5) story building containing research laboratories and offices. The facility has several ceiling types including open, drop and drywall with drop ceilings being the most widespread.

Lighting fixtures at the facility primarily consist of two or four 4-foot T8 fluorescent linear tubes housed in recessed troffers or box fixtures in lab spaces and restrooms. Offices utilize two (2) T8 fluorescent U-bend tubes housed in 2x2 recessed troffers. Hallways are lit by 4-foot T8 fluorescent linear tubes in multiple different fixture types, including pendant box fixtures, wall mounted fixtures utilizing direct/indirect lighting and recessed troffers along the perimeter of the corridors. Recessed can lights utilizing two (2) pin based compact fluorescent lamps were also found thought the research building.

There is a mixture of manual and automatic lighting controls. Lab spaces typically have manual on/off switches. Offices and restrooms utilize wall mounted occupancy sensors that turn on when the space becomes occupied.

Ambulatory Care facility is a seven (7) story building with a penthouse, its primary function is as a hospital. The facility has several ceiling types including open, drop and drywall with drop ceilings being the most widespread.

Lighting fixtures at the facility utilize 4-foot linear fluorescent lamps(2 to 4 per fixture), or pin base compact fluorescent lamps. The fixture types at the facility vary by space. Offices and patient care rooms have troffer fixtures and recessed can fixtures. Restrooms have wall mounted fixtures.

There is a mixture of manual and automatic lighting controls. Labs, exam rooms, work rooms and procedure rooms typically have manual on / off switches. Offices utilize a mix of manual switching and wall mounted occupancy sensors and corridors are controlled by ceiling mounted occupancy sensors.

Wilder Hall is a ten (10) story building containing dormitory suites for student living. A mixture of different ceiling types exists including open ceilings in the basement, drop ceiling in offices and common areas, and spline ceiling found sporadically.

The first floor offices, hallways, and common areas have been upgraded to LED fixtures. Each floor has an elevator lobby, a kitchen and a trash room. All lighting in these common areas have been upgraded to LED lamps or fixtures. Stairwell lighting has been updated to LED wafers mounted to the walls. Dorm suites were occupied during the site visit, however there was access to one suite. This suite was found to have four (4) square canopy lights in the hallways, and fluorescent T8 linear lamps in the bathroom.

Common areas have a mixture of on/off switches and automatic lighting controls. Dorm lighting is controlled by on/off switches.

Fauver Stadium is a three (3) story building containing offices and athletic facilities. The facility has several ceiling types including open, drop and drywall.

Majority of this building has already been converted to LED. Lighting fixtures at the facility utilize 4-foot linear fluorescent lamps, 2 to 4 per fixture. The fixture types and mounting style vary by space.

There is a mixture of manual and automatic lighting controls. Corridors and common areas utilize occupancy sensors. Offices utilize a mix of manual switching and wall mounted occupancy sensors.

Schlegel Hall a four (4) story building that contains lecture halls, offices and seminar rooms. The southern part of the building is named Gleason Hall, which also contains lecture halls and offices. The facility has several ceiling types including drop, drywall, and spline.

This building has a wide variety of luminaire fixtures. Offices generally contain two to four 4-foot T8 fluorescent linear tubes housed in recessed troffer fixtures. Lecture halls utilize T8 fluorescent linear indirect lighting above a parabolic ceiling, and recessed fixtures along the perimeter of the room. Recessed can lights utilizing one to two pin based compact fluorescent lamps are commonly found in hallways and classrooms.

There is a mixture of manual and automatic lighting controls. Most offices utilize occupancy sensors. Lecture halls have manual on/off switches that control specific light fixtures.

Wallis Hall a three (3) story building that contains offices including the University Presidential Office. The facility has a mixture of drop ceiling and spline ceiling.

This building has a wide variety of lighting fixtures. Lighting fixtures at the facility utilize 4-foot linear fluorescent lamps (2 to 4 per fixture) or pin base compact fluorescent lamps.

Offices utilize a mix of manual on/off switching and occupancy sensors.

PROPOSED MODIFICATIONS:

The recommended lighting upgrade focuses on optimizing the current lighting system by replacing or retrofitting less efficient fixtures. For the purposes of this study, two options were evaluated.

The first option, BASE LIGHTING PROJECT, includes mostly lamp replacements, which is typically more cost effective than new fixtures. Under a LED tube retrofit condition, the existing fixture body is left in place, the ballast is removed, and the internal components are replaced with energy efficient Type-C LED tubes with remote drivers. A new fixture is only recommended in this option if a fixture was noticed to be in poor condition. With a retrofit, significant energy savings can be realized at a much lower cost than a complete fixture replacement.

The second option, VALUE-ADD LIGHTING PROJECT, includes retrofit kits and new fixtures. Under Option 2, retrofit solutions are proposed for majority of recessed fixtures, while new fixtures are recommended for surface or pendant mounted interior fixtures and all exterior fixtures. Lamp replacement is only recommended if a fixture was in excellent condition, if the fixture was decorative in nature, or an uncommon fixture that seemed to have been specifically chosen for the space.

For both options, wall mounted occupancy sensors are recommended in offices, and ceiling mounted occupancy sensors are recommended in restrooms and classrooms that do not currently have them. Occupancy sensors are not recommended in classrooms with specific lighting controls.

We have summarized the lighting options with a table showing the common fixtures, as well as pictures of existing conditions as well as suggestions for options 1 and option 2.

DESIGN & CONSTRUCTION CONSIDERATIONS

The intent of the ECM is to reduce the electrical energy consumption of the overall lighting system, while providing an aesthetically pleasing lighting plan that will maintain or improve the working environment for its occupants.

- The proposed upgrades will follow industry standard guidelines to ensure that proper lighting levels are maintained for the various illuminated areas, while maximizing the energy efficiency of the lighting system. These lighting levels have been selected based on criteria established by the Illuminating Engineering Society (IES).
- Retrofits may require access above a drop ceiling. Therefore, these improvements may require testing of ceiling tiles and fire proofing to verify the absence of any potential asbestos containing material (ACM) behind the drop ceiling.
- Lens covers will be cleaned and reused. Damaged lens covers will be replaced in kind.
- Daylight harvesting may be required per New York State Energy Code depending on the level of alteration.
- New fixtures, located in place of existing fixtures, in suspended ceilings, may require additional supports per current codes.
- Emergency power for egress lighting is assumed to be provided by an emergency circuit powered by the building's emergency generators. Actual emergency lighting will need to be confirmed relative to requirements of NFPA 101.
- It is recommended that sample lighting be installed during the design to review color temperature and illumination prior to final design.

OPERATION & MAINTENANCE IMPACT

The longer service life of LEDs will reduce both capital costs and maintenance time, allowing personnel to concentrate on maintaining critical equipment. Maintenance savings are presented and reflect annual material cost savings only. Savings achieved from:

Longer life of LED lamps

ENERGY IMPACT

The proposed improvements save energy by replacing the existing lighting sources (lamps) with new lighting sources (LED lamps) which use less input energy (watts) to produce light (lumens). Additionally, sensors, controls and dimming systems further reduce the runtime and/or load of the lighting system. The fundamental intent is to provide the same amount of light, when needed, with less input energy.

STUDENT / OCCUPANT IMPACT

Lighting can have many positive impacts on student health and well-being. Some of the benefits of LED lighting in schools are the improvements of school safety and the reduction of eye strain and other difficulties associated with lighting. Installing newer LED light fixtures can reduce the risk of exposure to harmful contaminants such as Polychlorinated Biphenyls (PCBs).

Table 1-4

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE (ECM) - LIGHTING ENERGY SAVINGS SUMMARY 10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Line No.	Building	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Building Electric Savings (kWh)	Building Chilled Water Savings (mmBtu)	Building Steam Savings (mmBtu)	Total Building Savings (mmBtu)	Emissions Reduction (MT of CO ₂) ⁵	Cost / mmBtu Saved	Line No.
Υ	1	Kornberg	Lighting Upgrades Option A	\$850,838	612,702	65	-331	1,825	57	\$466	1
0	2	Kornberg	Lighting Upgrades Option B	\$1,145,668	784,624	84	-424	2,337	73	\$490	2
0	3	ACF	Lighting Upgrades Option A	\$656,793	657,653	30	-444	1,830	54	\$359	3
Υ	4	ACF	Lighting Upgrades Option B	\$673,351	790,176	36	-533	2,198	65	\$306	4
N	5	Wilder Hall	Lighting Upgrades Option A	\$75,937	16,598	0	-10	47	1	\$1,628	5
0	6	Wilder Hall	Lighting Upgrades Option B	\$75,937	16,598	0	-10	47	1	\$1,628	6
N	7	Fauver Stadium	Lighting Upgrades Option A	\$31,694	17,791	2	-10	53	2	\$598	7
0	8	Fauver Stadium	Lighting Upgrades Option B	\$47,210	18,587	2	-10	55	2	\$853	8
N	9	Schlegel Hall	Lighting Upgrades Option A	\$214,466	134,945	14	-73	402	13	\$534	9
0	10	Schlegel Hall	Lighting Upgrades Option B	\$230,651	140,276	15	-76	418	13	\$552	10
Υ	11	Wallis Hall	Lighting Upgrades Option A	\$150,553	98,975	11	-53	295	9	\$511	11
0	12	Wallis Hall	Lighting Upgrades Option B	\$189,192	109,605	12	-59	326	10	\$580	12
				Total Measure Cost ¹ (\$)	Annual Electric Savings (kWh)	Annual Chilled Water Savings (mmBtu)	Annual Fuel Savings (mmBtu)	Total Annual Savings (mmBtu)	Emissions Reduction (mT of CO ₂)	Cost / mmBtu Saved	
			Total Selected Project⁴:	\$1,674,741	1,501,853	111	-918	4,318	131	\$388	
			Project Contingency (included in Total Measure Cost) ² :	\$60,900							

NOTES:

\$60,900 Pricing Escalation Reserve (included in Total Measure Cost)3: 1. TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below: Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration

- 2. This is the project contingency which is managed by the Owner.
- 3. Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.
- 4. Total Selected Project is based on the Y or Yes values in the Selection Column.

5. Emissions savings based on rates outlined in section 2.

Table 1-5

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE (ECM) - LIGHTING PAYBACK SUMMARY | BUILDING UTILITY COST 10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Building	Line No.	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Annual Electric Savings ⁵ (\$)	Annual Chilled Water Savings ⁵ (\$)	Annual Steam Savings ⁵ (\$)	Annual O&M Savings (\$)	Total Annual Savings ⁵ (\$)	Simple Payback Period	Purchased Utility Electric Savings ⁶	Purchased Utility Nat. Gas Savings ⁶	Purchased Utility Payback Period ⁷	Line No.
Y	Kornberg	1	Lighting Upgrades Option A	\$850,838	\$55,143	\$1,422	-\$4,831	\$8,391	\$60,126	14.2	\$39,938	-\$1,537	22.2	1
0	Kornberg	2	Lighting Upgrades Option B	\$1,145,668	\$70,616	\$1,821	-\$6,186	-\$1,146	\$65,105	17.6	\$51,145	-\$1,968	23.3	2
0	ACF	3	Lighting Upgrades Option A	\$656,793	\$59,189	\$646	-\$6,481	\$3,036	\$56,390	11.6	\$42,799	-\$2,103	16.1	3
Y	ACF	4	Lighting Upgrades Option B	\$673,351	\$71,116	\$776	-\$7,787	\$5,628	\$69,732	9.7	\$51,423	-\$2,527	13.8	4
N	Wilder Hall	5	Lighting Upgrades Option A	\$75,937	\$1,494	\$10	-\$153	-\$180	\$1,172	64.8	\$1,080	-\$50	73.7	5
0	Wilder Hall	6	Lighting Upgrades Option B	\$75,937	\$1,494	\$10	-\$153	-\$180	\$1,172	64.8	\$1,080	-\$50	73.7	6
N	Fauver Stadium	7	Lighting Upgrades Option A	\$31,694	\$1,601	\$41	-\$140	\$71	\$1,574	20.1	\$1,160	-\$45	28.4	7
0	Fauver Stadium	8	Lighting Upgrades Option B	\$47,210	\$1,673	\$43	-\$147	-\$354	\$1,215	38.9	\$1,212	-\$47	40.5	8
N	Schlegel Hall	9	Lighting Upgrades Option A	\$214,466	\$12,145	\$313	-\$1,064	-\$176	\$11,218	19.1	\$8,796	-\$339	25.4	9
0	Schlegel Hall	10	Lighting Upgrades Option B	\$230,651	\$12,625	\$326	-\$1,106	\$91	\$11,936	19.3	\$9,144	-\$352	26.2	10
Y	Wallis Hall	11	Lighting Upgrades Option A	\$150,553	\$8,908	\$230	-\$780	\$1,251	\$9,608	15.7	\$6,452	-\$248	24.3	11
0	Wallis Hall	12	Lighting Upgrades Option B	\$189,192	\$9,864	\$254	-\$864	\$165	\$9,419	20.1	\$7,144	-\$275	27.5	12
			Total Selected Project ⁴ :	\$1,674,741	\$135,167	\$2,428	-\$13,398	\$15,270	\$139,466	12.0	\$97,813	-\$4,312	17.9	

Project Contingency (included in Total Measure Cost)²: \$60,900

Pricing Escalation Reserve (included in Total Measure Cost)³: \$60,900

- 1. TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below:
- Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration
- ${\bf 2.}\,$ This is the project contingency which is managed by Owner.
- 3. Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.
- 4. Total Selected Project is based on the Y or Yes values in the Selection Column.
- 5. Cost savings based on the by BUILDING UTILITY RATES are defined as the fully burdened utility rate, paid by the buildings, please refer to Section 2 for additional details regarding the applied utility rates.
- 6. Cost savings based on the by PURCHASED UTILITY RATES are defined as the rates paid by UR to the utility service providers, please refer to Section 2 for additional details regarding the applied utility rates.
- 7. PURCHASED UTILITY PAYBACK PERIOD this is the payback period based on the cost sayings applying the PURCHASED UTILITY RATES

					-	78				,
Total Selected	.000	1911111				1 - 0101 - 1		Purchased	Purchased	Purchased
and Optional	Total Measure	Annual Electric	Annual Chilled	Annual Steam	Annual O&M	Total Annual	Simple	Utility Electric	Utility Nat Gas	Utility Payback
Porojects	Cost	Savings	Water Savings	Savings	Savings	Savings	Payback	Savings	Savings	Period
	\$2,067,179	\$151,915	\$2,831	(\$14,888)	\$13,741	\$153,600	13.5	\$109,941	(\$4,788)	19.7

Building	Existing	Option 1: Proposed Re-Lamp	Option 2: Proposed Retrofit or New Fixture
Fauver KMRB Schlegel		- many	
	2 to 3 Lamp 1x2 Recessed Troffer	Re-Lamp - 2 to 3 Linear LED Tubes	Retrofit - Metalux 1x2 LED Troffer
Fauver Wilder	P		
	1 to 2 Lamp 4' T8 or T12 Linear Pendants	Re-Lamp - 1 to 2 Linear LED Tubes	New Fixture - Philips Linear Pendant
Fauver KMRB		- Manager	
	1 to 2 Lamp 4' T8 or T12 Surface Mounted Box	Re-Lamp - 1 to 2 Linear LED Tubes	New Fixture - Philips Linear Surface Mount
KMRB			
	1 to 2 Lamp 4' T8 Vapor Proff Fixture	Re-Lamp - 2 to 3 Linear LED Tubes	New Fixture - Philips Vapor Proof Fixture

Building	Existing	Option 1: Proposed Re-Lamp	Option 2: Proposed Retrofit or New Fixture
ACF Fauver KMRB Schlegel Wallis Wilder	1 to 2 Lamp Wrap and or Strip Fixture	Re-Lamp - 1 to 2 Linear LED Tubes	New Fixture - Philips Strip Fixture
ACF Fauver KMRB Schlegel Wallis	2x4 Recessed Troffers	Re-Lamp - 1 to 4 Linear LED Tubes	Retrofit - Philips EvoKit
KMRB	2x2 Recessed Troffers	Re-Lamp - 2 U Bend LED Tubes	Retrofit - Philips EvoKit
ACF Fauver KMRB Schlegel Wallis	1x4 Recessed Troffers	Re-Lamp - 1 to 3 Linear LED Tubes	Retrofit - Philips EvoKit Custom Order

Building	Existing	Option 1: Proposed Re-Lamp	Option 2: Proposed Retrofit or New Fixture
KMRB	Direct/Indirect Wall Mounted	Re-Lamp - 1 to 2 Linear LED Tubes	New Fixture - Philips Linear Surface Mount
ACF KMRB	Indirect Cove Lighting	Re-Lamp - 1 to 3 Linear LED Tubes	N/A
Schlegel	Wall Wash Recessed Can Lights	Re-Lamp - 1 LED Lamp	Retrofit - RAB Adjustable Recessed Can Light
ACF Fauver KMRB Schlegel Wallis	6,8,&10 Recessed Can Lights	Re-Lamp - 1 to 3 LED Lamp	Retrofit - RAB Recessed Can Light

Building	Existing	Option 1: Proposed Re-Lamp	Option 2: Proposed Retrofit or New Fixture
Wallis	4 Recessed Can Light	Re-Lamp - 1 LED MR-16	Retrofit - RAB Recessed Can Light
Wallis Wilder	1x4, 2x2, & 2x4 Box Fixtures	Re-Lamp - 1 to 4 Linear LED Tubes	New Fixture - RAB LED Panel with Surface Mounting Kit
Wilder	Indoor Square Canopy Light	N/A	New Fixture - RAB LED Square Surface Mount
ACF	Decorative Wall Sconce	Re-Lamp - 1 LED Lamp	N/A

Building	Existing	Option 1: Proposed Re-Lamp	Option 2: Proposed Retrofit or New Fixture
Schlegel	Decorative Wall Sconce	Re-Lamp - 1 LED Lamp	N/A
Wallis	Screw in PAR Lamps	Re-Lamp - Screw in LED PAR Lamp	N/A
Wallis Wilder	Screw in Incandescent or CFL Lamps	Re-Lamp - Screw in LED Lamp	N/A
Wallis	MR-16 Spot Light	7W LED MR-16	Retrofit - RAB Adjustable Recessed Can Light

Building	Existing	Option 1: Proposed Re-Lamp	Option 2: Proposed Retrofit or New Fixture
Schlegel	Small Flood Light	N/A	New Fixture - LED Small Flood Light
Fauver	Large Flood Light	N/A	New Fixture - LED Flood Light
KMRB Schlegel Wilder	Small Wall Pack	N/A	New Fixture - LED Small Wall Pack
Fauver	Wall Pack	N/A	New Fixture - LED Wall Pack

Building	Existing	Option 1: Proposed Re-Lamp	Option 2: Proposed Retrofit or New Fixture
Wilder			
	Exterior Square Canopy		New Fixture - LED Canopy
ACF Schlegel Wallis	No Sensor	Ceiling Sensor	N/A
ACF Fauver Schlegel Wallis	No Sensor	Wall Sensor Switch	N/A

Table 3: LED Lighting Options

Section D

Evaluation of Potential ECMs

Laboratory Airflow Optimization

ECM 3 | Lab HVAC Systems

OPPORTUNITY

Laboratories require ventilation air to maintain a safe working environment. The volume of ventilation air required is based on the use of the lab, the volume of the lab space, the number of fume hoods in the lab, and the occupancy status of the lab. Wendel met with facility operations personnel for Kornberg, Del Monte, & BMEO to review the existing lab controls, fume hoods, and laboratory space usage of varying lab spaces within each building. An opportunity exists to reduce the air changes in these spaces by recalibrating the general exhaust valves as necessary to meet the minimum required laboratory ventilation in air changes per hour based on the laboratory's chemical safety classification. Potential energy savings will be realized by reducing the amount of air exhausted by from the space which then allows for reduced supply air rates, saving heating, cooling and fan energy.

INVESTIGATION APPROACH

Wendel reviewed all the mechanical plans and conducted site visits and interviews with UR staff to determine the current state of lab use within the building. Laboratory fume hoods, and supply air systems were studied to determine the current air changes per hour (ACH) for each lab space (both occupied and unoccupied). The exhaust from the lab fume hoods was determined to be higher than necessary in many of the lab spaces to maintain the minimum lab ACH requirement during occupied hours.

Baseline energy use of these areas was modeled from current sequences of operation and trends obtained from the building management system. Reduced ventilation rates based on current lab ACH requirements were calculated and modeled to determine potential energy reduction. The calculation in the Appendix outlines the results of our investigation and analysis in detail. The following is an overview of the key variables and investigation approach.

EXISTING SYSTEMS

The research laboratories at the University of Rochester utilize variable volume fume hoods to achieve the necessary air changes for a safe lab environment. Specific site conditions are indicated below, which were based

on Wendel's field survey, review of existing design drawings, and review of existing building management system setpoints and trending reports. Please note, Kornberg & Del Monte are combined below since the controls sequence, era of construction, and configuration were found to be identical.

KORNBERG MEDICAL RESEARCH BUILDING (Komberg) & MEDICAL RESEARCH BUILDING EXTENSION (Del Monte)

The research laboratories at KMRB and Del Monte were observed to include variable volume fume hoods with advanced controls. The advanced controls included sash face velocity control, automatic sash closing actuators, and occupancy-based air change rates. Currently, most of the spaces are commissioned as a Chemical Safety Level CSL3, with air change rates of 10 air changes /hour (ACH) when occupied and 6 ACH when unoccupied. There are limited spaces which operate as a CSL2 classification, with occupied air change rates of 8 ACH and unoccupied air change rates of 4 ACH.

Wendel worked with University EH&S to determine if the chemical safety classifications were appropriate based on the current utilization of the individual lab spaces. It was determined that further investigation would be required, space by space, to determine if lower air change rates per hour can be applied.

Figure E3 KMRB - Lab Controls and Fume hood

GOERGEN HALL (BMEO)

The research laboratories at BMEO were observed to include constant volume fume hoods with advanced controls. The advanced controls included sash face velocity control and occupancy-based air change rates. Currently the spaces are commissioned as a Chemical Safety Level CSL3, with air change rates of 10 air changes / hour when occupied and 6 air changes / hour when unoccupied. It is important to note that Wendel's site visit was limited to only one (1) laboratory (unoccupied at the time) due to staff requests. It is Wendel's understanding that this laboratory was representative of the construction and controls type found throughout the facility. Wendel worked with University EH&S to determine if the chemical safety classifications were appropriate based on the current utilization of the individual lab spaces. It was determined that further investigation would be required, space by space, to determine if lower air change rates per hour can be applied.

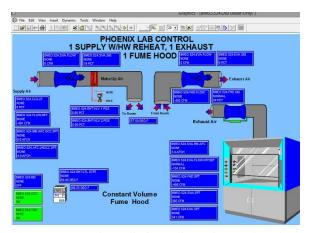


Figure E4 BMEO - Lab Controls and Fume hood

PROPOSED CHANGES

Since additional evaluation would be required in conjunction with University EH&S, Wendel elected to present two (2) scenarios should it be determined that the spaces are operating below the current chemical safety classification. These scenarios include Scenario 1, utilizing a chemical safety classification of CSL2, and Scenario 2, which utilizes design levels observed at peer institutions. In both scenarios, the general exhaust valves will be rebalanced to reduce the total ventilation airflow utilized by each building. Supply air will be balanced based on an offset from the newly adjusted general exhaust in order to maintain pre-retrofit room pressurization set point. The general exhaust valves will be rebalanced based on the following criteria per scenario:

Scenario 1 | Chemical Safety Level 2 (CSL2)

Wendel evaluated the savings potential associated with lowering the Chemical Safety Level (CSL) from CSL3 (existing) to CSL2. CSL2 laboratory spaces require 8 air changes per hour (ACH) when occupied and 4 air changes per hour (ACH) when unoccupied per the University of Rochester's Environmental Health and Safety Department. At the time of the study, current space classification could not be verified to determine the total quantity of spaces that could be reduced from CSL3 to CSL2. Please note, occupied and unoccupied air change rates were increased, from the 8 ACH / 4 ACH minimum, in order to ensure that space cooling loads can be maintained. An adjustment of minimum supply airflow of 1 CFM/sf was utilized to account for this. Please refer to the Appendix for more details.

Scenario 2 | Peer Institutions

Wendel evaluated the savings potential associated with reducing the minimum occupied and unoccupied air changes per hour (ACH) to align more closely with peer institutions with similar type and use laboratory facilities. The proposed air changes per hour (ACH) set points utilized an occupied and unoccupied air change rates of 6 ACH and 4 ACH, respectively. At the time of the study, current space classifications and uses could not be verified to determine the total quantity of spaces that could be reduced from the current CSL 3 classification as per the University of Rochester's Environmental Health and Safety Department. Please note, occupied air change rates were increased, from the 6 ACH minimum, in order to ensure that space loads can be maintained. An adjustment of minimum supply airflow of 1 CFM/sf was utilized to account for this. Please refer to the Appendix for more details.

DESIGN & OPERATION ASSUMPTIONS

The following design and existing condition assumptions were made in the development of the proposed scenarios and are key considerations in the project cost presented. The University of Rochester warrants that, to the best of the University's knowledge, the following assumptions are accurate.

NYSERDA PON3438 Roadmap | ECM Lab Systems

- Existing fume hood, general exhaust, and supply air terminal devices are in good working order and free of defects or programming issues.
- All existing duct work is connected and free of major defects.
- Typical laboratories load design does not exceed 1 cfm/ft² when occupied.
- Building is unoccupied between the hours of 11 pm and 6 am.
- Ceiling tiles will be removed by contractor to allow for access to air flow devices
- Fireproofing and insulating materials above the ceiling are free of ACM.
- ACM may be present in mastic on terminal devices and duct joints.

IMPACT ON THE END USER

The new system will continue to maintain a safe work environment. The end users will not notice any difference in operation. Careful construction coordination with lab occupants would be critical as most of the work would be above the ceiling to the air distribution system and at the fume hoods. This work would cause temporary disruption to the lab space possibly affecting lab activities and/or experiments.

OPERATION AND MAINTENANCE

No new O&M costs or savings.

Table 1-6

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE (ECM) - LABRATORY AIRFLOW OPTIMIZATION ENERGY SAVINGS SUMMARY

10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Line No.	Building	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Building Electric Savings (kWh)	Building Chilled Water Savings (mmBtu)	Building Steam Savings (mmBtu)	Total Building Savings (mmBtu)	Emissions Reduction (MT of CO ₂) ⁵	Cost / mmBtu Saved	Line No.
0	13	Kornberg	Laboratory Airflow Optimization Option A	\$396,668	44,444	1,108	1,443	2,703	136	\$147	13
Y	14	Kornberg	Laboratory Airflow Optimization Option B	\$396,668	48,514	1,233	1,703	3,102	159	\$128	14
0	15	Del Monte	Laboratory Airflow Optimization Option A	\$234,246	122,805	2,762	3,537	6,717	337	\$35	15
Υ	16	Del Monte	Laboratory Airflow Optimization Option B	\$234,246	124,439	2,813	3,619	6,856	344	\$34	16
0	17	BMEO	Laboratory Airflow Optimization Option A	\$183,200	58,553	398	509	1,107	54	\$166	17
Y	18	BMEO	Laboratory Airflow Optimization Option B	\$183,200	88,370	626	884	1,811	91	\$101	18
				Total Measure Cost ¹ (\$)	Annual Electric Savings (kWh)	Annual Chilled Water Savings (mmBtu)	Annual Fuel Savings (mmBtu)	Total Annual Savings (mmBtu)	Emissions Reduction (mT of CO ₂)	Cost / mmBtu Saved	
			Total Selected Project ⁴ :	\$814,114	261,323	4,672	6,206	11,769	594	\$69	
		<u> </u>	Project Contingency (included in Total Measure Cost) ² :	\$29,604		<u> </u>					

NOTES:

1. TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below:
Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration

\$29,604

- 2. This is the project contingency which is managed by the Owner.
- 3. Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.
- $\textbf{4.} \ \, \textbf{Total Selected Project is based on the Y or \ Yes \ values in the Selection Column.}$

Pricing Escalation Reserve (included in Total Measure Cost)3:

5. Emissions savings based on rates outlined in section 2.

Table 1-7

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE (ECM) - LABRATORY AIRFLOW OPTIMIZATION PAYBACK SUMMARY | BUILDING UTILITY COST 10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Building	Line No.	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Annual Electric Savings ⁵ (\$)	Annual Chilled Water Savings ⁵ (\$)	Annual Steam Savings ⁵ (\$)	Annual O&M Savings (\$)	Total Annual Savings ⁵ (\$)	Simple Payback Period	Purchased Utility Electric Savings ⁶	Purchased Utility Nat. Gas Savings ⁶	Purchased Utility Payback Period ⁷	Line No.
0	Kornberg	13	Laboratory Airflow Optimization Option A	\$396,668	\$4,000	\$24,164	\$21,072	\$0	\$49,236	8.1	\$4,803	\$7,690	31.8	13
Y	Kornberg	14	Laboratory Airflow Optimization Option B	\$396,668	\$4,366	\$26,886	\$24,867	\$0	\$56,120	7.1	\$5,283	\$9,022	27.7	14
0	Del Monte	15	Laboratory Airflow Optimization Option A	\$234,246	\$11,052	\$60,221	\$51,634	\$0	\$122,907	1.9	\$12,752	\$18,876	7.4	15
Y	Del Monte	16	Laboratory Airflow Optimization Option B	\$234,246	\$11,200	\$61,333	\$52,838	\$0	\$125,371	1.9	\$12,946	\$19,307	7.3	16
0	BMEO	17	Laboratory Airflow Optimization Option A	\$183,200	\$5,270	\$8,671	\$7,434	\$0	\$21,374	8.6	\$4,493	\$2,718	25.4	17
Y	BMEO	18	Laboratory Airflow Optimization Option B	\$183,200	\$7,953	\$13,648	\$12,906	\$0	\$34,507	5.3	\$6,825	\$4,672	15.9	18
			Total Selected Project ⁴ :	\$814,114	\$23,519	\$101,867	\$90,611	\$0	\$215,997	3.8	\$25,054	\$33,001	14.0	

Project Contingency (included in Total Measure Cost)²: \$29,604

Pricing Escalation Reserve (included in Total Measure Cost)³: \$29,604

- 2. This is the project contingency which is managed by Owner.
- 3. Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.
- 4. Total Selected Project is based on the Y or Yes values in the Selection Column.
- 5. Cost savings based on the by BUILDING UTILITY RATES are defined as the fully burdened utility rate, paid by the buildings, please refer to Section 2 for additional details regarding the applied utility rates.
- 6. Cost savings based on the by PURCHASED UTILITY RATES are defined as the rates paid by UR to the utility service providers, please refer to Section 2 for additional details regarding the applied utility rates.
- 7. PURCHASED UTILITY PAYBACK PERIOD this is the payback period based on the cost sayings applying the PURCHASED UTILITY RATES

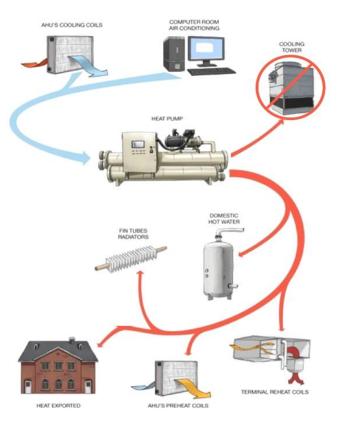
^{1.} TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below:
Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration

Section D

Evaluation of Potential ECMs

Heat Recovery Heat Pump

ECM 5 | Heat Recovery Heat Pumps



Heat Recovery Heat Pumps

- Used in buildings with simultaneous heating and cooling loads.
- Recovery Energy from the Chilled Water System and reject it in the Hot Water System.
- Reduce Total building Energy Use from 8% to 20% depending on loads.

OPPORTUNITY

Heating and cooling systems consume a large portion of a building's total energy usage. This is due to the fact that these systems must generate or remove the amount of heat required to keep a space at its operating temperatures. For instance, a cooling coil absorbs heat from a room and expels it somewhere else, normally outside, or an electric heating coil that converts electricity directly into heat. These heating and cooling processes are occurring all throughout a building at any given time, generating and removing heat as needed. Different rooms will require various heating or cooling processes and depending on the systems in place, one room can be cooling while the room next to may be heating. This is particularly true in buildings with high ventilation loads, where reheat is utilized extensively to prevent sub-cooling the occupied spaces. The University of Rochester has several such buildings, with a high volume of ventilation airflow and extensive reheat usage, especially in the summer conditions. In situations where simultaneous heating and cooling is a common occurrence, savings through a heat recovery system can be realized.

Instead of directly generating or removing heat from spaces in this situation, the heat can be transferred between these spaces. For example, a cooling coil absorbing heat can transfer this heat into the heating system, which

in turn will heat the room rather than using steam or hot water. This transfer or recovery of heat in a building leads to direct energy savings, as the transferring of heat is a more efficient process than the generation and removal of heat. This transferring of heat can be performed by a heat recovery chiller.

The heat recovery chiller or heat pumps differ from conventional chillers in the way in which the absorbed heat is removed from their system. A conventional chiller removes heat through cooling towers or condensers, which expel the heat outside of the building. Heat recovery heat pumps will use the heating hot water system of a building in order expel heat, with a smaller sized condenser or cooling tower reject heat, if needed. This results in savings associated with the reclamation of heat energy.

INVESTIGATION APPROACH

A review of the initial utility history for the selected buildings showed a simultaneous heating and cooling load. After further investigation, it was determined that these simultaneous loads are necessary due to the outside air that is utilized by the laboratory spaces. Our team created a model of the existing systems, which would be impacted by the heat recovery chiller. This allowed us to see where supplemental heating and cooling would be needed on both the existing and proposed case. Please refer to the Appendix 3 for technical details regarding this analysis.

All impacted pumps were surveyed and information such as motor nameplate, pump name plate, operating pressure, position of triple duty valves or circuit setters, and type of motor control were collected. Please refer to the Heat Recovery Chiller ECM Appendix section for technical details regarding this analysis.

EXISTING SYSTEMS

The buildings at University of Rochester, specifically research laboratories such as Kornberg, Del Monte

, & BMEO have simultaneous heating and cooling needs throughout the year that can be leveraged through the utilization of a heat recovery chillers (water-water heat pump). The following summarizes simultaneous loads observed in each building, which shows year-round heating needs and cooling during summer and shoulder seasons. Additional site-specific details can be found by building.

The energy calculations for these buildings were developed utilizing utility data from campus meters, and making conservative adjustments for:

- Coincidence factors
- Interactions with other energy conservation projects that will reduce heating and cooling loads.

These adjustment factors and assumptions are listed in the calculations provided along with this report.

Please note, Kornberg & Del Monte are combined below since the system configuration and controls sequence were found to be similar.

KORNBERG MEDICAL RESEARCH BUILDING (Kornberg) & MEDICAL RESEARCH BUILDING (Del Monte)

The existing heating systems at Kornberg & Del Monte were observed to be hot water distribution systems, which is produced by both local steam to hot water heat exchangers and a separate hot water tie point to the district co-generation plant on campus. Both heating loads (metered independently) were considered when determining the heating loads of the facility and the potential for the heat recovery heat pumps heat rejection. Both buildings have year-round heating needs, with seasonal cooling during the summer and shoulder seasons.

Space for the proposed heat recovery heat pumps and supporting equipment /infrastructure was identified in both basements where primary heating equipment is located. An opportunity exists to combine these systems and to consolidate heat recovery capabilities to a single location. Additional piping infrastructure will be required to tie in the heating and/or cooling loops.

Figure E5 Kornberg - Heat Recovery Impact on Heating (below)

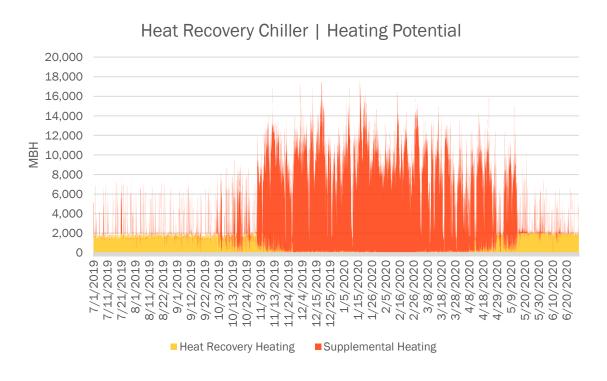
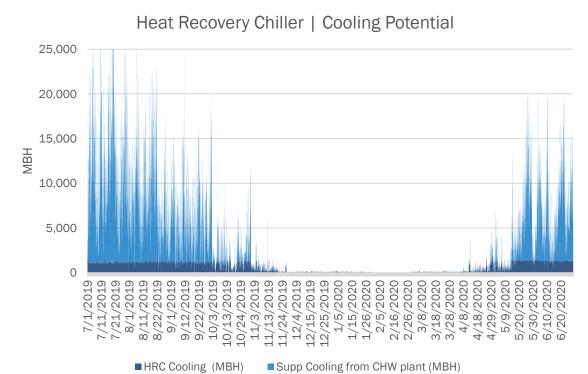



Figure E6 Kornberg - Heat Recovery Impact on Cooling (below)

Figure E7 Del Monte - Heat Recovery Impact on Heating (below)

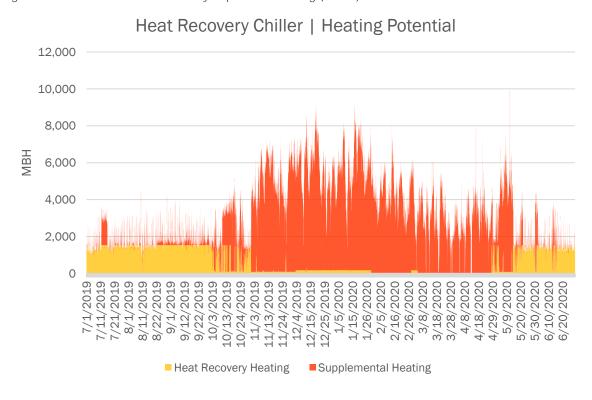
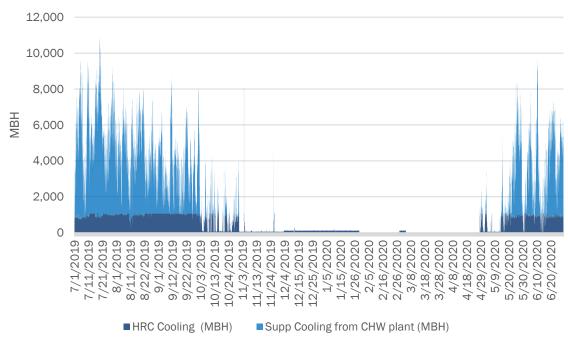



Figure E8 Del Monte - Heat Recovery Impact on Cooling (below)

Heat Recovery Chiller | Cooling Potential

GOERGEN HALL (BMEO)

The existing heating systems at BMEO was observed to be hot water distribution systems, which is produced by local steam to hot water heat exchangers. The primary heating load from the hot water heating loop was considered when determining the potential for the heat recovery heat pumps heat rejection. BMEO has year-round heating needs, with seasonal cooling during the summer and shoulder seasons. Additionally, there is a sub-cooled chiller which provided lower chilled water to the basement clean room.

Space for the proposed heat recovery chiller and supporting equipment /infrastructure was identified in the basement where primary heating equipment is located. At this time, the loads associated with the clean room have not been integrated due to the extreme operating temperature as compared to more typical air handling equipment.

Figure E9 BMEO - Heat Recovery Impact on Heating (below)

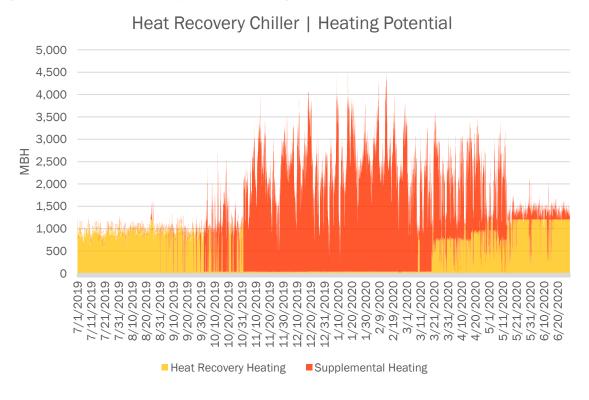
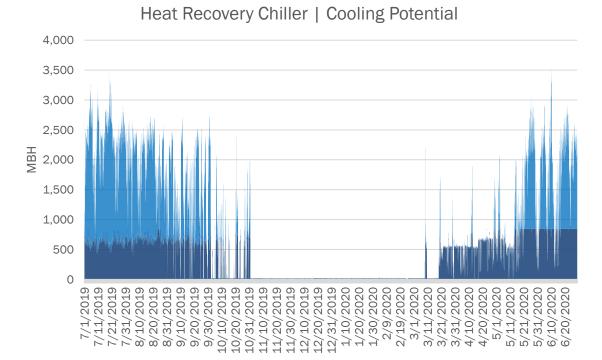



Figure E10 BMEO - Heat Recovery Impact on Chiller (below)

■ Supp Cooling from CHW plant (MBH)

PROPOSED CHANGES

Heat recovery heat pumps are only viable in a situation where there is simultaneous heating and cooling needs. Ensuring that the University of Rochester buildings met these criteria was the first step in going forward with the recommendation of a heat recovery chiller. The building's utility profiles, provided in hourly data and presented in Section B, demonstrate that the selected buildings have these conditions. The following is an outline of design considerations in the development of this Assessment and Plan. Please refer to the appendix for scope of work details.

■ HRC Cooling (MBH)

Supplemental Chilled Water and Steam Heat Exchangers

Meeting the load demand is the most important concern when designing a system which uses a heat recovery chiller. This is more complicated than a conventional heating/cooling system in that the heat recovery chiller is providing both aspects, rather than having a dedicated system for each utility individually. This means that the chiller that is specified must have enough cooling capacity to provide all of the cooling needs for the building, while also providing enough heating capacity for the building. Satisfying both of these criteria is a challenge as heat recovery heat pumps come in specific sizes and capacities which may be too small or too large for the application. In order to solve this without under sizing, or over sizing and installing additional chillers, a backup source of additional capacity is connected to the system. In the case for the University of Rochester, the heat recovery heat pumps will supplement the existing chilled water and hot water producing systems, reducing the overall usage of the existing equipment. This connection will be made in series, with the existing return chilled water and hot water piping to pre-cool or pre-heat the return chilled and hot water.

Condensing Unit

Similar to meeting the load demand for the system, it is also important when designing the heat recovery chiller to ensure that the loads being designed to will exist. In order for the cooling capacity to exist, the heat recovery chiller requires somewhere to transfer the heat on the heating side. This case is most evident in the summer during a hot day. In this example, the demand for heating will greatly reduce, meaning that the amount of heat being discharged from the chiller will also reduce. As the amount of heat being discharged from the chiller decreases, the amount of capacity on the cooling side will decrease, possibly bringing it to zero. Factoring this into design, backup heat dissipation equipment can be added. For the evaluated buildings, the base hot water heating load provides sufficient capacity during the summer to ensure continuous operation of the heat recovery chillers and production of chilled water.

Operating Temperature & Reset Schedule

Another key consideration is operating temperature of the heating loop. Since the heat recovery chiller will be retrofitted into an existing building's infrastructure, our team chose an operating temperature for peak heating of 140°F. The intended operation of the heat recovery chiller is to take place during shoulder and cooling seasons, where the hot water system is anticipated to have lower operating temperatures. While the chiller will not be operating at its ideal condition, using this as the peak design temperature will help make sure the new equipment will operate well with the remaining systems. In cases where warmer hot water is required, through building requirements or seasonal considerations, heat recovery chillers may be specified for a different refrigerant capable of hot water temperatures of up to 175°F. The chiller is capable to operate on reset schedule, which will improve the chillers performance and optimize the heating and cooling operation.

Constant Volume Primary System

The proposed system will utilize a constant volume primary pumping system that is connected to the existing chilled water system in a primary / secondary arrangement. The hot water piping will be interconnected in parallel to both a plate and frame heat exchanger and the existing hot water return piping in a side stream configuration. Special consideration was given to this system relative to a constant volume primary system (chilled water side), primary / secondary system (hot water side), or a variable volume primary system. Both systems present design challenges regarding minimum flow rates through equipment, head loss, operating pressures and additional balancing valves. These challenges were taken into consideration as we developed the system schematics. The proposed piping arrangement will interface to the existing primary/secondary system, allowing capacity to be modulated local to the chiller control through staging of the heat recovery chiller compressors. Variable frequency drives and differential pressure control will still be utilized for making adjustments to system pressure variations as well as adjust flowrate as needed by the hot water and chiller water reset schedules.

Electrical Upgrades

The primary electrical service for Kornberg, Del Monte, & BMEO are located in the penthouse mechanical spaces. Electrical power will need to be routed from the penthouse to the proposed location of the heat recovery chiller in the basement mechanical spaces.

Code Compliance

The intended project has been reviewed by a Professional Engineer Licensed in the State of New York. The proposed design meets New York Building Code with the following items given special consideration.

- Electrical connections/breaker sizing
- Refrigerant alarm and exhaust system
- Fire Protection and sprinkler relocation
- Through penetrations
- Hazardous material
- Energy Conservation Code

DESIGN & OPERATION ASSUMPTIONS

The following existing conditions and design assumptions were made in the development of this project and are key considerations in the project cost presented. The University of Rochester warrants that, to the best of the University's knowledge, the following design assumptions are accurate.

- The existing building automation control system is in good, operating condition. All existing temperature sensors and control points are properly commissioned and calibrated for reuse.
- The existing water in the hot water loop and chilled water loop is treated and existing piping throughout the facility is in good condition and will remain.
- Existing hot water and chilled water distribution piping in the existing central chilled water and hot water plants will remain for reuse where possible.
- Existing shut off valves are operational and in working condition.
- Existing steam-to-hot water heat exchangers, control valves, shut off valves, and piping will remain for reuse.
- Existing steam control valves at steam-to-hot water heat exchangers are fully operational and will fully close.
- The existing medium to low pressure steam pressure reducing station and distribution piping will remain.
- Hydronic balancing of the hot water and chilled water piping throughout the facility will remain as is.
- It is assumed the University of Rochester buildings can accommodate a temporary mechanical and electrical shut down during construction. Mechanical shutdowns will be planned with University personnel in advanced and timed during a period of low user activity and favorable weather conditions. Temporary heating and cooling is not included.

IMPACT ON THE END USER

Building occupants will not be affected by this measure once constructed and in operation.

OPERATION AND MAINTENANCE

Annual and Preventative Maintenance

A summary of proposed equipment can be found below:

Proposed Equipment:

- (1) Heat Recovery Chiller
- (2) Primary Chilled Water Pump
- (2) Primary Hot Water Pump

Avoided Future Capital Cost

As part of this project, no equipment is anticipated to be removed. Therefore, avoided future capital costs have not been calculated in association with this measure.

Table 1-8 UNIVERSITY OF ROCHESTER **ENERGY CONSERVATION MEASURE (ECM) - HEAT RECOVERY HEATPUMPS ENERGY SAVINGS SUMMARY** 10/4/2021 Total Building Building Building Total **Emissions** Measure Electric **Chilled Water** Steam Building Cost / mmBtu Reduction Line No. **Energy Conservation Measure** Savings Savings Savings Cost¹ Savings Saved (MT of CO₂)⁵ (kWh) (mmBtu) (mmBtu) (mmBtu) (\$) Heat Recovery Heat Pump \$922,885 -770,069 8,173 11,207 5,662 626 \$82 19 -557,929 Heat Recovery Heat Pump \$752,029 4,062 5,876 8,034 449 \$94 20 Heat Recovery Heat Pump \$572,213 -448.516 3,273 4,733 6,476 \$88 21 Annual Annual Annual Total **Emissions** Measure Electric **Chilled Water** Fuel Annual Cost / mmBtu Reduction Cost¹ Savings Savings Savings Savings Saved (mT of CO₂) (kWh) (mmBtu) (mmBtu) (mmBtu) (\$)

-1,776,514

12,997

18,782

25,717

1,437

\$87

NOTES:

Line No.

19

20

21

Building

Kornberg

Del Monte

BMEO

Selection⁴

(Y)es

(N)o

(O)ption

Υ

Υ

1. TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below:

Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration

\$2,247,127

\$81,714

\$81,714

- 2. This is the project contingency which is managed by the Owner.
- 3. Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.

Total Selected Project4:

4. Total Selected Project is based on the Y or Yes values in the Selection Column.

Project Contingency (included in Total Measure Cost)²

Pricing Escalation Reserve (included in Total Measure Cost)3:

5. Emissions savings based on rates outlined in section 2.

Table 1-9

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE (ECM) - HEAT RECOVERY HEATPUMPS PAYBACK SUMMARY | BUILDING UTILITY COST 10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Building	Line No.	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Annual Electric Savings ⁵ (\$)	Annual Chilled Water Savings ⁵ (\$)	Annual Steam Savings ⁵ (\$)	Annual O&M Savings (\$)	Total Annual Savings ⁵ (\$)	Simple Payback Period	Purchased Utility Electric Savings ⁶	Purchased Utility Nat. Gas Savings ⁶	Purchased Utility Payback Period ⁷	Line No.
Y	Kornberg	19	Heat Recovery Heat Pump	\$922,885	-\$69,306	\$123,458	\$119,320	-\$3,150	\$170,321	5.4	-\$40,276	\$43,110	325.6	19
Y	Del Monte	20	Heat Recovery Heat Pump	\$752,029	-\$50,214	\$88,576	\$85,788	-\$2,520	\$121,631	6.2	-\$29,250	\$30,989	432.4	20
Y	BMEO	21	Heat Recovery Heat Pump	\$572,213	-\$40,366	\$71,362	\$69,109	-\$1,890	\$98,215	5.8	-\$23,501	\$24,964	391.1	21
			Total Selected Project ⁴ :	\$2,247,127	-\$159,886	\$283,396	\$274,217	-\$7,560	\$390,167	5.8	-\$93,027	\$99,064	372.2	

Project Contingency (included in Total Measure Cost)²: \$81,714

Pricing Escalation Reserve (included in Total Measure Cost)³: \$81,714

- 1. TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below: Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration
- 2. This is the project contingency which is managed by Owner.
- 3. Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.
- 4. Total Selected Project is based on the Y or Yes values in the Selection Column.
- 5. Cost savings based on the by BUILDING UTILITY RATES are defined as the fully burdened utility rate, paid by the buildings, please refer to Section 2 for additional details regarding the applied utility rates.
- 6. Cost savings based on the by PURCHASED UTILITY RATES are defined as the rates paid by UR to the utility service providers, please refer to Section 2 for additional details regarding the applied utility rates.
- 7. PURCHASED UTILITY PAYBACK PERIOD this is the payback period based on the cost sayings applying the PURCHASED UTILITY RATES

Section D

Evaluation of Potential ECMs

Rooftop Solar

ECM 6 | Photovoltaic Systems

Solar Photovoltaics (PV) panels transfer light energy into electrical energy. Energy produced by the array would offset the energy used by the building electrical system that it is attached to. This simple process for generating renewable energy has been implemented worldwide. The application of this technology for a site, campus or community requires an in depth understanding of both the technical requirements as well as financial assistance programs in the form of incentives, grants, feed in tariffs and other financing considerations such as power purchase agreements.

INVESTIGATION APPROACH

To assess the potential of photovoltaic systems, and to provide usable insight for future capital plans, the team completed an assessment of the 4 campuses (Part 1). Each building on campus was evaluated for potential open roof space and preliminary analysis of the potential energy production and implementation costs was performed. The intent informs future planning efforts and work into capital plans for solar installations which may align with roof replacements.

For Part 2 of the solar evaluation at the Orthopedic Ambulatory Care building, we further assessed the details and outlined the current financial assistance programs available, the team took a deep dive into the active project the University had and presented analysis and considerations regarding various incentive programs available at this time.

Map Ref.	Campus	Square Footage of Occupiable Roof Space
1	Medical Campus	495,923
2	River Campus	404,647
3	Eastman Campus	62,034
4	South Campus	180,445
6	Orthopedic Ambulatory Care	135,768

Table E5 – Summary of estimated roof space – kW DC and kWh are based on usable sqft.

DESIGN & CONSTRUCTION CONSIDERATIONS

For any solar system, the following items should be further considered:

- Raw land or roof space would be needed for the solar array.
- If roof space is used, condition of the roof and a structural analysis would need to be taken into consideration.
- Depending on the size of the array, electrical switch gear and interconnection to the grid may be required.

PART 1 | CAMPUS ASSESSMENT

Wendel evaluated four (4) campus for potential roof mounted solar PV installations. The campus approach was taken due to differing electrical configurations and potential sizes affected the interconnection process and rebates.

The campus solar evaluations were done by identifying buildings where rooftop space was available. Solar array sizes were based on available square footage and de-rated for roof edge offsets and roof space being partially occupied by rooftop HVAC equipment. Array sizes were then run through the NYSERDA VDER calculation for power production and savings.

Wendel evaluated each roof in the respective campus for a cursory look to see if the roof would be applicable for solar panels. Roofs that were not flat or if the building was older were ruled out and the space was not counted. Below are maps and breakdowns of the square feet per building that were used in the calculations for potential renewable energy and associated costs.

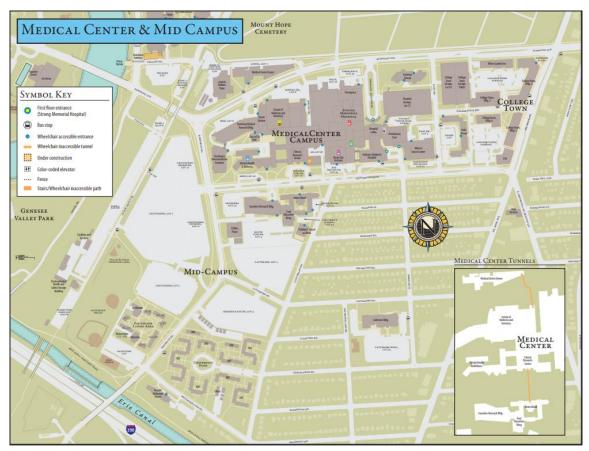


Figure E11 – Map of Medical Campus

Table E6: Breakdown of Roof Space for Medical Campus Map											
Name of Building	Solar- Friendly Roof ¹	Est. sqft	Usable Area	kW DC Roof Capacity	kWh Produced Annually						
Children's School at URMC	N	N/A	N/A	0.0	0						
School of Nursing (Helen Wood Hall)	Y	42,153	21,077	406.7	502,280						
Saunders Research Building	Y	44,307	22,154	428.0	527,946						
Central Utilities Plant	Y	14,964	7,482	144.4	178,306						
Medical Center Annex	Y	36,813	18,407	355.0	438,650						
Goler House	Y	31,939	15,970	308.2	380,573						
Ernest J. Del Monte Neuromedicine Institute	Y	20,149	10,075	194.0	240,088						
Arthur KornBerg Medical Research Building (KMRB)	Y	37,960	18,980	366.3	452,317						
School of Medicine and Dentistry	Y	77,838	38,919	751.0	927,489						
Strong Memorial Hospital	Y	131,166	65,583	1,265.6	1,562,926						
Wilmot Cancer Center	Y	43,299	21,650	418.0	515,935						
Eastman Institute for Oral Health	Y	15,335	7,668	148.0	182,726						

Total Recommended for Solar Roof Space	495,923	area
Usable Area Percentage	50%	usable area
Usable Area	247,962	sqft
PV Module Area	17	sqft/module
PV Modules Watts	335	W
Total Number of Panels	14,283	#of panels
Total Rated DC Power	4,785	kW Capacity
DC to AC Rated Power Ratio	90%	%
AC Rated Power	4,306	kW Capacity
kWh produced annually per kW of DC rated power	1,235	kWh
kWh produced annually	5,905,583	kWh

^{1 | &}quot;Solar Friendly" indicates roof areas which could accept a solar system without major changes. Roofs with major mechanical equipment comprising a high percentage of the roof, historic roofs or angled roofs requiring a penetrating mounting system are excluded.

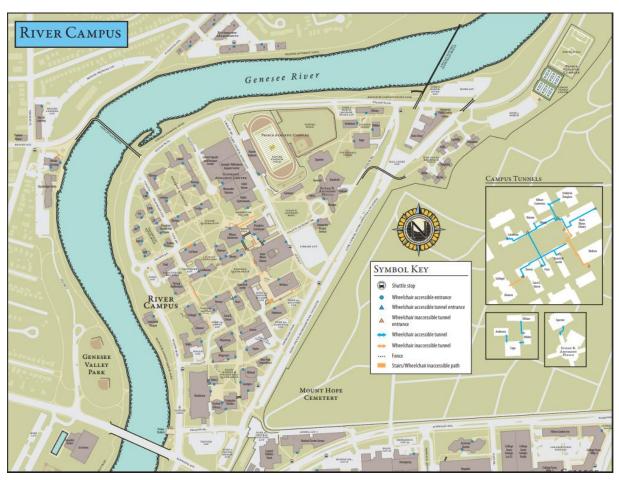


Figure E12 – Map of River Campus

Tat	ole E7: Break	down of Roof Sp	ace for River Can	npus	
Name of Building	Solar- Friendly Roof ¹	Est. sqft	Usable Area	kW DC Roof Capacity	kWh Produced Annually
Riverview Apartments	N	N/A	N/A	0.0	0
Brooks Landing Business Center	Υ	15,691	7,846	151.4	186,968
Staybridge Suites	N	N/A	N/A	0.0	0
Chambers House	N	N/A	N/A	0.0	0
Fairchild House	N	N/A	N/A	0.0	0
Gale House	N	N/A	N/A	0.0	0
Kendrick House	N	N/A	N/A	0.0	0
Munro House	N	N/A	N/A	0.0	0
Slater House	N	N/A	N/A	0.0	0
University Public Safety Center 2	N	N/A	N/A	0.0	0
Interfaith Chapel	Υ	2,260	1,130	21.8	26,929
O'Brien Hall	Υ	16,283	8,142	157.1	194,022
Wilder Hall	Υ	4,494	2,247	43.4	53,549
Anderson Hall	Υ	9,989	4,995	96.4	119,025

Sage Art Center	Y	5,085	2,543	49.1	60,591
Spurrier Hall	Y	4,274	2,137	41.2	50,927
Susan B. Anthony Hall	Y	27,564	13,782	266.0	328,442
Hillside Market		•	0	0.0	0
University Health Service	Y	8,817	4,409	85.1	105,060
Robert B. Goergen Athletic Center	Υ	97,763	48,882	943.3	1,164,908
Gilbert Hall	N	N/A	N/A	0.0	0
Tiernan Hall	N	N/A	N/A	0.0	0
Lovejoy Hall	N	N/A	N/A	0.0	0
Burton Hall	N	N/A	N/A	0.0	0
Crosby Hall	N	N/A	N/A	0.0	0
Hoeing Hall	N	N/A	N/A	0.0	0
Fraternity Quad	N	N/A	N/A	0.0	0
Todd Union	Υ	2,033	1,017	19.6	24,224
Strong Auditorium	Υ	5,075	2,538	49.0	60,472
LeChase Hall	Υ	3,855	1,928	37.2	45,935
Lattimore Hall	Y	1,500	750	14.5	17,873
Morey Hall	N	N/A	N/A	0.0	0
Rettner Hall	Y	6,506	3,253	62.8	77,523
Wilson Commons	Y	7,234	3,617	69.8	86,198
Fredrick Douglass Commons	Υ	11,055	5,528	106.7	131,727
Rush Rhees Library	N	N/A	N/A	0.0	0
Meliora Hall	Υ	28,098	14,049	271.1	334,805
Harkness Hall	Υ	13,346	6,673	128.8	159,026
Bausch & Lomb Hall	Υ	7,438	3,719	71.8	88,628
Elizabeth Hoyt Hall	Y	6,982	3,491	67.4	83,195
Dewey Hall	N	N/A	N/A	0.0	0
Carol G. Simon Hall	N	N/A	N/A	0.0	0
Schlegel Hall (Inclusive of Gleason Hall)	Y	4,822	2,411	46.5	57,457
Wallis Hall	Y	3,167	1,584	30.6	37,737
Hopeman Engineering Building	N	N/A	N/A	0.0	0
Wegmans Hall	Y	10,546	5,273	101.8	125,662
Gavett Hall	Υ	5,930	2,965	57.2	70,660
Taylor Hall	Υ	12,646	6,323	122.0	150,685
NYS Center for Advanced Technology	Υ	4,393	2,197	42.4	52,345
Wilmot Building	N	N/A	N/A	0.0	0
Robert B. Goergen Hall	Υ	12,117	6,059	116.9	144,382
Hylan Building	Υ	2,731	1,366	26.4	32,542
Hutchison Hall	Y	38,268	19,134	369.2	455,987
Computer Studies Building	Υ	21,539	10,770	207.8	256,651
Carlson Library	Υ	3,146	1,573	30.4	37,487
Total Recommended for Solar Roof Sp	ace	404,647	area		
Usable Area Percentage		50%	usable area		

Usable Area	202,324	sqft
PV Module Area	17	sqft/module
PV Modules Watts	335	W
Total Number of Panels	11,655	#of panels
Total Rated DC Power	3,904	kW Capacity
DC to AC Rated Power Ratio	90%	%
DC to AC Rated Power	3,514	kW Capacity
kWh produced annually per kW of DC rated power	1,235	kWh
kWh produced annually	4,818,644	kWh

^{1 | &}quot;Solar Friendly" indicates roof areas which could accept a solar system without major changes. Roofs with major mechanical equipment comprising a high percentage of the roof, historic roofs or angled roofs requiring a penetrating mounting system are excluded.
2 | University Public Safety Center - there is only a slight angle on this building, while not ideal we would recommend a

structural engineer review before implementing a solar project.

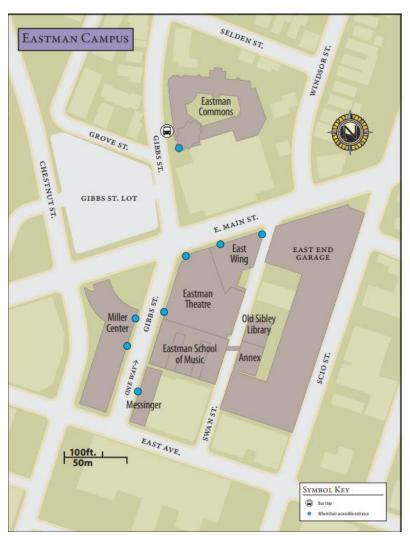


Figure E13 – Map of Eastman Campus

Table E8: Breakdown of Roof Space for Eastman Campus											
Name of Building	Solar- Friendly Roof ¹	Est. sqft	Usable Area	kW DC Roof Capacity	kWh Produced Annually						
Miller Center											
Max of Eastman Place	Y	23,997	11,999	231.5	285,939						
Sibley Music Library											
Messinger Hall	Y	6,518	3,259	62.9	77,666						
Eastman Theatre											
Kodak Hall at Eastman Theatre											
Howard Hanson Hall											
Kilbourn Hall	Y	17,357	8,679	167.5	206,820						
Eastman School of Music											
The Cave											
Schmitt Organ Recital Hall											

Annex	Υ	7,270	3,635	70.1	86,627
Eastman Student Living Center ² Eastman Dining Center ²	N	N/A	N/A	0.0	0
Spot Coffee	Y	6,892	3,446	66.5	82,123

Total Danaman dad fau Calau Dané Curan	60.024	area
Total Recommended for Solar Roof Space	62,034	arca
Usable Area Percentage	50%	usable area
Usable Area	31,017	sqft
PV Module Area	17	sqft/module
PV Modules Watts	335	W
Total Number of Panels	1,787	#of panels
Total Rated DC Power	599	kW Capacity
DC to AC Rated Power Ratio	90%	%
DC to AC Rated Power	539	kW Capacity
kWh produced annually per kW of DC rated power	1,235	kWh
kWh produced annually	738,717	kWh

^{1 | &}quot;Solar Friendly" indicates roof areas which could accept a solar system without major changes. Roofs with major mechanical equipment comprising a high percentage of the roof, historic roofs or angled roofs requiring a penetrating mounting system are excluded.

^{2 |} Eastman Student Living Center - Very little flat roof space. Large tower blocking most of the roof throughout the day.

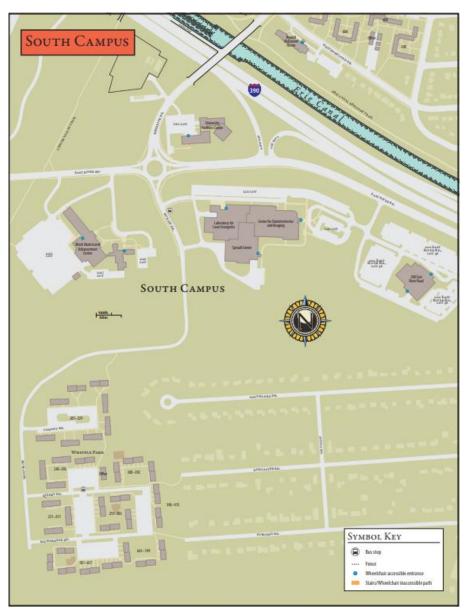


Figure E14 – Map of Eastman Campus

Table E9: Breakdown of Roof Space for South Campus											
Name of Building	Solar- Friendly Roof ¹	Est. sqft	Usable Area	kW DC Roof Capacity	kWh Produced Annually						
Larry and Cindy Bloch Alumni and Advancement Center	Υ	40,094	20,047	386.9	477,745						
University Facilities and Service Building	Υ	28,525	14,262	275.2	339,893						
Laboratory for Laser Energetics Center for Optoelectronics and Imaging	Υ	111,826	55,913	1079.0	1,332,478						
Total Recommended for Solar Roof Space		180,445	area								
Usable Area Percentage		50%	usable area								

Usable Area	90,223	sqft
PV Module Area	17	sqft/module
PV Modules Watts	335	W
Total Number of Panels	5,197	#of panels
Total Rated DC Power	1,741	kW Capacity
DC to AC Rated Power Ratio	90%	%
DC to AC Rated Power	1,567	kW Capacity
kWh produced annually per kW of DC rated power	1,235	kWh
kWh produced annually	2,148,787	kWh

STRATEGY/ACTION STEPS FOR IMPLEMENTATION

- 1. As building roofs are considered for replacement, please consult this list to assess if the roof is a good candidate for solar.
- 2. Perform an engineering review to determine if the building's roofs has the structural capacity to hold the solar arrays.
- 3. Develop a preliminary/conceptual design for a photovoltaic system.
- 4. Release an RFP for a turn-key solar installation. The RFP should consider both direct ownership and power purchase agreements project delivery options.

Table 1-10

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE (ECM) - ROOFTOP SOLAR ENERGY SAVINGS SUMMARY 10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Line No.	Building	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Building Electric Savings (kWh)	Building Chilled Water Savings (mmBtu)	Building Steam Savings (mmBtu)	Total Building Savings (mmBtu)	Emissions Reduction (MT of CO ₂) ⁵	Cost / mmBtu Saved	Line No.
0	22	Eastman	Eastman Campus Rooftop Solar	\$1,066,718	738,717	0	0	2,521	99	\$423	22
0	23	Medical	Medical Campus Rooftop Solar	\$9,739,809	5,905,583	0	0	20,150	793	\$483	23
0	24	River	River Campus Rooftop Solar	\$7,947,170	4,818,644	0	0	16,441	647	\$483	24
0	25	South	South Campus Rooftop Solar	\$3,103,412	2,148,787	0	0	7,332	288	\$423	25
	Subtotal			\$21,857,109	13,611,731	0	0	46,444	1,827	\$471	
				Total Measure Cost ¹ (\$)	Annual Electric Savings (kWh)	Annual Chilled Water Savings (mmBtu)	Annual Fuel Savings (mmBtu)	Total Annual Savings (mmBtu)	Emissions Reduction (mT of CO ₂)	Cost / mmBtu Saved	
			Total Selected Project ⁴ :	\$0	0	0	0	0	0	0	

NOTES:

1. TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below: Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration

\$0

\$0

- 2. This is the project contingency which is managed by the Owner.
- 3. Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.
- 4. Total Selected Project is based on the Y or Yes values in the Selection Column.

Pricing Escalation Reserve (included in Total Measure Cost)³:

Project Contingency (included in Total Measure Cost)2

5. Emissions savings based on rates outlined in section 2.

Table 1-11

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE (ECM) - ROOFTOP SOLAR PAYBACK SUMMARY | BUILDING UTILITY COST 10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Building	Line No.	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Annual Electric Savings ⁵ (\$)	Annual Chilled Water Savings ⁵ (\$)	Annual Steam Savings ⁵ (\$)	Annual O&M Savings (\$)	Total Annual Savings ⁵ (\$)	Simple Payback Period	Purchased Utility Electric Savings ⁶	Purchased Utility Nat. Gas Savings ⁶	Hillity	Line No.
0	Eastman	22	Eastman Campus Rooftop Solar	\$1,066,718	\$66,485	\$0	\$0	-\$4,048	\$62,436	17.1	\$48,017	\$0	22.2	22
0	Medical	23	Medical Campus Rooftop Solar	\$9,739,809	\$531,503	\$0	\$0	-\$32,362	\$499,140	19.5	\$383,863	\$0	25.4	23
0	River	24	River Campus Rooftop Solar	\$7,947,170	\$433,678	\$0	\$0	-\$26,406	\$407,272	19.5	\$313,212	\$0	25.4	24
0	South	25	South Campus Rooftop Solar	\$3,103,412	\$1,225	\$0	\$0	-\$11,775	\$181,616	17.1	\$139,671	\$0	22.2	25
	Subtotal			\$21,857,109	\$1,225,057	\$0	\$0	-\$74,591	\$1,150,464	19.0	\$884,763	\$0	24.7	
	Total Selected Project ⁴ :			\$0	\$0	\$0	\$0	\$0	\$0	0	\$0	\$0	0	

Project Contingency (included in Total Measure Cost)²: \$(
Pricing Escalation Reserve (included in Total Measure Cost)³: \$(

- 2. This is the project contingency which is managed by Owner.
- 3. Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.
- 4. Total Selected Project is based on the Y or Yes values in the Selection Column.
- 5. Cost savings based on the by BUILDING UTILITY RATES are defined as the fully burdened utility rate, paid by the buildings, please refer to Section 2 for additional details regarding the applied utility rates.
- 6. Cost savings based on the by PURCHASED UTILITY RATES are defined as the rates paid by UR to the utility service providers, please refer to Section 2 for additional details regarding the applied utility rates.
- 7. PURCHASED UTILITY PAYBACK PERIOD this is the payback period based on the cost sayings applying the PURCHASED UTILITY RATES

^{1.} TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below:
Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration

PART 2 | DEEP DIVE - Orthopedic Ambulatory Care

PROJECT BACKGROUND

The potential Photovoltaic system is outlined as follows:

- Roof mounted solar system, with an area of 3 acres.
- Total Photovoltaic System capacity is estimated at 750kW DC. This size is constrained based on available area as well as the limit for nonresidential MEGABLOCK incentive program.
- The Photovoltaic system will be connected behind the meter on the building side of the utility meter.
- The Photovoltaic system will offset the building's electrical usage first with excess energy generation transmitted to the grid.
- The roof structure is assumed to be able to accommodate the additional load of the PV system including racking. This needs to be verified during design.

Output: Current Area

3. Find maps & route suggestions

12613.23 m² | 0.01 km² | 3.12 acres | 1.26 hectares | 135767.68 feet² | 0.00 square miles | 0.00 square nautical miles

Figure E15 – Aria view of the project site. This is the existing Sears store that will be converted into the new facility. This information is as of July 2020.

EXAMPLE PROJECT

NET BENEFIT

- The **Photovoltaic System is anticipated to generate 925,646kWh** of energy annually.and was calculated for this site using the online tool, *PVWatts*.
- Carbon offset 106.6 MT CO2e (based on eGRID2018 for region NYUP)
- Social Cost of Carbon
 - Low End: \$5,042.18 (based on NYISO)
 - High End: \$25,451.18 (based on NYSERDA)
 - o Additional Data Point: \$5,536.80 (based on US EPA)

Rates for reference regarding the Social Cost of Carbon

U.S. EPA: \$51.94/metric Ton CO₂
 NYISO: \$47.30/metric Ton CO₂

- NYSERDA: \$27.41/MWh (Converts to \$238.75/metric Ton CO₂)

OPTION A | NO EXPORT

Summary

Total Cost AFTER INCENTIVES: \$1,336,875

Annual Savings: \$60,167

Solar Energy Consumption

Applying the background information, the following are initial energy production estimates:

• All solar energy generated (925,646kWh) is used on site to **offset an annual utility cost of \$60,167**. This was calculated based on an assumed utility rate of \$.065/kWh.

Applicable Incentives:

- NYSERDA NYSUN MEGABLOCK | 750kW at a rate of \$0.35/W which equates to \$262,500 paid directly to the NYSERDA approved Contractor.
- NYSERDA VALUE STACK | not applicable for this Option.
- NYSERDA ENERGY STORAGE | not applicable currently.

The anticipated project cost breaks down as follows:

- \$1,900 per kW installed by NYSERDA APPROVED electrical subcontractor (based on recent project for a similar scope)
 - o \$350 per kW NYSERDA MEGABLOCK INCENTIVE paid to contractor
 - o \$1,550 per kW Installed cost after incentive
 - X 1.15% (15% markup for CM or GC, assumed that this contract would fall into the larger building project)
- \$1,782.50 per kW final cost to University of Rochester
- Extrapolating the cost to a 750 kW system results in \$1,336,875 total project cost AFTER Incentives
 paid to Contractor. Note that this assumes a ballasted racking system with no additional structural
 modifications.

OPTION B | WITH NET ENERGY EXPORT

Summary

Total Cost AFTER INCENTIVES: \$1,336,875

Annual Savings: \$65,294.32

Solar Energy Consumption

Applying the background information, the following are Initial energy production estimates:

- Anticipated building energy usage is 459,528kWh annual. This was determined by using CBECS classification for a medical outpatient facility in the Mid-Atlantic region. This statistic is a median number that represents existing buildings. Since the proposed building is to be renovated a discount percentage of 15% lower energy usage was calculated. This was used as the new building will have to meet new energy and building codes placing the buildings proposed usage below the median. The portion of the solar energy generated, and used on site, will equate to an annual finical benefit of \$29,869.32. This was calculated based on an assumed utility rate of \$.065/kWh.
- The anticipated exported energy to the gird is anticipated to be 466,117 kWh.

Applicable Incentives:

- NYSERDA NYSUN MEGABLOCK | 750 kW at a rate of \$0.35/W which equates to \$262,500 paid directly to the NYSERDA approved Contractor.
- NYSERDA VALUE STACK | Calculated rate for exported energy is \$.076/kWh. This is an annual value of \$35,425.
- NYSERDA ENERGY STORAGE | not applicable currently.

The anticipated project cost breaks down as follows:

- \$1,900 per kW installed by NYSERDA APPROVED electrical subcontractor (based on recent project for a similar scope)
- -\$350 per kW NYSERDA MEGABLOCK INCENTIVE paid to contractor
- \$1,550 per kW Installed cost after incentive
- X 1.15% (15% markup for CM or GC, assumed that this contract would fall into the larger building project)
- \$1,782.50 per kW final cost to University of Rochester
- \$1,336,875 total project cost AFTER Incentives paid to Contractor. Note that this assumes a ballasted racking system with no additional structural modifications.

INCENTIVE PROGRAMS

There are four programs which were reviewed. **We have highlighted in bold key items for each program**. These are as follows:

- NYSERDA Megawatt block program through NY Sun
- The Value Stack (VDER or Value of Distributed Energy Resources)
- NYSERDA Retail Energy Storage Incentive Program
- Community Solar Program (Not Applicable, since this is a subscription-based program and environmental attributes are retained by the utility.)

NY MEGAWATT BLOCK

Summary of the Program

The New York State Energy Research and Development Authority (NYSERDA) provides financial incentives and financing options through the NY Sun Incentive Program for the installation of new grid-connected solar photovoltaic (solar electric) systems or residential solar photovoltaic systems.

Funding for the program has been allocated by the New York State Public Service Commission through the Clean Energy Fund (CEF) with additional funding made available through the Regional Greenhouse Gas Initiative. Incentives are granted on a first-come, first-served basis, and **applications will be accepted through December 31, 2023**, or until funds are fully committed.

The residential and nonresidential program relies on contractors and builders to implement new solar electric systems for customers seeking incentives through the program. Contractors are responsible for the contract with the customer, while builders are responsible for the installation of the system. A company that is approved as both a contractor and builder is responsible for all aspects of the project. Before a contractor and builder can work together, they must establish a contractor-builder relationship agreement through the program.

Visit nyserda.ny.gov/find-a-solar-contractor for a list of approved contractors.

Incentive Structure

Solar incentives are available on a first-come, first-served basis and are based on direct current (DC) module wattage ratings at standard test conditions (nameplate rating).

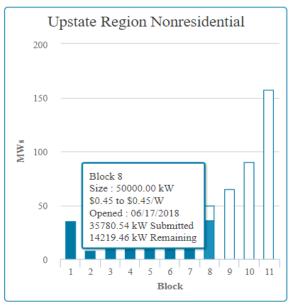
The program is based on a megawatt (MW) block model an incentive structure designed to provide certainty and transparency around incentive levels account for regional market differences clarify that New York State intends to phase out cash incentives in a reasonable time frame and eliminate those incentives sooner in regions where market conditions can support it, based on market penetration, demand, and payback.

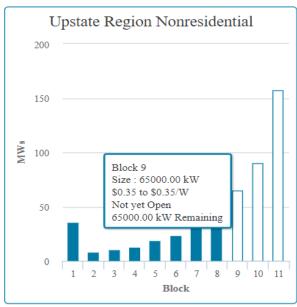
The MW block approach allocates megawatt targets to specific regions of the State, breaks those targets into blocks, and assigns incentives per block. Incentives are awarded based on the block in effect at the time of submission. Once all blocks within a region/sector are fully subscribed, the incentive is no longer available to that region/sector. NYSERDA will monitor market conditions and MW block subscription and adjust accordingly. NYSERDA will notify stakeholders in advance of any planned changes. Regional MW Blocks and Sectors The balance of the State (Upstate) Residential up to 25kW Nonresidential up to 750kW Commercial/Industrial 750kW to 7.5MW

Project Incentives Cap

Project incentives are capped at the following system sizes:

Sector	PV System Size Cap	
Residential	25kW DC	
Nonresidential	750kW DC	∢
Commercial/Industrial	7.5MW DC	


Projects larger than 750kW in the Upstate NY region are not eligible for nonresidential incentives and must be submitted to the commercial/industrial program. Residential projects calculated to offset more than 110% of the systems annual electric usage are not eligible for incentives or financing. New construction residential systems must not to exceed 110% of the calculated yearly projected kilowatt-hour of electric usage. These caps do not apply to nonresidential and commercial/ industrial projects.


All residential and nonresidential projects have 365 days from the project approval date (the date project is marked approved in the portal) to complete the system installation and submit for final project invoice approval.

System Size Cap

The system size was chosen at 750kw. This was done to maximize the Megawatt block direct to contractor payment by staying in the Non-residential block.

The current block for Non-Residential is valued at \$0.45 watt (\$450 kW) of DC rated solar installations. **To be** conservative, based on the project's timeline, it is anticipated that the next block with a lower value of \$0.35 a watt (\$350 kW) should be applied.

The application process through this program is **reliant on the NYSERDA approved contractor for the submission** and completion of the of the necessary documentation to receive the direct to contractor incentive. **The payment of the incentive is direct to the contractor.**

Below is a list of required documentation that is needed to achieve submitted status for the incentive and lock in the incentive.

1. Documents to Reach Submitted Status

- a. Required for All Projects: Must Submit with Project Application
- b. Project application signed by customer and payee, if applicable
- c. Site map (site plan)
- d. Site photos
- e. Electrical drawing
- f. Customer utility bill only required for NYPA and municipality owned utilities

2. Additional Items Required for Residential and Nonresidential Projects

a. Shading report

3. Additional Items Required for Nonresidential and Commercial/Industrial Projects

- a. If Coordinated Electric System Interconnection Review (CESIR) required: Final CESIR, proof of 25% interconnection upgrade payment and if in C/I, proof of planning and zoning approvals
- b. If no CESIR required: signed and executed interconnection agreement
- c. Coastal Assessment
- d. SEQRA and lead agency, SEQRA Negative Declaration for C/I

4. Documents Not Required with Submission: Must be Available Upon Request Required for All Projects

- a. Customer agreement
- b. Customer utility bill
- c. Permits required with project invoice submission
- d. Environmental assessment for projects more than 4,000 square feet
- e. Clipboard energy efficiency assessment for residential projects only
- f. Nonresidential and C/I energy assessment for nonresidential or C/I projects only projects only
- g. Construction photos of the completed installation

THE VALUE STACK (VDER or Value of Distributed Energy Resources)

SUMMARY OF THE PROGRAM

In support of Reforming the Energy Vision, the New York State Public Service Commission established a mechanism to transition to a new way to compensate distributed energy resources (DER), like solar power. This mechanism, called the Value of Distributed Energy Resources (VDER) or the Value Stack, replaces net energy metering (net metering or NEM). VDER compensates projects based on when and where they provide electricity to the grid.

The value stack compensation methodology increases renewable energy projects by compensating producers for more than just energy supply costs. The breakdown of these compensations is detailed in the community solar option section below.

NYSERDA provides a calculator that helps prospective solar producers evaluate the financial aspects of the value stack.

Reference: https://www.nyserda.ny.gov/All-Programs/Programs/NY-Sun/Contractors/Value-of-Distributed-Energy-Resources/Solar-Value-Stack-Calculator

ELIGIBILITY REQUIREMENTS

VDER has a size limitation of 5 MW that is currently in place per site/ meter.

Calculating Projected Credits:

As part of NY Sun, solar bill credits in New York State are calculated through the Value of Distributed Energy Resources Program (VDER) set forth by the New York Public Service Commission (NYPSC). For every kWh of energy that the community solar project delivers to the grid, the utility will determine its value through five criteria, which make up the 'Value Stack':

- LMP = Location Marginal Pricing. Standard/publicly available price of energy in the local market. A value of energy produced by solar that changes with the energy market. Varies by NYISO Zone.
- C = Capacity. The cost of resources required to deliver energy to your utility plus other charges such as backup. This value also changes with the energy market. Varies by utility territory.
- E = The environmental benefits of Solar Production and guaranteed by the NYSERDA. This value is fixed for the full 25-year project life.
- DRV = Demand Reduction Value. Based on the generators average hourly output during summer peak hours. May appear monthly or only during the summer months depending on project configuration. Varies by utility territory.
- CC = Community Credit. Provided to projects participating in the Community Solar program. This value is fixed for the full 25-year project life. (The Community Credit does not apply to Orange and Rockland and Central Hudson projects.)

APPLICATION PROCESS

There is no official application process, the value stack compensation methodology is determined during the interconnection process and application with the utility.

Section D

Evaluation of Potential ECMs

Retro-Commissioning

ECM 4 | Retro-Commissioning

OPPORTUNITY

Proper setup and operation of HVAC systems and equipment is critical to maintaining occupant comfort, providing proper ventilation and operating the systems as efficiently as possible. Wendel conducted a preliminary evaluation of the operation of the HVAC Systems in Rush Rhees Library, Danforth Dining Hall, and Fredrick Douglass Commons. This evaluation was performed both remotely and on-site as follows The operation of the equipment was evaluated which included observation of operation remotely through the BMS graphical display and reviewing trends. Once some operational items were identified through the remote evaluation, Wendel worked with University personnel, during an on-site working session to, determine additional operational issues and efficiency opportunities.

Wendel identified areas of potential improvements that require further investigation through Retro-Commissioning which includes ventilation optimization, space temperature control optimization and HVAC equipment optimization. The following is a high-level overview of observations which informed our recommendations for RCx ECMs.

- Air Handling Unit operation appears to present opportunities for energy savings based on the following:
 - o Adjust sequences and setpoints for discharge air temperature and static pressure reset.
- Building zone and spaces appear to be missing control points to allow for more efficient control such as:
 - Incorporate CO2 sensors to allow for demand-controlled ventilation.
 - Incorporate occupancy sensor for HVAC system control in conference rooms and other variable occupancy spaces.
 - Set back temperatures of spaces during unoccupied times
 - o Adjust operation of kitchen hood ventilation rates.
 - Program Dual Duct Boxes for independent Air Valve operation to reduce air flow based on cooling/heating need.
- Additional observations of building systems
 - Interlock Fin Tube Radiation with space terminal air boxes to prevent simultaneous heating and cooling.
 - Heat Pumps and Walk in Coolers condensers sink with the chilled water system.

INVESTIGATION APPROACH

Three buildings were evaluated as follows:

- Part 1 | interview facility staff | Wendel and UR team met to discuss equipment, control systems and strategies associated with the buildings selected.
- Part 2 | review drawings and control system | Wendel review drawings and the control systems. We identified items of interests and summarized observations.
- Part 3 | Site Visit | brief field survey of the building to identify systems that may not be operating as intended or field deficiencies.
- Part 4 | Summarize Results | assess based on observations likely ECMs along with likely costs and savings.

Please note that the intent of this scoping survey is to provide a reasonable, building specific, expectation of the results of a retro-commissioning. The retro-commissioning effort will determine actual deficiencies, energy savings and costs.

EXISTING SYSTEMS

The buildings at University of Rochester incorporate several systems and mechanical equipment to provide a safe and comfortable environment for students, staff, and other building occupants. The interactive operation between these systems is controlled and sequenced through the Building Management System (BMS). A summary of the buildings included in the scoping survey, specifically the mechanical systems and BMS, can be found below:

RUSH RHEES LIBRARY

The existing heating and cooling systems at Rush Rhees Library are primarily served by the Central Utilities Plant (CUP), receiving both district steam and chilled water.

The district steam is converted to heating hot water using three (3) steam to hot water heat exchangers. Additional hot water equipment is in-service for the glycol pre-heat loop and snow melt system for exterior walkways. Hot water system equipment includes:

- Three (3) primary hot water pumps on 3 different steam to hot water systems.
- One (1) snow melt pump.
- Hot water to glycol heat exchanger for specific pre-heat coils.
- Hot water radiation systems

Chilled water is distributed through the building to central air handling units and fan coil units through two (2) chilled water pumps. Airside conditioning and ventilation is provided through seven (7) central air handling units and various air terminal devices, fan coil units, and heat pump units. Airside equipment includes:

- Seven (7) Air Handling Units
- DDU boxes for most spaces.

- Unitary Air Handlers
- Seventeen (17) Heat pump units.
- Seventeen (17) Fan Coil Units.

Regarding the Building Management System, the Rush Rhees Library utilizes systems from both ALC WebCTRL and Siemens Apogee. Between both systems, all major equipment is controlled by the BMS with the ability to trend all critical points. Wendel was able to remotely access both systems during the RCx scoping survey to observe existing system operation.

DANFORTH DINING HALL

The existing heating and cooling systems at Danforth Dining Hall are primarily served by the Central Utilities Plant (CUP), receiving both district steam and chilled water.

The district steam is converted to heating hot water using steam to hot water heat exchangers. Additional hot water equipment is in-service for the glycol pre-heat loop. Hot water system equipment includes:

- 2 primary hot water pumps.
- 2 domestic hot water pumps.
- Hot water to glycol heat exchanger for specific pre-heat coils.
- Finned tube hot water radiation system

Chilled water is distributed through the building to a central air handling unit through one (1) chilled water pump. Airside conditioning and ventilation is provided through one (1) central air handling unit and various air terminal devices. Airside equipment includes:

- One (1) Air Handling Unit
- VAV boxes for most spaces.
- Unitary Air Handlers

Regarding the Building Management System, the Danforth Dining Hall utilizes systems from Schneider Electric Ecostruxure and Siemens Apogee. Through these systems, all major equipment is controlled by the BMS with the ability to trend all critical points. Wendel was able to remotely access both systems during the RCx scoping survey to observe existing system operation.

FREDRICK DOUGLASS COMMONS

The existing heating and cooling systems at Frederick Douglass Commons are primarily served by the Central Utilities Plant (CUP), receiving both district steam and chilled water.

The district steam is converted to heating hot water using steam to hot water heat exchangers. Additional hot water equipment is in-service for the glycol pre-heat loop and snow melt system for exterior walkways. Hot water system equipment includes:

- 4 primary hot water pumps.
- 4 Domestic Hot water pumps
- 1 snow melt pumps.
- Hot water to glycol heat exchanger for specific pre-heat coils.
- 4 hot water cabinet unit heaters.
- 1 finned tube hot water radiation systems.

Chilled water is distributed through the building to central air handling units and rooftop units through one (1) chilled water pump. Airside conditioning and ventilation is provided through five (5) central air handling units, four (4) rooftop units, and various air terminal devices. Airside equipment includes:

- VAV boxes for most spaces.
- Unitary Air Handlers
- 2 self-contained air conditioning units.
- 7 Door air curtains heaters.

Regarding the Building Management System, the Frederick Douglass Commons utilizes ALC WebCTRL. Through this systems, all major equipment is controlled by the BMS with the ability to trend all critical points. Wendel was able to remotely access both systems during the RCx scoping survey to observe existing system operation.

PROPOSED MEASURES FOR INVESTIGATION

The following is a description of the preliminary RCx ECMs identified as part of the scoping survey. For each RCx ECM we have identified the scope and the reasoning for their recommendation. These recommendations are in addition to any potential deficiencies that may be identified during the point-to-point and functional performance testing that will be completed in the field. Initial recommended modifications, by building, are included in the tables below. The measures identified during the scoping survey and indicated below were utilized as a basis for projecting the savings potential for extrapolation across the campus.

Rush Rhees Library

ECM #	ECM Name	Reasoning
1	Dual Duct Box Temperature Set Back	The terminal units (VAV's and DDUs) have no night temperature setback. All space is 24/7. Trending shows all spaces have constant set points that are manually changed.
2	Dual Duct Box Independent Air Valve Operation - Min/Max airflow	Dual Duct Boxes are set up for independent damper operation but are not operating that way. Set Damper positions according for need for cooling/heating demand along with max/min instead of discharge air temp with full air flow.
3	AHU Static Pressure Reset	Reset Discharge air Static Pressure set point based on feedback from airflow to terminal units.
4	AHU Discharge Air Reset	Reset Discharge air temperature based on OA and calls for cooling/heating.
5	Interlock Fin tube with Cooling Coil Valve/Radiation loop set point adjustment	Reset HW Radiation loop downward when calls for cooling are required. This was observed happening in shoulder seasons. May be harder to do with some of the terminal air units being on the siemens system and the radiation loop being hand valves.
6	Hot Water Pump VFD	Hot Water Pump running at constant speed. Install VFD
7	AHU DCV	Current OA operations are based on ability to economize OAT VS Cooling Deck DAT (10-30% Damper 24/7). Recommend reviewing space requirements and implementing DCV sequences where applicable.

Table E2 - Summary of potential Retro-Commissioning Based ECMs.

Danforth Dining Hall

ECM #	ECM Name	Reasoning
1	Interlock Fin tube with Cooling Coil Valve/Radiation loop set point adjustment	Reset HW Radiation loop downward when calls for cooling are required. This was observed happening in shoulder seasons.
2	Night Set Back For temperature	The terminal units (VAV's) have no night temperature setback. All spaces are 24/7. Trending shows all spaces have constant set points that are manually changed.
3	AHU Discharge Air Reset	Reset Discharge air Static Pressure set point based on feedback from airflow to terminal units.
4	AHU DCV	Air Handling Unit could benefit from demand control ventilation sequences and or adjustments to the sequences to optimize reductions. Current OA operations are based time of day but is in covid protocol.

Table E3 - Summary of potential Retro-Commissioning Based ECMs.

Fredrick Douglass Commons

ECM #	ECM Name	Reasoning		
1	Interlock Fin tube with Cooling Coil Valve/Radiation loop set point adjustment	Reset HW Radiation loop downward when calls for cooling are required. This was observed happening in shoulder seasons.		
2	Night Set Back For temperature	The terminal units (VAV's) have no night temperature setback. All spaces are 24/7. Trending shows all spaces have constant set points that are manually changed.		
3	DCV set point adjustment for RTU 1-4	Revise CO2 setpoint up from 750 PPM		
4	Retune Hood captive air systems	Captive air systems reduce Exhaust based on temperature. The hoods have had issues with smoke capture since installation. Proper capture will reduce exhaust and OA needed to make up.		
5	AHU DCV	Air Handling Units could benefit from demand control ventilation sequences and or adjustments to the sequences to optimize reductions. Current OA operations are based time of day but is in covid protocol.		

Table E4 - Summary of potential Retro-Commissioning Based ECMs.

DESIGN & OPERATION ASSUMPTIONS

The following existing conditions and design assumptions were made in the development of this project and are key considerations in the project cost presented. The University of Rochester warrants that, to the best of the University's knowledge, the following design assumptions are accurate.

- The existing building automation control system is in overall good, operating condition. All existing temperature sensors and control points will be verified through point-to-point check-out and calibration.
- The existing major HVAC equipment is in good, operating condition.
- The existing major HVAC equipment and spaces served are capable of operating within the proposed sequence of operations changes.
- The existing equipment and space level controllers have available spare inputs and/or outputs and can accommodate addition controls points necessary for proposed sequence adjustments. The need for replacement controllers will need to be evaluated during the point-to-point testing portion of the RCx process.
- It is assumed the University of Rochester buildings can accommodate a temporary mechanical shut down during construction. Mechanical shutdowns will be planned with University personnel in advanced and timed during a period of low user activity and favorable weather conditions. Temporary heating and cooling is not included.

IMPACT ON THE END USER

Building occupants will not be affected by this measure once constructed and in operation.

OPERATION AND MAINTENANCE

Annual and Preventative Maintenance

A summary of proposed equipment can be found below:

Proposed Equipment:

- Carbon Dioxide Sensors (quantity unknown)
 - New or additional CO₂ sensors may be required to implement proposed strategies.
- Captive Air Kitchen Hood Systems
 - Additional controls and sensors will require annual and preventative maintenance to ensure proper operation.

Avoided Future Capital Cost

As part of this project, no equipment is anticipated to be removed. Therefore, avoided future capital costs have not been calculated in association with this measure.

Table 1-12

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE - **RETRO-COMMISSIONING**(ECM) ENERGY SAVINGS SUMMARY 10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Line No.	Building	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Building Electric Savings (kWh)	Building Chilled Water Savings (mmBtu)	Building Steam Savings (mmBtu)	Total Building Savings (mmBtu)	Emissions Reduction (MT of CO ₂) ⁵	Cost / mmBtu Saved	Line No.
0	26	DDH	Retrocommissioning Best Case	\$18,200	41,050	140	281	561	30	\$32	26
Υ	27	DDH	Retrocommissioning Median	\$24,400	35,919	123	246	491	26	\$50	27
0	28	DDH	Retrocommissioning Worse Case	\$30,600	30,788	105	211	421	22	\$73	28
0	29	RRL	Retrocommissioning Best Case	\$78,380	394,099	2,037	5,038	8,420	480	\$9	29
Υ	30	RRL	Retrocommissioning Median	\$165,130	295,947	1,413	3,473	5,896	334	\$28	30
0	31	RRL	Retrocommissioning Worse Case	\$251,880	197,795	789	1,908	3,372	189	\$75	31
0	32	FDC	Retrocommissioning Best Case	\$36,600	2,390	763	1,679	2,450	144	\$15	32
Υ	33	FDC	Retrocommissioning Median	\$64,900	1,912	668	1,454	2,129	125	\$30	33
0	34	FDC	Retrocommissioning Worse Case	\$93,200	1,434	573	1,230	1,808	106	\$52	34
				Total Measure Cost ¹ (\$)	Annual Electric Savings (kWh)	Annual Chilled Water Savings (mmBtu)	Annual Fuel Savings (mmBtu)	Total Annual Savings (mmBtu)	Emissions Reduction (mT of CO ₂)	Cost / mmBtu Saved	
			Total Selected Project⁴:	\$254,430	333,778	2,204	5,173	8,516	485	\$30	
			Project Contingency (included in Total Measure Cost) ² :	\$18,784							

NOTES:

1. TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below:

Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration

\$18,784

- 2. This is the project contingency which is managed by the Owner.
- 3. Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.
- 4. Total Selected Project is based on the Y or Yes values in the Selection Column.

Pricing Escalation Reserve (included in Total Measure Cost)³:

5. Emissions savings based on rates outlined in section 2.

Table 1-13

UNIVERSITY OF ROCHESTER ENERGY CONSERVATION MEASURE (ECM) - RETRO-COMMISSIONING PAYBACK SUMMARY | BUILDING UTILITY COST 10/4/2021

Selection ⁴ (Y)es (N)o (O)ption	Building	Line No.	Energy Conservation Measure	Total Measure Cost ¹ (\$)	Annual Electric Savings ⁵ (\$)	Annual Chilled Water Savings ⁵ (\$)	Annual Steam Savings ⁵ (\$)	Annual O&M Savings (\$)	Total Annual Savings ⁵ (\$)	Simple Payback Period	Purchased Utility Electric Savings ⁶	Purchased Utility Nat. Gas Savings ⁶	Purchased Utility Payback Period ⁷	Line No.
0	DDH	26	Retrocommissioning Best Case	\$18,200	\$3,695	\$3,062	\$4,100	\$0	\$10,856	1.7	\$2,911	\$1,443	4.2	26
Y	DDH	27	Retrocommissioning Median	\$24,400	\$3,233	\$2,679	\$3,587	\$0	\$9,499	2.6	\$2,547	\$1,263	6.4	27
0	DDH	28	Retrocommissioning Worse Case	\$30,600	\$2,771	\$2,296	\$3,075	\$0	\$8,142	3.8	\$2,183	\$1,082	9.4	28
0	RRL	29	Retrocommissioning Best Case	\$78,380	\$35,469	\$44,411	\$73,560	\$0	\$153,440	0.5	\$29,134	\$25,549	1.4	29
Y	RRL	30	Retrocommissioning Median	\$165,130	\$26,635	\$30,810	\$50,708	\$0	\$108,154	1.5	\$21,677	\$17,618	4.2	30
0	RRL	31	Retrocommissioning Worse Case	\$251,880	\$17,802	\$17,210	\$27,856	\$0	\$62,868	4.0	\$14,220	\$9,688	10.5	31
0	FDC	32	Retrocommissioning Best Case	\$36,600	\$215	\$16,648	\$24,509	\$0	\$41,372	0.9	\$1,474	\$8,572	3.6	32
Y	FDC	33	Retrocommissioning Median	\$64,900	\$172	\$14,567	\$21,235	\$0	\$35,974	1.8	\$1,278	\$7,432	7.5	33
0	FDC	34	Retrocommissioning Worse Case	\$93,200	\$129	\$12,486	\$17,961	\$0	\$30,576	3.0	\$1,082	\$6,291	12.6	34
			Total Selected Project ⁴ :	\$254,430	\$30,040	\$48,056	\$75,530	\$0	\$153,627	1.7	\$25,502	\$26,313	4.9	

Project Contingency (included in Total Measure Cost)²: Pricing Escalation Reserve (included in Total Measure Cost)³:

\$18,784

^{1.} TOTAL MEASURE COST includes direct construction costs (subcontractor material and labor) and DOES include contingency and fees for services described below: Energy, Electrical and Mechanical engineering, Construction documents, Financing assistance services, Subcontractor coordination and administration

^{2.} This is the project contingency which is managed by Owner.

^{3.} Pricing Escalation Reserve: is a fund established to help offset market variations in pricing over the approval and design period.

 $[\]textbf{4.} \ \, \textbf{Total Selected Project is based on the Y or \ Yes \ \, \textbf{values in the Selection Column}.$

^{5.} Cost savings based on the by BUILDING UTILITY RATES are defined as the fully burdened utility rate, paid by the buildings, please refer to Section 2 for additional details regarding the applied utility rates.

^{6.} Cost savings based on the by PURCHASED UTILITY RATES are defined as the rates paid by UR to the utility service providers, please refer to Section 2 for additional details regarding the applied utility rates.

^{7.} PURCHASED UTILITY PAYBACK PERIOD this is the payback period based on the cost sayings applying the PURCHASED UTILITY RATES

Section E

ENERGY DATA AND ANALYSIS

Task 3

TASK 3 | ENERGY DATA ANALYSIS

The University of Rochester (UR) currently has about 800 energy meters connected to an OSISoft PI data acquisition and analytics data repository system (PI). These electric, natural gas, hot water, chilled water, and domestic water meters represent about 9 million square feet of the University's total 12 million gross square feet. In addition to meter information some of the building and utility plant data is collected and analyzed in PI. The current system does not have several key functionalities, including the necessary analytics capabilities needed to make strategic decisions, data transparency for University stakeholders, greenhouse gas (GHG) emissions tracking, measurement and verification, and communication of energy conservation efforts.

UR, in coordination with Wendel, has developed a plan to integrate an energy management information system (EMIS) into its existing infrastructure and processes in support of achieving its energy conservation and GHG reduction goals. The EMIS software is intended to track, coordinate, and analyze energy usage data and energy conservation measures, as well as facilitate communication to stakeholders and the broader community, thereby filling the gaps left by the current system. The energy conservation strategy, of which the EMIS will be a key component, consists of three pillars: Visibility, Leadership and Impact.

The EMIS will consist of a dashboard which will serve multiple end-use functions including:

- Public dashboard to display energy use, associated carbon emissions and communicate goals and progress to our community
- Analytics for energy use and related carbon emission to help target and drive conservation efforts, including weather normalization and baseline capabilities.
- Measurement and Verification capabilities to substantiate energy and carbon savings to our stakeholders (M&V)
- Meter Verification Validation and Editing (VVE)
- Reporting with built-in and custom capabilities
- Meter data integration of our campus owned interval data sub-meters
- Utility account data import from commercial utility meter accounts

- Alarming of suspected failed meters or suspicious energy use
- Energy conservation project tracking and reporting
- Access control for users and groups incorporation single-sign-on

POTENTIAL VENDORS

There are a host of vendors that provide EMIS solutions. The University put together a list of potential vendors able to meet the University's needs to provide the EMIS. Six (6) vendors provided bids to the University. These vendors are listed below:

eSightenergy
 Watchwire by Energy Watch
 Custom PI Solution by DSA
 BuildingOS by Lucid
 Custom PI Solution by Rovisys
 https://energywatch-inc.com/
 https://www.dsainc.com/
 https://buildingos.com/
 https://www.rovisys.com/

Energy Manager by Dude Solutions https://www.dudesolutions.com/products/energy-manager

SYSTEM COMPARISON

Each of the vendors provide EMIS solutions through a variety of different approaches. Some of the solutions are custom PI-based systems, similar to the University's existing infrastructure. Other vendors provide prepackaged, software solutions that are able to integrate with PI but are not PI-based themselves. Two (2 of the potential systems are PI-based systems, the remaining four (4) are not PI-based systems.

Custom PI Solutions - DSA & Rovisys

Utilizing a PI-based solution has several advantages over packaged solutions. These advantages include not needing new software packages to support, increase PI capabilities, support for future initiatives, GIS integration, complete control by the University, and full customization. Despite the advantages, there are several negatives to going with a PI-based system, including more development time and effort, log-ins required for public dashboard, users are limited to UR domain emails, and a lack of packaged reports, analytics, and tools available with other solutions. DSA and Rovisys provide nearly identical services.

Packaged Solutions - eSight, Watchwire, Lucid BuildingOS, & Dude Energy Manager

Packaged solution vendors provide a different set of advantages and disadvantages. The positives of going with a packaged solution is pre-configured tools, analytics, and reports, ease of access to web-based public dashboard, ease of use, and automatic product updates. Dude is the only solution with the additional advantage of reading all meter values directly, thereby removing the meters completely from PI. Some negatives of the packaged solutions include the need to maintain connections with the existing PI system, less flexibility, and training required to learn new system. A table outlining the relative advantages and weaknesses of each of the systems is provided below:

Feature Summary Table

Vendor	eSight	DSA	Energy Watch	Rovisys	LCS	Dude	Best in Class
Product	eSight	PI	WW	PI	Bldg OS	Dude	-
Hosted	Local	Local	Cloud	Local	Cloud	Cloud	WW
Direct to Meters	No	Yes	No	Yes	No	Yes	Dude
Meter Alarming							PI
Meter VVE							eSight
Billing Module		•					eSight
Utility Data Import							non-pi
Reporting							Lucid
M&V						••	eSight
Savings Tracking				•			eSight

Analytics		-	-				Lucid
Public Dashboards							Lucid
UR Dashboards							
Additional Abilities	-		-		-	-	DSA, Rov
Strength	Well Rounded	PI	Ease, Billing	Process	Dash boards	Inte- gration	-
Weakness	None	Dashbrd, Difficulty	Dashbrd	Dashbrd, Difficulty	Cost	Cost, Complex	-

Legend

-	Not available	Importance	
	Functional, but limited capability	Low Importance	
-	Functional	Medium Importance	
	Functional, well done, easy to use	High Importance	

OPINION OF PROBABLE COST

Costs were obtained from each of the proposed vendors listed above. Costs for each system were broken up into initial cost, annual cost, and five-year cost for the program. The team also evaluated the additional costs of PI upgrades, if required. The costs for each of the vendors is presented in the table below. The costs in the table do not include any potential rebates or incentives.

Table 1. System and PI Upgrades Costs

Vendor	eSight	DSA	Energy Watch	Rovisys	LCS	Dude
Initial Cost	\$79k	\$122k	\$58k	\$265k	\$24k	\$121k
Annual Cost	\$43k	\$0	\$53k	\$0	\$116k	\$191k
Five-Year Cost	\$294k	\$122k	\$323k	\$265k	\$604k	\$1,076k
Additional Pl Costs (Initial)	\$0	\$0	\$37.5k	\$0	\$0	\$0
Additional Pl Costs (Annual)	\$0	\$50k	\$5.6k	\$50k	\$0	\$0
Total Five- Year Cost	\$294k	\$372k	\$389k	\$515k	\$604k	\$1,076k

ROAD MAP

The roll out of the EMIS includes vendor selection, information gathering, and implementation. The implementation will take place over three project phases.

- 1. Phase I UR purchases the EMIS software
- 2. Phase II UR configures the software specifically for its campus.
 - a. building information
 - b. assigning meters to specific buildings
 - c. adding users & groups
 - d. setting up views, reports, etc.
- 3. Phase III UR works in units of blocks (sub-phases) on two fronts in parallel.
 - a. Identify and capitalize on energy opportunities in areas of the campus which are already submetered.
 - b. Install meters in the unmetered areas of the campus.
 - c. Add additional software components as necessary to accommodate new meters.

Below is a tentative schedule for the EMIS implementation:

Task	Start	Duration	End
Vendor Selection	03/01/2020	0	03/01/2020
Information Gathering	03/02/2020	20	03/30/2020
Phase I	03/31/2020	65	06/30/2020
Phase II	09/01/2020	64	11/30/2020
Phase III	01/01/2021	650	06/30/2023

SAVINGS SUMMARY

The EMIS will facilitate the achievement of energy savings for the University. The EMIS system will direct building managers and system operators to operational improvements which will result in a reduction in energy usage. Energy savings are based on 1% of the University's annual electricity usage. These savings have been approved by Rochester Gas & Electric for the purpose of providing rebates for the installed equipment. A calculation of the estimated savings can be found in Appendix 5.

The savings will undergo measurement and verification (M&V) according to the International Performance Measurements & Verification Protocol (IPMVP). The University will track energy conservation efforts and provide a summary of before and after conditions. The M&V strategy document can be found in Appendix 5.

RESULTS

The University used the information and processes gathered here to select and EMIS vendor and begin implementation. eSight Energy was selected as the vendor which most closely matched the RFP requirements also had the lowest five-year total cost. The system was installed and configured in FY21 and is expected to be available to the UR community in FY22.

UNIVERSITY OF ROCHESTER

ENERGY CONSERVATION MEASURE (ECM)

ENERGY DATA ANAYLSIS PROJECT IMPACT SUMMARY

projected results for the Part 1 | Energy Management Information Systems (EMIS)

	Plant Leve			
	Building Level	Energy Savings		
Α	Electrical Energy Savings	5,525	mmBtu/Year	= E x .003412
В	Chilled Water Savings		mmBtu/Year	Not used
С	Steam Savings	17,229	mmBtu/Year	from EXTRAPOLATION Total
D	Total Energy Savings	22,754	mmBtu/Year	7
	Building Leve	l Utility Savings		
Ε	Electrical Energy Savings	1,619,294	kWh/Year	from Technical Appendix 6
F	Chilled Water Savings		Ton-Hour/Year	Not used
G	Steam Savings	17,229	klbs/Year	= C x 1,000,000 / 1,194(BTU/lb) / 1,000
Н	Water Savings	-	kGal/Year	from detailed summary recommended total
	Purchased l	Jtility Savings		
1	Electrical Energy Savings	1,619,294	kWh/Year	from Technical Appendix 6
J	Natural Gas Savings	25,681	mmBtu/Year	from Technical Appendix 6
Κ	Total Energy Savings	31,206	mmBtu/Year	= I x .003412 J
L	% Savings of Total Utilities	1.0%		Total Energy Usage / K
	Implementation	Cost Estimate (\$)		
Μ	EMIS Software	\$109,491	one-time	from UR and outlined in Section E
Ν	RG&E Rebate	-\$106,824	one-time	from UR and outlined in Section E
0	Repair Budget	\$1,423,732	Projected	Estimated by repair projects with a 7 year payback.
Р	Total Capital Costs	\$1,426,399	Projected	Tatal Assessal Building Coulings #200 750
	Annual Building	Cost / Savings (\$)		Total Annual Building Savings \$368,753
Q	Electrical Dollar Savings	\$145,737	Per Year	= E x Building Electric Rate
R	Chilled Water Dollar Savings	\$0	Per Year	= F x Building Chilled Water Rate
S	Steam Dollar Savings	\$251,536	Per Year	= G x Building Steam Rate
Τ	Annual Fees (less 30% Incentive)	-\$28,520	Per Year	Annual cost to EMIS service provider
U	Simple Payback	4	Years	cost from EXTRAPOLATION Total / (M N O)
	Annual Purchased Ut	ility Cost / Savings (\$)		— Total Annual Utility Savings \$309,443
V	Electrical Dollar Savings	\$105,254	Per Year	= I x Utility Electric Rate
W	Natural Gas Savings	\$82,435	Per Year	= J x Utility Natural Gas Rate
Χ	Avoided Carbon Tax	\$93,234	Per Year	= AC x AE
Υ	Annual Fees (less 30% Incentive)	-\$28,520	Per Year	Annual cost to EMIS service provider
Ζ	Simple Payback	6	Years	cost from EXTRAPOLATION Total / (Q R S)
	Impact on CC)2e Emissions		
AA	Electrical Emissions Savings	217	MT CO2e	= I /1000 x 295.94 lbs/MWh x 0.000453592 [lbs to
AB	Natural Gas Emissions Savings	1,647	MT CO2e	MT = J x 116.38 lbs/mmBtu x 0.000453592 [lbs to MT
AC	Total Emissions Savings	1,865	MT CO2e	= U V
AD	% Savings of Total GHG Emissions	1.2%		cost from detailed summary recommended total / (U)

AE Carbon Tax Assumed to be: \$50.00 Per MT CO2e

Section F EXTRAPOLATED RESULTS

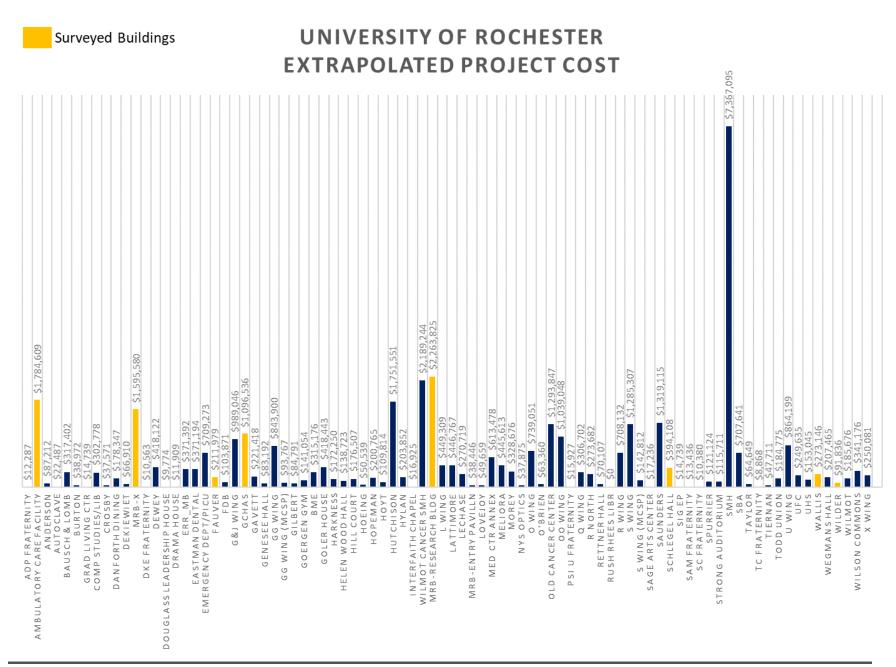
EXTRAPOLATED RESULTS

The strategy for this Energy Conservation Assessment and Plan focused on a deep dive into select energy conservation measures (ECMs) at representative buildings. The results of that analysis are presented in the ECM section of this report. The results (costs and savings) from the representative buildings were then extrapolated across similar buildings that were not part of the deep dive. The result of this analysis provides a road map and sets expectations for cost, savings, and greenhouse gas emissions reduction from investment in energy conservation on campus.

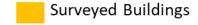
SUMMARY OF BUILDINGS SURVEYED

Building Abbreviation	Туре	Area	Lighting	Labs	Heat Recovery	RCX Scoping
Ambulatory Care Facility	Hospital	224,609	Х			
Del Monte	Lab/Research	152,227		Х	Х	
Fauver	Office/Sports	63,097	Х			
GCHaS	Patient Care	271,861		Х	Х	
KMRB	Lab/Research	235,914	Х	Х	Х	
Schlegel Hall	Classroom/Office	115,832	Х			
Wallis	Office	49,598	Х			
Wilder	Dorm	78,822	Х			
Danforth Dining Hall	Cafeteria, Dining, Kitchens	35,128				Х
Fredrick Douglass Commons	Dining, Classrooms	89,151				Х
Rush Rhees Library	Library, Offices	349,284				Х

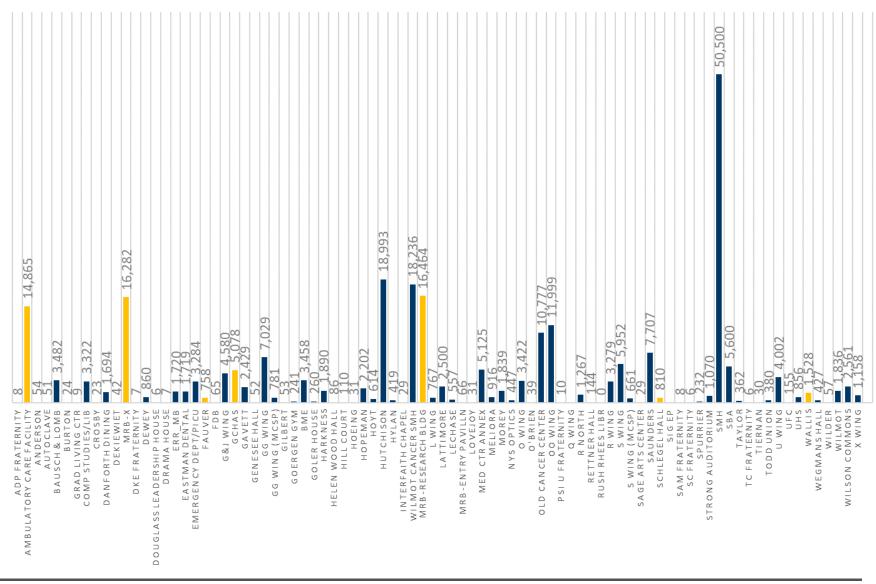
Extrapolation of Deep Dive ECMs | The follow charts highlight how project costs and savings were extrapolated. It should be noted that other ECMs, such as controls improvements, HVAC system upgrades and other common ECMs will further enhance these projects. Project savings and costs were extrapolated based on similar building types. The team used a savings per square foot and cost per square foot estimate for each building. These are also reviewed and adjust for reasonableness by reviewing overall % savings by building.


Table E.1 | Current Building Energy Usage Summary

	SURVEYED BUILDINGS															
Line #	Building Name	Area	Current Electric (kWh)	Current Chilled Water (Tons)	Current Steam (MLBS)	Current Hot Water (mmBtu)	Current Natural Gas (mmBtu)	Current Utility Cost	Current Total Energy Use (mmBtu)	Building EUI kBtu/sqft	Energy Cost/sqft	Projected Savings	Savings/sqft	Lighting	Labs	Heat Recovery
1	Ambulatory Care Facility	224,609	4,740,048	51,190	19,472	2,587	0	\$412,980.89	52,975	235 .86	\$1.84	\$0	0%	Χ		
2	Ernest J Del Monte Neuromedicine Institute	152,227	5,667,756	60,981	19,852	2,526	0	\$479,602.06	59,280	389.42	\$3.15	\$0	0%		Х	Х
3	Fauver Stadium	63,097	256,300	557	922	0	0	\$21,245.32	1,957	31.01	\$0.34	\$0	0%	Χ		
4	obert B Goergen Hall for Biomedical Engineering and Option	271,861	5,232,009	69,473	4	35,819	0	\$497,305.25	73,684	271.03	\$1.83	\$0	0%		Х	Х
5	Kornberg Medical Research Building	235,914	9,501,958	107,634	40,778	2,526	47	\$824,894.54	106,771	452.58	\$3.50	\$0	0%	Х	Χ	Х
6	Schlegel Hall (Includes Gleason Wing)	115,832	887,929	4,489	0	1,885	0	\$69,098.18	6,208	53.59	\$0.60	\$0	0%	Χ		
7	Wallis Hall	49,598	444,629	3,828	5,557	1,553	0	\$56,579.84	9,730	19 6.17	\$1.14	\$0	0%	Х		
8	Wilder Hall	78,822	339,414	0	0	3,749	0	\$37,066.29	4,907	62.25	\$0.47	\$0	0%	Х		


						EXTRA	POLATION									
Line #	Building Name	Area	Current Electric (kWh)	Current Chilled Water (Tons)	Current Steam (MLBS)	Current Hot Water (mmBtu)	Current Natural Gas (mmBtu)	Current Utility Cost	Building Energy Usage	Building EUI kBtu/sqft	Energy Cost/sqft	Projected Savings	Savings/sqft	Lighting	Labs	Heat Recovery
1	Alpha Delta Phi	10,546	68,996	0	0	559	0	\$6,814.17	794	75.33	\$0.65	\$0	0%	Χ		
2	Ambulatory Care Facility	224,609	4,740,048	51,190	19,472	2,587	0	\$412,980.89	52,975	235.86	\$1.84	\$0	0%	Χ		
3	Anderson Hall	74,853	344,265	0	0	3,069	0	\$34,992.26	4,243	56.69	\$0.47	\$0	0%	Χ		
4	Autoclave Building	5,618	332,848	0	4,263	0	0	\$38,434.77	5,399	961.05	\$6.84	\$0	0%	Χ		
5	Bausch and Lomb Hall	114,228	1,584,872	35,079	7,752	0	0	\$140,425.15	23,262	203.65	\$1.23	\$0	0%	Χ	Χ	X
6	Burton Hall	33,449	160,602	0	0	1,996	0	\$18,327.94	2,544	76.06	\$0.55	\$0	0%	Χ		
8	Computer Studies Building (Carlson Library)	108,965	1,506,571	12,810	0	5,350	0	\$125,169.83	14,180	130.13	\$1.15	\$0	0%	Χ	Χ	X
9	Crosby Hall	32,247	132,184	0	0	1,862	0	\$15,862.98	2,313	71.73	\$0.49	\$0	0%	Χ		
10	Danforth Dining Center	35,128	882,673	7,162	411	5,470	241	\$83,067.82	11,197	3 18.75	\$2.36	\$0	0%	Χ		х
11	De Kiewiet Tower	57,428	387,848	0	0	0	0	\$27,149.36	1,323	23.04	\$0.47	\$0	0%	Χ		
12	Ernest J Del Monte Neuromedicine Institute	152,227	5,667,756	60,981	19,852	2,526	0	\$479,602.06	59,280	38 9.42	\$3.15	\$0	0%	Χ	Х	Х
13	Delta Kappa Epsilon	9,066	29,645	0	0	465	0	\$3,725.90	566	62.45	\$0.41	\$0	0%	Χ		
14	Dewey Hall	122,890	953,165	9,457	4,901	0	0	\$84,648.49	10,877	88.51	\$0.69	\$0	0%	Χ		
15	ouglass Leadership House (Formerly: DU, Medieval House	8,389	35,476	0	0	359	0	\$3,757.77	480	57.22	\$0.45	\$0	0%	Χ		
16	Drama House	10,221	30,607	0	0	483	0	\$3,855.87	587	57.44	\$0.38	\$0	0%	Χ		
17	East River Road Medical Building	92,078	2,104,586	0	0	0	1,294	\$147,321.05	8,475	92.04	\$1.60	\$0	0%	Χ		
18	Eastman Dental Center	92,029	1,414,307	20,056	6,559	0	1	\$123,409.79	17,162	186.48	\$1.34	\$0	0%	Χ		
19	Emergency Department	175,848	4,991,867	19,340	10,157	13,079	0	\$433,001.71	45,838	260.67	\$2.46	\$0	0%	Χ		
20	Fauver Stadium	63,097	256,300	557	922	0	0	\$21,245.32	1,957	31.01	\$0.34	\$0	0%	Χ		
21	Fredric Douglass Dinning Center	89,151	1,604,478	14,450	0	10,174	168	\$149,240.37	19,978	224.09	\$1.67	\$0	0%	Χ		
22	SMD: G&J Wing	245,211	4,058,737	0	0	0	0	\$284,111.59	13,848	56.48	\$1.16	\$0	0%	Х		
23	Golisano Childrens Hospital at Strong	271,861	5,232,009	69,473	4	35,819	0	\$497,305.25	73,684	271.03	\$1.83	\$0	0%	Χ		
24	Gavett Hall	79,685	1,266,970	20,812	9,574	0	0	\$123,841.39	19,891	249.62	\$1.55	\$0	0%	Χ	Χ	Х
25	Genesee Hall	71,403	531,510	7,781	0	5,066	0	\$55,625.75	9,121	127.73	\$0.78	\$0	0%	Χ		
26	SMD: GG Wing	106,212	2,210,213	79,476	17,321	19,047	0	\$288,269.43	66,798	628.91	\$2.71	\$0	0%	Χ		Х
27	SMD: GG Wing (MCSP)	11,801	245,579	8,831	1,925	2,116	0	\$32,029.94	7,422	628.91	\$2.71	\$0	0%	Χ		Х
28	Gilbert Hall	72,775	411,496	0	0	3,359	0	\$40,729.17	4,763	65.45	\$0.56	\$0	0%	Χ		
29	Goergen Athletics Center	244,044	3,213,807	9,513	2,148	6,373	0	\$255,747.20	22,226	91.07	\$1.05	\$0	0%	Χ		
30	obert B Goergen Hall for Biomedical Engineering and Optic	113,427	2,584,883	25,056	5	16,064	0	\$239,389.15	32,105	283.04	\$2.11	\$0	0%	Χ	Х	Х
31	Goler House	359,144	0	0	0	11,739	0	\$41,674.63	11,739	32.69	\$0.12	\$0	0%	Χ		
32	Harkness Hall	61,990	386,027	2,913	1,547	1,343	0	\$37,443.65	5,046	81.40	\$0.60	\$0	0%	Χ	Х	Х
33	Helen Wood Hall	119,064	874,192	16,880	0	4,996	0	\$79,873.05	12,840	107.84	\$0.67	\$0	0%	Х		
34	Hill Court	151,494	640,033	0	0	10,092	0	\$80,628.91	12,276	81.03	\$0.53	\$0	0%	Χ		
35	Hoeing Hall	43,377	163,912	0	0	3,035	0	\$22,248.09	3,594	82.86	\$0.51	\$0	0%	Χ		

36	Hopeman Engineering Building	72,252	750.957	7,858	0	3,321	0	\$64.796.59	8.146	112.75	\$0.90	\$0	0%	Y	Х	Х
37	Hoyt Hall	19,940	234,585	3,969	2,239	0	0	\$24,590.24	4,182	209.73	\$1.23	\$0	0%	X	^	X
38	Hutchison Hall	313,148	9,232,963	131,724	581	58,466	47	\$863,299.36	128,533	410.45	\$2.76	\$0	0%	X	Х	X
39	Hylan Building	59,914	572,798	151,724	191	4,399	0	\$57,281.43	11,127	185.72	\$0.96	\$0	0%	X	^	
40	Interfaith Chapel	29,283	239,236	2,243	0	2,376	0	\$25,306.93	3,838	131.07	\$0.96	\$0	0%	X		
41	James P. Wilmot Cancer Center (SMH)	275,536	4,568,850	64,781	10,657	14,825	0	\$413,908.43	59,728	216.77	\$1.50	\$0	0%	X		Х
42	Kornberg Medical Research Building	235,914	9,501,958	107,634	40,778	2,526	0	\$824,894.54	106,723	452.38	\$3.50	\$0	0%	X	Х	X
43	SMD: L Wing	777,371	1,280,639	0	0	0	0	\$89,644.73	4,370	5.62	\$0.12	\$0	0%	X	^	
44	Lattimore Hall	81,124	985,930	18,239	66	8,206	0	\$99,401.89	16,889	208.19	\$1.23	\$0 \$0	0%	X		
45	LeChase Hall	79,567	578,810	2,786	0	2,526	0	\$49,640.89	5,304	66.66	\$0.62	\$0 \$0	0%	X		Х
46	Levine Pavilion	66,517	1,117,178	16,444	569	2,526	0	\$90,112.95	11,643	175.04	\$1.35	\$0 \$0	0%	X		
47		42,622	291,236	0	0	2,526	0	\$29,354.69	3,520	82.59	\$0.69	\$0 \$0	0%	X		<u> </u>
48	Lovejoy Hall	79,099	1,619,642	7,864	4,924	2,526	0	\$140,261.89	15,241	192.68	\$1.77	\$0 \$0	0%	X	Х	X
49	Medical Center Annex Meliora Hall	130,970	1,932,773	17,626	6,475	2,526	0	\$168,235.55	20,672	157.84	\$1.77	\$0 \$0	0%	X	۸	
50	Morey Hall	59,681	237,434	11,621	14,026	2,526	0	\$76,032.64	20,672	347.00	\$1.27	\$0 \$0	0%	X		
			•		· ·		0		,	785.01			_	X	V	X
51	New York State Optics	4,383	108,481	1,890	0	2,526	-	\$16,667.70	3,441		\$3.80	\$0	0%		Х	Х
52	SMD: 0 Wing	183,231	3,032,834	0	0	0	0	\$212,298.38	10,348	56.48	\$1.16	\$0	0%	X		
53	O'Brien Hall	54,381	373,480	2,398	0	2,526	0	\$35,246.06	4,491	82.59	\$0.65	\$0	0%	X		<u> </u>
54	SMH: Old Cancer Center	162,842	2,695,367	44,297	6,840	4,639	0	\$231,905.73	33,433	205.31	\$1.42	\$0	0%	X		Х
55	SMD: 00 Wing	148,368	2,455,792	19,466	3,255	4,081	0	\$199,038.17	21,321	143.71	\$1.34	\$0	0%	X		Х
56	Psi Upsilon	13,670	41,417	0	0	502	0	\$4,681.29	643	47.06	\$0.34	\$0	0%	X		<u> </u>
57	SMD: Q Wing	76,040	1,258,611	0	0	0	0	\$88,102.77	4,294	56.48	\$1.16	\$0	0%	X		
58	R-Wing North	67,853	850,016	0	0	0	0	\$59,501.12	2,900	42.74	\$0.88	\$0	0%	X		
59	Rettner Hall	20,605	353,312	4,386	0	2,319	0	\$33,209.91	4,788	232.36	\$1.61	\$0	0%	X		_
60	Rush Rhees Library	349,284	2,174,743	29,867	26,057	0	0	\$246,406.74	42,079	120.47	\$0.71	\$0	0%	X		_
61	R-Wing	175,565	1,349,335	40,940	1,552	11,863	0	\$144,369.01	29,810	169.79	\$0.82	\$0	0%	X		_
62	SMD: S Wing	318,662	6,631,166	88,790	23,373	22,852	0	\$633,254.55	94,423	296.31	\$1.99	\$0	0%	X		
63	SMD: S Wing (MCSP)	35,407	736,796	9,866	2,597	2,539	0	\$70,361.62	10,491	2 96.31	\$1.99	\$0	0%	Х		
64	Sage Art Center	29,821	307,198	0	0	2,868	0	\$31,685.26	3,916	131.32	\$1.06	\$0	0%	Х		
65	Saunders Research Building	194,523	1,356,944	15,867	0	10,106	0	\$131,751.97	19,306	99.25	\$0.68	\$0	0%	Х	Х	X
66	Schlegel Hall (Includes Gleason)	115,832	887,929	4,489	0	1,885	0	\$69,098.18	6,208	53.59	\$0.60	\$0	0%	Х		
67	Sigma Phi Epsilon (Formerly CLC)	12,650	107,679	0	0	570	0	\$9,561.03	937	74.10	\$0.76	\$0	0%	Х		
68	Sigma Alpha MU	11,532	51,417	0	0	405	0	\$5,036.94	580	50.33	\$0.44	\$0	0%	Х		
69	Sigma Chi	8,909	61,171	0	0	541	0	\$6,202.52	750	84.15	\$0.70	\$0	0%	Х		
70	Spurrier Gymnasium	56,012	144,252	0	0	1,785	0	\$16,433.02	2,277	40.65	\$0.29	\$0	0%	Х		
71	Strong Auditorium	43,131	31,867	0	14,594	0	5,290	\$54,038.56	19,993	46 3.54	\$1.25	\$0	0%	Х		Х
72	Strong Memorial Hospital	1,030,971	23,723,418	297,981	63,177	37,327	0	\$2,034,115.89	267,267	259.24	\$1.97	\$0	0%	Х		Х
73	Susan B. Anthony Hall	179,432	1,321,447	5,307	0	9,055	0	\$124,944.56	15,092	84.11	\$0.70	\$0	0%	Х		<u> </u>
74	Taylor Hall	11,739	235,690	714	1,743	0	0	\$22,726.99	2,753	234.52	\$1.94	\$0	0%	Х		Х
75	Theta Chi	7,611	44,549	0	0	492	0	\$4,866.77	644	84.68	\$0.64	\$0	0%	Х		<u> </u>
76	Tiernan Hall	40,950	213,665	0	0	2,483	0	\$23,771.20	3,212	78.44	\$0.58	\$0	0%	Х		<u> </u>
77	Todd Union	54,307	201,727	1,472	1,845	0	0	\$20,752.53	2,957	54.45	\$0.38	\$0	0%	Х		
78	SMD: U Wing	214,258	3,546,406	0	0	0	0	\$248,248.42	12,100	56.48	\$1.16	\$0	0%	Х		<u> </u>
79	University Facilities Center	214,258	324,454	0	0	0	1,231	\$22,711.78	2,338	10.91	\$0.11	\$0	0%	Χ		<u> </u>
80	University Health Services	27,790	261,097	1,483	0	3,178	0	\$29,641.35	4,496	161.78	\$1.07	\$0	0%	Χ		X
81	Valentine Tower	57,428	467,753	0	0	0	0	\$32,742.71	1,596	27.79	\$0.57	\$0	0%	X		
82	Wallis Hall	49,598	444,629	3,828	5,557	1,553	0	\$56,579.84	9,730	196.17	\$1.14	\$0	0%	X		X
83	Wegmans Hall	60,976	833,752	7,518	0	1,198	0	\$63,036.56	6,208	101.81	\$1.03	\$0	0%	X		
84	Wilder Tower	78,822	339,414	0	0	3,749	0	\$37,066.29	4,907	62.25	\$0.47	\$0	0%	Х		
85	James P. Wilmot Cancer Center (SMD)	275,536	1,001,642	11,676	0	4,608	0	\$87,127.21	11,388	41.33	\$0.32	\$0	0%	X	Х	Х
86	Wilson Commons	104,338	2,240,639	12,699	6,117	0	0	\$179,271.20	17,419	166.95	\$1.72	\$0	0%	X		Х
87	SMD: X Wing	62,002	1,026,256	0	0	0	0	\$71,837.92	3,502	56.48	\$1.16	\$0	0%	X		



UNIVERSITY OF ROCHESTER EXTRAPOLATED PROJECT SAVINGS

UNIVERSITY OF ROCHESTER % SAVINGS

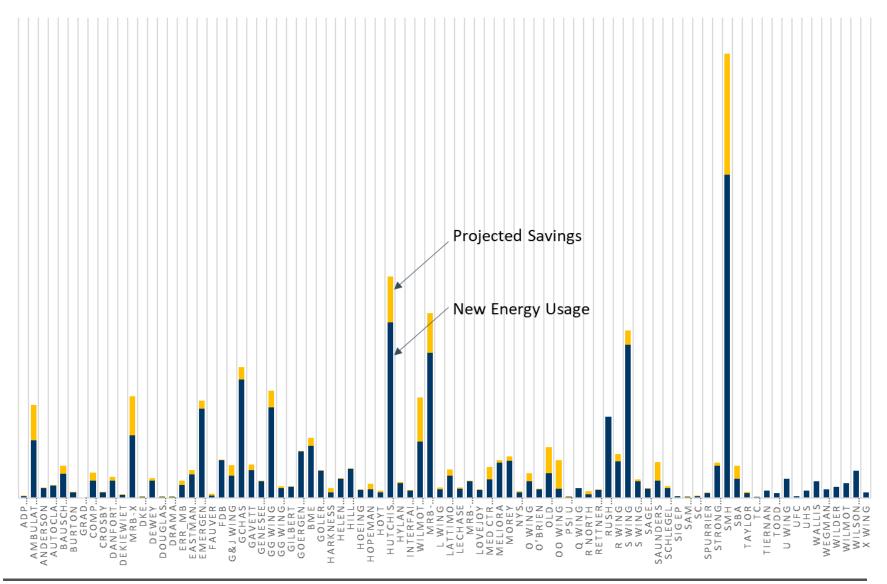


Table E.2 | Projected Energy Savings and Capital Cost Summary

	SURVEYED BUILDINGS															
Tag #	Building Name	Туре	Area	Current Electric (kWh)	Current Chilled Water (Tons)	Current Steam (MLBS)	Current Hot Water (mmBtu)	Current Natural Gas (mmBtu)	Current Utility Cost	Project Cost	Cost/sqft	kWh Savings	CHW mmBtu Savings	HW mmBtu Savings	Projected Savings (mmBtu)	Savings/sqft (kBtu/sqft)
1	Ambulatory Care Facility	Hospital	224,609	4,740,048	51,190	19,472	2,587	1	\$412,980.89	\$656,793	\$2.92	790,176.4	0	0	2,696	12.00
2	Ernest J Del Monte Neuromedicine Institute	Lab/Research	152,227	5,667,756	60,981	19,852	2,526	10	\$479,602.06	\$986,275	\$6.48	-433,490.1	6,875	9,495	14,891	97.82
3	Fauver Stadium	Office/Sports	63,097	256,300	557	922	0	18	\$21,245.32	\$31,694	\$0.50	17,790.7	0	0	61	0.96
4	Robert B Goergen Hall for Biomedical Engineering and Optic	Classroom/Lab/Office	271,861	5,232,009	69,473	4	35,819	25	\$497,305.25	\$755,412	\$2.78	-360,146.2	3,899	5,617	8,287	30.48
5	Kornberg Medical Research Building	Lab/Research	235,914	9,501,958	107,634	40,778	2,526	37	\$824,894.54	\$2,170,391	\$9.20	-108,852.6	6,895	9,876	16,399	69.51
6	Schlegel Hall (Includes Gleason Wing)	Classroom/Office	115,832	887,929	4,489	0	1,885	53	\$69,098.18	\$214,466	\$1.85	134,945.1	0	0	460	3.98
7	Wallis Hall	Office	49,598	444,629	3,828	5,557	1,553	66	\$56,579.84	\$150,553	\$3.04	98,974.7	0	0	338	6.81
8	Wilder Hall	Dorm	78,822	339,414	0	0	3,749	68	\$37,066.29	\$75,937	\$0.96	16,597.6	0	0	57	0.72

					EVT	RAPOLATION										
Tag #	Building Name	Туре	Area	Current Electric (kWh)	Current Chilled Water (Tons)	Current Steam (MLBS)	Current Hot Water (mmBtu)	Current Natural Gas (mmBtu)	Current Utility Cost	Project Cost	Cost/sqft	kWh Savings	CHW mmBtu Savings	HW mmBtu Savings	Projected Savings (mmBtu)	Savings/sqft (kBtu/sqft)
1	Alpha Delta Phi	Dorm	10,546	68,996	0	0	559	0	\$6,814.17	\$10,160	\$0.96	2,220.7	0	0	8	0.72
2	Ambulatory Care Facility	Hospital	224,609	4,740,048	51,190	19,472	2,587	1	\$412,980.89	\$1,792,999	\$7.98	320,330.0	8,141	10,745	19,979	88.95
3	Anderson Hall	Dorm	74,853	344,265	0	0	3,069	2	\$34,992.26	\$72,113	\$0.96	15,761.8	0	0	54	0.72
5	Autoclave Building	Autoclave	5,618	332,848	0	4,263	0	3	\$38,434.77	\$22,918	\$4.08	19,350.8	56	56	178	31.64
	Bausch and Lomb Hall	Classroom/Lab/Office	114,228	1,584,872	35,079	7,752	0	4	\$140,425.15	\$480,978	\$4.21	-54,537.8 7,043.4	2,774	3,496	6,084	53.26
6	Burton Hall Computer Studies Building (Carlson Library)	Dorm	33,449	160,602	0 12,810	0	1,996	5	\$18,327.94	\$32,225 \$474.944	\$0.96 \$4.36	-52,025.0	2,646	0 3,335	24 5.804	0.72 53.26
9	Crosby Hall	Library/Classroom/Office/Lab Dorm	108,965 32,247	1,506,571 132,184	0	0	5,350 1,862	8	\$125,169.83 \$15,862.98	\$31,067	\$4.36	6,790.3	2,040	0		0.72
10	Danforth Dining Center	Dining/Kitchen	35,128	882,673	7,162	411	5,470	9	\$83,067.82	\$408,242	\$11.62	-71,348.8	966	1,463	23 2,185	62.20
11	De Kiewiet Tower	Office/Dorm	57,428	387,848	0	0	0,470	10	\$27,149.36	\$82,476	\$11.02	60,751.2	571	571	1,349	23.50
12	Ernest J Del Monte Neuromedicine Institute	Lab/Research	152,227	5,667,756	60,981	19,852	2,526	11	\$479,602.06	\$1,607,259	\$10.56	90,846.3	8,389	11,009	19,707	129.46
13	Delta Kappa Epsilon	Dorm	9,066	29,645	00,701	0	465	12	\$3,725.90	\$8,734	\$0.96	1,909.0	0,367	0	7	0.72
14	Dewey Hall	Classroom/Office	122,890	953.165	9.457	4.901	0	13	\$84,648.49	\$431,126	\$3.51	349,355.9	1,222	1,222	3.636	29.59
15	Douglass Leadership House (Formerly: DU, Medieval House		8,389	35.476	0	0	359	14	\$3,757.77	\$8,082	\$0.96	1,766.5	0	0	6	0.72
16	Drama House	Dorm	10.221	30,607	0	0	483	15	\$3,757.77	\$9,847	\$0.76	2,152.2	0	0	7	0.72
17	East River Road Medical Building	Medical	92,078	2,104,586	0	0	0	16	\$147,321.05	\$374,831	\$4.07	431,878.9	1,128	1,215	3,816	41.44
18	Eastman Dental Center	Medical	92,029	1.414.307	20,056	6,559	0	17	\$123,409.79	\$374,632	\$4.07	431,649.1	1,127	1,214	3.814	41.44
19	Emergency Department	Hospital	175,848	4,991,867	19,340	10,157	13,079	18	\$433,001.71	\$715,842	\$4.07	824,790.4	2,153	2,320	7,288	41.44
20	Fauver Stadium	Office/Sports	63,097	256,300	557	922	0	19	\$21,245.32	\$184,506	\$2.92	221,975.8	0	0	757	12.00
21	Fredric Douglass Dinning Center	Kitchen/Dining	89,151	1,604,478	14,450	0	10,174	20	\$149,240.37	\$150,788	\$1.69	20,684.5	668	1,454	2,193	24.60
22	SMD: G&J Wing	Hospital	245,211	4,058,737	0	0	0	21	\$284,111.59	\$998,206	\$4.07	1,150,128.6	3,003	3,236	10,163	41.44
23	Golisano Childrens Hospital at Strong	Hospital	271,861	5,232,009	69,473	4	35,819	22	\$497,305.25	\$1,106,692	\$4.07	1,275,125.9	3,329	3,587	11,267	41.44
24	Gavett Hall	Engineering/Offices/Lab/Classroom/Offices	79,685	1,266,970	20,812	9,574	0	23	\$123,841.39	\$441,370	\$5.54	-38,045.4	1,935	2,439	4,244	53.26
25	Genesee Hall	Dorm	71,403	531,510	7,781	0	5,066	24	\$55,625.75	\$68,789	\$0.96	15,035.3	0	0	51	0.72
26	SMD: GG Wing	Hospital	106,212	2,210,213	79,476	17,321	19,047	25	\$288,269.43	\$847,867	\$7.98	151,476.6	3,850	5,081	9,447	88.95
27	SMD: GG Wing (MCSP)	Hospital	11,801	245,579	8,831	1,925	2,116	26	\$32,029.94	\$398,041	\$33.73	16,830.7	428	565	1,050	88.95
28	Gilbert Hall	Dorm	72,775	411,496	0	0	3,359	27	\$40,729.17	\$70,111	\$0.96	15,324.2	0	0	52	0.72
29	Goergen Athletics Center	Athletics/Gymnasium/Pool/Fieldhouse	244,044	3,213,807	9,513	2,148	6,373	28	\$255,747.20	\$237,962	\$0.98	275,588.0	2,427	2,427	5,794	23.74
30	Robert B Goergen Hall for Biomedical Engineering and Opti	c Classroom/Lab/Office	113,427	2,584,883	25,056	5	16,064	29	\$239,389.15	\$480,060	\$4.23	-54,155.4	2,754	3,472	6,041	53.26
31	Goler House	Apartments	359,144	0	0	0	11,739	30	\$41,674.63	\$345,997	\$0.96	75,625.0	0	0	258	0.72
32	Harkness Hall	Engineering/Classroom/Lab/Office	61,990	386,027	2,913	1,547	1,343	31	\$37,443.65	\$421,080	\$6.79	-29,596.9	1,505	1,897	3,302	53.26
33	Helen Wood Hall	Office/Dorm	119,064	874,192	16,880	0	4,996	32	\$79,873.05	\$197,408	\$1.66	146,815.7	416	833	1,750	14.70
34	Hill Court	Dorm	151,494	640,033	0	0	10,092	33	\$80,628.91	\$145,948	\$0.96	31,900.1	0	0	109	0.72
35	Hoeing Hall	Dorm	43,377	163,912	0	0	3,035	34	\$22,248.09	\$41,789	\$0.96	9,133.9	0	0	31	0.72
36	Hopeman Engineering Building	Engineering/Classroom/Lab/Office	72,252	750,957	7,858	0	3,321	35	\$64,796.59	\$432,847	\$5.99	-34,496.5	1,755	2,211	3,848	53.26
37	Hoyt Hall	Auditorium/Office	19,940	234,585	3,969	2,239	0	36	\$24,590.24	\$424,377	\$21.28	27,282.9	310	487	890	44.61
38	Hutchison Hall	Lab/Classroom/Office	313,148	9,232,963	131,724	581	58,466	37	\$863,299.36	\$1,899,598	\$6.07	-692,448.9	12,266	16,223	26,126	83.43
39	Hylan Building	Classroom/Office	59,914	572,798	15,912	191	4,399	38	\$57,281.43	\$223,483	\$3.73	180,823.4	210	419	1,246	20.79
40	Interfaith Chapel	Assembly/Office	29,283	239,236	2,243	0	2,376	39	\$25,306.93	\$35,049	\$1.20	38,198.8	102	205	438	14.94
41	James P. Wilmot Cancer Center (SMH)	Hospital	275,536	4,568,850	64,781	10,657	14,825	40	\$413,908.43	\$2,199,537	\$7.98	392,960.5	9,987	13,181	24,509	88.95
42	Kornberg Medical Research Building	Lab/Research	235,914	9,501,958	107,634	40,778	2,526	41	\$824,894.54	\$2,281,924	\$9.67	91,036.6	9,241	12,222	21,773	92.29

Table E.2 | Projected Energy Savings and Capital Cost Summary

	SURVEYED BUILDINGS															
Tag #	Building Name	Туре	Area	Current Electric (kWh)	Current Chilled Water (Tons)	Current Steam (MLBS)	Current Hot Water (mmBtu)	Current Natural Gas (mmBtu)	Current Utility Cost	Project Cost	Cost/sqft	kWh Savings	CHW mmBtu Savings	HW mmBtu Savings	Projected Savings (mmBtu)	Savings/sqft (kBtu/sqft)
43	SMD: L Wing	Hospital	777,371	1,280,639	0	0	0	42	\$89,644.73	\$390,483	\$0.50	219,186.4	0	0	748	0.96
44	Lattimore Hall	Classroom/Office	81,124	985,930	18,239	66	8,206	43	\$99,401.89	\$634,601	\$7.82	96,783.9	1,783	2,219	4,333	53.41
45	LeChase Hall	Classroom/Office	79,567	578,810	2,786	0	2,526	44	\$49,640.89	\$279,139	\$3.51	226,195.8	791	791	2,354	29.59
46	Levine Pavilion	Assembly/Conference	66,517	1,117,178	16,444	569	2,526	45	\$90,112.95	\$64,859	\$0.98	75,114.7	661	661	1,579	23.74
47	Lovejoy Hall	Dorm	42,622	291,236	0	0	2,526	46	\$29,354.69	\$41,062	\$0.96	8,974.9	0	0	31	0.72
48	Medical Center Annex	Office/Lab	79,099	1,619,642	7,864	4,924	2,526	47	\$140,261.89	\$666,847	\$8.43	-82,756.9	3,098	4,098	6,914	87.41
49	Meliora Hall	Classroom/Office	130,970	1,932,773	17,626	6,475	2,526	48	\$168,235.55	\$488,526	\$3.73	395,274.0	458	916	2,723	20.79
50	Morey Hall	Classroom/Office	59,681	237,434	11,621	14,026	2,526	49	\$76,032.64	\$572,614	\$9.59	81,658.6	927	1,457	2,662	44.61
51	New York State Optics	Office/Lab	4,383	108,481	1,890	0	2,526	50	\$16,667.70	\$366,932	\$83.72	-3,661.3	242	317	546	124.57
52	SMD: O Wing	Hospital	183,231	3,032,834	0	0	0	51	\$212,298.38	\$745,895	\$4.07	859,417.4	2,244	2,418	7,594	41.44
53	O'Brien Hall	Dorm	54,381	373,480	2,398	0	2,526	52	\$35,246.06	\$52,390	\$0.96	11,451.0	0	0	39	0.72
54	SMH: Old Cancer Center	Hospital	162,842	2,695,367	44,297	6,840	4,639	53	\$231,905.73	\$1,299,930	\$7.98	232,240.4	5,902	7,790	14,485	88.95
55	SMD: 00 Wing	Hospital	148,368	2,455,792	19,466	3,255	4,081	54	\$199,038.17	\$1,082,305	\$7.29	524,180.0	6,003	7,586	15,377	103.64
56	Psi Upsilon	Dorm	13,670	41,417	0	0	502	55	\$4,681.29	\$13,170	\$0.96	2,878.5	0	0	10	0.72
57	SMD: Q Wing	Hospital	76,040	1,258,611	0	0	0	56	\$88,102.77	\$309,543		292,225.7				
58	R-Wing North	Hospital	67,853	850,016	0	0	0	57	\$59,501.12	\$276,217	\$4.07	260,764.2	156	221	1,267	18.67
59	Rettner Hall	Classroom/Office	20,605	353,312	4,386	0	2,319	58	\$33,209.91	\$72,287	\$3.51	41,118.0	0	0	140	6.81
60	Rush Rhees Library	Library/Office/Classroom	349,284	2,174,743	29,867	26,057	0	59	\$246,406.74	\$165,130	\$0.47	0.0	0	0	0	0.00
61	R-Wing	Hospital	175,565	1,349,335	40,940	1,552	11,863	60	\$144,369.01	\$714,690	\$4.07	674,707.3	404	571	3,277	18.67
62	SMD: S Wing	Hospital	318,662	6,631,166	88,790	23,373	22,852	61	\$633,254.55	\$1,297,211	\$4.07	1,224,639.4	734	1,036	5,948	18.67
63	SMD: S Wing (MCSP)	Hospital	35,407	736,796	9,866	2,597	2,539	62	\$70,361.62	\$144,135	\$4.07	136,071.0	82	115	661	18.67
64	Sage Art Center	Gallery/Office	29,821	307,198	0	0	2,868	63	\$31,685.26	\$29,078	\$0.98	8,408.3	0	0	29	0.96
65	Saunders Research Builidng	Lab/Research	194,523	1,356,944	15,867	0	10,106	64	\$131,751.97	\$1,334,038	\$6.86	247,510.3	2,790	4,019	7,653	39.34
66	Schlegel Hall (Includes Gleason)	Classroom/Office	115,832	887,929	4,489	0	1,885	65	\$69,098.18	\$432,060	\$3.73	231,147.1	0	0	789	6.81
67	Sigma Phi Epsilan (Formerly CLC)	Dorm	12,650	107,679	0	0	570	66	\$9,561.03	\$12,187		2,663.7				
68	Sigma Alpha MU	Dorm	11,532	51,417	0	0	405	67	\$5,036.94	\$11,110	\$0.96	2,428.3	0	0	8	0.72
69	Sigma Chi	Dorm	8,909	61,171	0	0	541	68	\$6,202.52	\$8,583	\$0.96	1,876.0	0	0	6	0.72
70	Spurrier Gymnasium	Gymnasium/Classroom/Office	56,012	144,252	0	0	1,785	69	\$16,433.02	\$144,483	\$2.58	65,254.4	0	0	223	3.98
71	Strong Auditorium	Assembly	43,131	31,867	0	14,594	0	70	\$54,038.56	\$392,056	\$9.09	-58,996.3	519	751	1,069	24.78
72	Strong Memorial Hospital	Hospital	1,030,971	23,723,418	297,981	63,177	37,327	71	\$2,034,115.89	\$7,405,606	\$7.18	2,138,084.2	17,799	25,394	50,488	48.97
73	Susan B. Anthony Hall	Dorm	179,432	1,321,447	5,307	0	9,055	72	\$124,944.56	\$671,446	\$3.74	-199,918.4	2,573	3,708	5,599	31.20
74	Taylor Hall	Office/Machine Shop	11,739	235,690	714	1,743	0	73	\$22,726.99	\$393,787	\$33.55	4,058.6	141	204	360	30.63
75	Theta Chi	Dorm	7,611	44,549	0	0	492	74	\$4,866.77	\$7,332	\$0.96	1,602.6	0	0	5	0.72
76	Tiernan Hall	Dorm	40,950	213,665	0	0	2,483	75	\$23,771.20	\$39,451	\$0.96	8,622.8	0	0	29	0.72
77	Todd Union	Office/Post Office	54,307	201,727	1,472	1,845	0	76	\$20,752.53	\$190,521	\$3.51	108,371.7	0	0	370	6.81
78	SMD: U Wing	Hospital	214,258	3,546,406	0	0	0	77	\$248,248.42	\$872,203	\$4.07	823,408.4	493	697	3,999	18.67
79	University Facilities Center	Offices/Utility	214,258	324,454	0	0	0	78	\$22,711.78	\$307,710	\$1.44	45,116.4	0	0	154	0.72
80	University Health Services	Office/Medical	27,790	261,097	1,483	0	3,178	79	\$29,641.35	\$447,494	\$16.10	9,608.1	335	484	851	30.63
82	Wallis Hall	Office	49,598	444,629	3,828	5,557	1,553	81	\$56,579.84	\$524,001	\$10.56	17,148.0	597	864	1,519	30.63
83	Wegmans Hall	Classroom/Office	60,976	833,752	7,518	0	1,198	82	\$63,036.56	\$213,918	\$3.51	121,679.9	0	0	415	6.81
84	Wilder Tower	Dorm	78,822	339,414	0	0	3,749	83	\$37,066.29	\$75,937	\$0.96	16,597.6	0	0	57	0.72
85	James P. Wilmot Cancer Center (SMD)	Office/Classroom/Lab	275,536	1,001,642	11,676	0	4,608	84	\$87,127.21	\$315,940	\$1.15	89,564.1	634	896	1,836	6.66
86	Wilson Commons	Dining/Commons/Office	104,338	2,240,639	12,699	6,117	0	85	\$179,271.20	\$526,474	\$5.05	-150,166.1	1,256	1,817	2,560	24.54
87	SMD: X Wing	Hospital	62,002	1,026,256	0	0	0	86	\$71,837.92	\$252,397	\$4.07	238,277.2	143	202	1,157	18.67
		EXTRAPOLATION TOTAL	10,351,862	143,429,796	#######	344,026	411,955	3,661	12,774,262	\$44,925,193	\$4.34	14,739,454	134,123	175,813	359,180	34.70

See Appendix 7 for tables broken down by ECM

UNIVERSITY OF ROCHESTER

ENERGY CONSERVATION MEASURE (ECM)

EXTRAPOLATED PROJECT IMPACT SUMMARY

for the extrapolated results of the ECMs Surveyed

	Plant Leve			
	Building Level	Energy Savings		
Α	Electrical Energy Savings	50,291	mmBtu/Year	= E x .003412
В	Chilled Water Savings	134,123	mmBtu/Year	from EXTRAPOLATION Total
С	Steam Savings	175,813	mmBtu/Year	from EXTRAPOLATION Total
D	Total Energy Savings	360,227	mmBtu/Year	
	Building Level	Utility Savings		
Ε	Electrical Energy Savings	14,739,454	kWh/Year	from detailed summary recommended total
F	Chilled Water Savings	11,176,899	Ton-Hour/Year	= B x 1,000,000 / 12,000
G	Steam Savings	175,813	klbs/Year	= C x 1,000,000 / 1,194(BTU/lb) / 1,000
Н	Water Savings	-	kGal/Year	from detailed summary recommended total
	Purchased U	Itility Savings		
- 1	Electrical Energy Savings	18,303,204	kWh/Year	= E (F x 49% from electric chillers x .916kW/ton)
J	Natural Gas Savings	291,629	mmBtu/Year	= C / 67% [HTG eff. (F x 51% from electric steam x .0052mmBtu/
Κ	Total Energy Savings	354,080	mmBtu/Year	ton) = I x .003412 J
L	% Savings of Total Utilities	11.5%		Total Energy Usage / K
	Building Cos	st Savings (\$)		
Μ	Electrical Dollar Savings	\$1,326,551		= E x Building Electric Rate
Ν	Chilled Water Dollar Savings	\$2,924,622	Per Year	= F x Building Chilled Water Rate
Ο	Steam Dollar Savings	\$2,566,875	Per Year	= G x Building Steam Rate
Р	Simple Payback	7	Years	cost from EXTRAPOLATION Total / (M N O)
	Purchased Utility	Cost Savings (\$)		
Q	Electrical Dollar Savings	\$1,189,708	Per Year	= I x Utility Electric Rate
R	Natural Gas Savings	\$936,131	Per Year	= J x Utility Natural Gas Rate
S	Avoided Carbon Tax	\$1,057,425	Per Year	= W x Y
Τ	Simple Payback	14	Years	cost from EXTRAPOLATION Total / (Q R S)
	Impact on CC	2e Emissions		
U	Electrical Emissions Savings	2,457	MT CO2e	= I/1000 x 295.94 lbs/MWh x 0.000453592 [lbs to MT
V	Natural Gas Emissions Savings	18,692	MT CO2e	= J x 116.38 lbs/mmBtu x 0.000453592 [lbs to MT
W	Total Emissions Savings	21,149	MT CO2e	= U V
Χ	% Savings of Total GHG Emissions	13.6%		cost from detailed summary recommended total / (U)

Carbon Tax Assumed to be: \$50.00 Per MT CO2e

UNIVERSITY OF ROCHESTER

ENERGY CONSERVATION MEASURE (ECM)

SUMMARY OF ENERY SAVINGS BY PROJECT TYPES

ENERGY CONSERVATION MEASURES										
Building Level Energy Savings from Lighting/Heat Pumps/Labs/RCX (Extrapolated) ¹										
Electrical Energy Savings	50,291	mmBtu/Year	14,739,454	kWh/Year						
Chilled Water Savings	134,123	mmBtu/Year	11,176,899	ton-hrs/Year						
Steam/Hot Water Savings	175,813	mmBtu/Year	175,813	mmBtu/Year						
Total Energy Savings	360,227	mmBtu/Year								
	ENER	GY DATA ANAYLSIS								
Build	ding Level Ene	rgy Savings from EMIS F	Project ²							
Electrical Energy Savings	5,525	mmBtu/Year	1,619,294	kWh/Year						
Chilled Water Savings		mmBtu/Year	-	ton-hrs/Year						
Steam/Hot Water Savings	17,229	mmBtu/Year	17,229	mmBtu/Year						
Total Energy Savings	17,247	mmBtu/Year								
RENEWABLE ENERGY GENERATION										
Building Level Energy Savings from Photovoltaic Systems ³										
Electrical Energy Savings	46,443	mmBtu/Year	13,611,731	kWh/Year						

⁽¹⁾ From EXTRAPOLATED PROJECT IMPACT SUMMARY

⁽²⁾ From ENERGY DATA ANAYLSIS PROJECT IMPACT SUMMARY

⁽³⁾ From Table 1-2 | ENERGY SAVINGS SUMMARY

UNIVERSITY OF ROCHESTER

ENERGY CONSERVATION MEASURE (ECM)

OVERALL ENERGY CONSERVATION VISION IMPACT SUMMARY

for the extrapolated results of the ECMs Surveyed, EMIS system, PV Systems

	Plant Lev	el Summary		
	Building Leve	l Energy Savings		
Α	Electrical Energy Savings	102,259	mmBtu/Year	= E x .003412
В	Chilled Water Savings	134,123	mmBtu/Year	from SUMMARY OF ENERY SAVINGS BY PROJECT TYPES, subtotal
С	Steam Savings	193,042	mmBtu/Year	from SUMMARY OF ENERY SAVINGS BY PROJECT TYPES, subtotal
D	Total Energy Savings	429,424	mmBtu/Year	
	Building Leve	el Utility Savings		
Ε	Electrical Energy Savings	29,970,480	kWh/Year	from SUMMARY OF ENERY SAVINGS BY PROJECT TYPES, subtotal
F	Chilled Water Savings	11,176,899	Ton-Hour/Year	= B x 1,000,000 / 12,000
G	Steam Savings	193,042	klbs/Year	= C x 1,000,000 / 1,194(BTU/lb) / 1,000
Н	Water Savings	-	kGal/Year	from SUMMARY OF ENERY SAVINGS BY PROJECT TYPES
	Purchased	Utility Savings		
- 1	Electrical Energy Savings	33,534,230	kWh/Year	= E (F x 49% from electric chillers x .916kW/ton)
J	Natural Gas Savings	317,310	mmBtu/Year	= C / 67% [HTG eff. (F x 51% from electric steam x .0052mmBtu/ton)
K	Total Energy Savings	431,729	mmBtu/Year	= I x .003412 J
L	% Savings of Total Utilities	14.0%		Total Energy Usage / K
	Implementation	n Cost Estimate (\$)		
М	ENERGY CONSERVATION MEASURES	\$44,925,193	one-time	cost from EXTRAPOLATION Total
Ν	ENERGY DATA ANAYLSIS	\$1,426,399	one-time	cost from ENERGY DATA ANAYLSIS PROJECT IMPACT SUMMARY
Ο	RENEWABLE ENERGY GENERATION	\$21,857,109	one-time	cost from Table 1-2 ENERGY SAVINGS SUMMARY
Р	Total Capital Costs	\$68,208,701		
	Annual Building	Cost / Savings (\$)	_	
Q	Electrical Dollar Savings	\$2,697,343	Per Year	= E x Building Electric Rate
R	Chilled Water Dollar Savings	\$2,924,622	Per Year	= F x Building Chilled Water Rate
S	Steam Dollar Savings	\$2,818,411	Per Year	= G x Building Steam Rate
T	Annual Fees (less 30% Incentive)	-\$28,520	Per Year	Annual cost to EMIS service provider
U	Simple Payback	8	Years	cost from EXTRAPOLATION Total / (M N O)
	Annual Purchased L	Itility Cost / Savings (\$)		
V	Electrical Dollar Savings	\$2,179,725	Per Year	= I x Utility Electric Rate
W	Natural Gas Savings	\$1,018,565	Per Year	= J x Utility Natural Gas Rate
Χ	Avoided Carbon Tax	\$1,364,604	Per Year	= AC x AE
Υ	Annual Fees (less 30% Incentive)	-\$28,520	Per Year	Annual cost to EMIS service provider
Ζ	Simple Payback		Years	cost from EXTRAPOLATION Total / (Q R S)
	Impact on C	02e Emissions		
AA	Electrical Emissions Savings	4,502	MT CO2e	= I /1000 x 295.94 lbs/MWh x 0.000453592 [lbs to MT
AB	Natural Gas Emissions Savings	22,791	MT CO2e	= J x 116.38 lbs/mmBtu x 0.000453592 [lbs to MT
AC	Total Emissions Savings	27,292	MT CO2e	= U V
AD	% Savings of Total GHG Emissions	17.5%		cost from detailed summary recommended total / (U)
•				

\$50.00 Per MT CO2e

ΑE

Carbon Tax Assumed to be:

Technical Appendix 1

Lighting ECM

Calculations (Savings Summary & Calculation)

- Kornberg
- ACF
- Wilder Hall
- Fauver Stadium
- Schlegel Hall
- Wallis Hall
- BMEO

Kornberg Medical Research Building (KMRB)

Lighting Upgrades

Measure Summary											
Electrical Energy Savings											
Electrical Demand Savings	229.6	Avg. kW/Month									
Electrical Consumption Savings	785,314	kWh/Year									
Fossil Fuel Energ	y Savings										
Fossil Fuel Savings	(529.6)	mmBtu/Year									
Fuel Conversion	10.000	Therms/mmBtu									
Natural Gas Savings	(5,296)	Therms/Year									
Water Savi	ngs										
Water Consumption Savings	-	kGal/Year									
O&M Savings											
Annual O&M Savings	-\$1,146	/Year									

Project: Kornberg Medical Research Building (KMRB)

Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.200 HVACc: 0.044 HVACg: -0.015

Building Type: Large Office (LOfc) Nearest City: Buffalo System Type: VAV Econ % of Building Cooled: 6% of Building Heated: 90%

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year Electric:

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

Fuel³ HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

228.7 kW Lighting Monthly kW Savings Total Annual Lighting Savings kWh 784,624 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	229.6
Electric Consumption Savings (kWh)	785,314
Fuel Savings (mmBtu)	(529.6)

Notes

(1) Based on NY Tech Manual Method: Version 6.1

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Kornberg Medical Research Building (KMRB)

Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9

Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = Σ (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- L Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- P Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- Q Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

Kornberg Medical Research Building (KMRB) EEM 1.1 - Lighting Upgrades

				A	В	c Measur	D e Detail	s		E	F	G	Н	L	Р	Q	R
			Lighting Description										En	ergy Us	se .		
Messure# Fixture code	Existing Equipment	Replacement Equipment	Replacement Model #	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual kWh	Total Annual Lighting Savings kWh
1 AATSTR1	1-F30T8/1-EB	1-LED24/R	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	5,758	90%	32	24	60	60	1.920	1.440	1.728	1.296	0.432	11,056	8,292	2,764
2 ARCANSI	1-CFL23	1-LED7/R	(1) Rab: C6R7/10/189FAUNVW	2,816	90%	23	7	76	76	1.748	0.532	1.573	0.479	1.094	4,922	1,498	3,424
3 AT12VAP	1-F34T12/1-MB	1-LED18/NF	(1) PHILIPS: WT470C LED23S/840 PSU WB L1300	2,112	90%	34	18	32	32	1.088	0.576	0.979	0.518	0.461	2,298	1,216	1,081
4 AT8VAP	1-F32T8/1-MB	1-LED18/NF	(1) PHILIPS: WT470C LED23S/840 PSU WB L1300	2,112	90%	32	18	32	32	1.024	0.576	0.922	0.518	0.403	2,162	1,216	946
5 BBBT8	2-F17T8/1-EB	2-LED7T8/RL	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & ICN-2P16-TLED-N	2,112	90%	31	14	48	48	1.488	0.672	1.339	0.605	0.734	3,142	1,419	1,723
6 BBBT8COVE	2-F17T8/1-EB	2-LED7T8/RL	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & ICN-2P16-TLED-N	2,816	90%	31	14	4	4	0.124	0.056	0.112	0.050	0.061	349	158	191
7 BBBT8TR1	2-F17T8/1-EB	1-LED10/R	(1) METALUX: 12EN-LD2-08-UNV-L840-CD1-U	5,913	90%	31	10	4	4	0.124	0.040	0.112	0.036	0.076	733	237	497
8 BBT8TR1	2-F25T8/1-EB	2-LED8.5T8/RL	(2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & ICN-3P16-TLED-N	5,913	90%	46	18	1	1	0.046	0.018	0.041	0.016	0.025	272	106	166
9 BBT8WM	2-F25T8/1-EB	1-LED31/NF	(1) PHILIPS: FSS330L-835-UNV-DIM-SWZDT	2,346	90%	46	31	24	24	1.104	0.744	0.994	0.670	0.324	2,590	1,746	845
10 BRCAN8PLH	2-CFQ26/1-SMB	1-LED10/R	(1) Rab: C8R10/15/229FAUNVW	3,860	90%	66	10	251	251	16.566	2.510	14.909	2.259	12.650	63,942	9,688	54,254
11 BT8	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	3,603	90%	59	24	83	83	4.897	1.992	4.407	1.793	2.615	17,643	7,177	10,466
12 BT8/INDIRECT	2-F32T8/1-EB	1-LED14/NF	(1) PHILIPS: SM530C LED19S/940	5,913	90%	59	14	184	184	10.856	2.576	9.770	2.318	7.452	64,192	15,232	48,960
13 BT8BX	2-F32T8/1-EB	1-LED36/NF	(1) RAB: EZPAN2X4-30N/D10 & SMKEZPAN2X4	5,851	90%	59	36	346	346	20.414	12.456	18.373	11.210	7.162	119,445	72,882	46,563
14 BT8BX1	2-F32T8/1-EB	1-LED36/NF	(1) RAB: EZPAN1X4-17/D10 & SMKEZPAN1X4	5,357	90%	59	36	39	39	2.301	1.404	2.071	1.264	0.807	12,327	7,521	4,805
15 BT8COVE	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	2,816	90%	59	24	88	88	5.192	2.112	4.673	1.901	2.772	14,619	5,947	8,672
16 BT8IND	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	2,772	90%	59	24	200	200	11.800	4.800	10.620	4.320	6.300	32,705	13,304	19,401
17 BT8TR1	2-F32T8/1-EB	1-LED24/R	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	2,508	90%	59	24	127	127	7.493	3.048	6.744	2.743	4.001	18,795	7,645	11,149
18 BT8TR1/VP	2-F32T8/1-EB	1-LED18/NF	(1) PHILIPS: WT470C LED23S/840 PSU WB L1300	2,942	90%	59	18	149	149	8.791	2.682	7.912	2.414	5.498	25,866	7,891	17,975
19 BT8U	2-F32T8U/1-EB	1-LED25/R	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	2,089	90%	59	25	248	248	14.632	6.200	13.169	5.580	7.589	30,567	12,952	17,615
20 BT8WM/IND	2-F32T8/1-EB	1-LED14/NF	(1) PHILIPS: SM530C LED19S/940	3,218	90%	59	14	97	97	5.723	1.358	5.151	1.222	3.929	18,418	4,370	14,048
21 CT8BX1	3-F32T8/1-EB	1-LED36/NF	(1) RAB: EZPAN1X4-17/D10 & SMKEZPAN1X4	2,816	90%	90	36	84	84	7.560	3.024	6.804	2.722	4.082	21,287	8,515	12,772

Kornberg Medical Research Building (KMRB) EEM 1.1 - Lighting Upgrades

						В	c Measur	D e Detail	s		E	F	G	Н	L	Р	Q	R
				Lighting Description										En	ergy Us	se		
Measure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual kWh	Total Annual Lighting Savings KWh
22	CT8BX1 2S	3-F32T8/2-EB	2-LED32T8/R	(2) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/7/G 4	2,816	90%	120	27	8	8	0.960	0.216	0.864	0.194	0.670	2,703	608	2,095
23	CT8TR	3-F32T8/1-EB	1-LED27/R	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/7/G 4	2,682	90%	90	27	7	7	0.630	0.189	0.567	0.170	0.397	1,689	507	1,183
24	CT8TR1	3-F32T8/1-EB	1-LED24/R	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	2,816	90%	90	24	708	708	63.720	16.992	57.348	15.293	42.055	179,417	47,845	131,573
25	CT8TR1 2s	3-F32T8/2-EB	2-LED32T8/R	(2) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/7/G 4	2,856	90%	120	27	1,394	1,394	167.280	37.638	150.552	33.874	116.678	477,703	107,483	370,220
26	HPS150WP	1-HPS150/1-CWA	1-LED51FL/NF	(1) RAB: W3455L	2,816	90%	190	51	1	1	0.190	0.051	0.171	0.046	0.125	535	144	391
27	LED	LED	LEAVE AS IS	LEAVE AS IS	1,877	90%	15	15	6	6	0.090	0.090	0.081	0.081	0.000	169	169	0
28	WP	1-HPS70/1-CWA	1-LED20WP/NF	(1) RAB: WPLED18N/PC	2,816	90%	95	20	4	4	0.380	0.080	0.342	0.072	0.270	1,070	225	845
	TOTAL:					•			4,305	4,305	358.1	104.1	322.3	93.7	228.7	1,130,617	345,993	784,624

Kornberg Medical Research Building (KMRB) EEM 1.1 - Lighting Upgrades

		BB								DD FF Operation and Maintenance							וו	ш	NN	
			Curr	ent Lar	mps		Propos	ed Lam	ıps	Lamp Savings			Electro	onics	P	roposed	Electro	nics	Electronics Savings	Total Savings
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
1	AAT8TR1	1	\$7.00	20,000	\$121	1	\$115.00	70,000	\$568	-\$447	1	\$25.00	50,000	\$173	1	\$25.00	50,000	\$173	\$0	-\$447
2	ARCANSI	1	\$4.00	1,000	\$856	1	\$66.00	50,000	\$282	\$574	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$574
3	AT12VAP	1	\$7.00	20,000	\$24	1	\$175.00	70,000	\$169	-\$145	1	\$25.00	50,000	\$34	0	\$0.00	0	\$0	\$34	-\$112
4	AT8VAP	1	\$7.00	20,000	\$24	1	\$175.00	70,000	\$169	-\$145	1	\$25.00	50,000	\$34	0	\$0.00	0	\$0	\$34	-\$112
5	вввт8	2	\$7.00	20,000	\$71	2	\$17.00	70,000	\$49	\$22	1	\$25.00	50,000	\$51	1	\$25.00	50,000	\$51	\$0	\$22
6	BBBT8COVE	2	\$7.00	20,000	\$8	2	\$17.00	70,000	\$5	\$2	1	\$25.00	50,000	\$6	1	\$25.00	50,000	\$6	\$0	\$2
7	BBBT8TR1	2	\$7.00	20,000	\$17	2	\$200.00	50,000	\$189	-\$173	1	\$25.00	50,000	\$12	0	\$0.00	0	\$0	\$12	-\$161
8	BBT8TR1	2	\$7.00	20,000	\$4	2	\$55.00	70,000	\$9	-\$5	1	\$25.00	50,000	\$3	1	\$25.00	50,000	\$3	\$0	-\$5
9	BBT8WM	2	\$7.00	20,000	\$39	1	\$175.00	70,000	\$141	-\$101	1	\$25.00	50,000	\$28	0	\$0.00	0	\$0	\$28	-\$73
10	BRCAN8PLH	2	\$10.00	15,000	\$1,292	1	\$66.00	50,000	\$1,279	\$13	1	\$30.00	50,000	\$581	0	\$0.00	0	\$0	\$581	\$594
11	вт8	2	\$7.00	20,000	\$209	1	\$17.00	70,000	\$73	\$137	1	\$25.00	50,000	\$150	1	\$25.00	50,000	\$150	\$0	\$137
12	BT8/INDIRECT	2	\$7.00	20,000	\$762	1	\$150.00	70,000	\$2,331	-\$1,570	1	\$25.00	50,000	\$544	0	\$0.00	50,000	\$0	\$544	-\$1,026
13	вт8вх	2	\$7.00	20,000	\$1,417	1	\$200.00	60,000	\$6,748	-\$5,331	1	\$25.00	50,000	\$1,012	0	\$0.00	0	\$0	\$1,012	-\$4,319
14	BT8BX1	2	\$7.00	20,000	\$146	1	\$200.00	60,000	\$696	-\$550	1	\$25.00	50,000	\$104	0	\$0.00	0	\$0	\$104	-\$446
15	BT8COVE	2	\$7.00	20,000	\$173	2	\$17.00	70,000	\$120	\$53	1	\$25.00	50,000	\$124	1	\$25.00	50,000	\$124	\$0	\$53
16	BT8IND	2	\$7.00	20,000	\$388	2	\$17.00	70,000	\$269	\$119	1	\$25.00	50,000	\$277	1	\$25.00	50,000	\$277	\$0	\$119
17	BT8TR1	2	\$7.00	20,000	\$223	1	\$115.00	70,000	\$523	-\$300	1	\$25.00	50,000	\$159	0	\$0.00	0	\$0	\$159	-\$141
18	BT8TR1/VP	2	\$7.00	20,000	\$307	1	\$175.00	70,000	\$1,096	-\$789	1	\$25.00	50,000	\$219	0	\$0.00	0	\$0	\$219	-\$570
19	BT8U	2	\$7.00	20,000	\$363	1	\$75.00	70,000	\$555	-\$192	1	\$25.00	50,000	\$259	0	\$0.00	0	\$0	\$259	\$67
20	BT8WM/IND	2	\$7.00	20,000	\$219	1	\$150.00	70,000	\$669	-\$450	1	\$25.00	50,000	\$156	0	\$0.00	50,000	\$0	\$156	-\$294
21	CT8BX1	3	\$7.00	20,000	\$248	1	\$200.00	60,000	\$788	-\$540	1	\$25.00	50,000	\$118	0	\$0.00	0	\$0	\$118	-\$422

Kornberg Medical Research Building (KMRB) EEM 1.1 - Lighting Upgrades

		ВВ						DD	FF Operation	and Ma	intenance		НН				וו	щ	NN	
			Curr	ent Lar	nps		Propos	ed Lam	ps	Lamp Savings		Current	Electro	onics	P	roposed	Electro	nics	Electronics Savings	Total Savings
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
22	2 CT8BX1 2S	3	\$7.00	20,000	\$24	1	\$115.00	70,000	\$37	-\$13	2	\$50.00	50,000	\$45	0	\$0.00	0	\$0	\$45	\$32
23	3 CT8TR	3	\$7.00	20,000	\$20	1	\$115.00	70,000	\$31	-\$11	1	\$25.00	50,000	\$9	0	\$0.00	0	\$0	\$9	-\$2
24	1 CT8TR1	3	\$7.00	20,000	\$2,093	1	\$115.00	70,000	\$3,275	-\$1,182	1	\$25.00	50,000	\$997	0	\$0.00	0	\$0	\$997	-\$185
25	5 CT8TR1 2s	3	\$7.00	20,000	\$4,180	1	\$115.00	70,000	\$6,540	-\$2,360	2	\$50.00	50,000	\$7,962	0	\$0.00	0	\$0	\$7,962	\$5,602
26	HPS150WP	1	\$15.00	24,000	\$2	1	\$290.00	50,000	\$16	-\$15	1	\$25.00	50,000	\$1	0	\$0.00	0	\$0	\$1	-\$13
27	7 LED	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
28	3 WP	1	\$15.00	24,000	\$7	1	\$290.00	100,000	\$33	-\$26	1	\$25.00	50,000	\$6	0	\$0.00	0	\$0	\$6	-\$20
	TOTAL:				\$13,235				\$26,663	-\$13,427				\$13,064				\$783	\$12,281	-\$1,146

MATERIAL & LABOR COST ESTIMATE

Project : Kornberg Medical Research Building (KMRB)
Project # : 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 04/06/21

Estimated by: DB2
Checked by:
Approved by:

File: Cost Estimate

Item	Description	Otv	Unit	Mate	rial	Lat	or	Total Cost
No.	Description	Qty.	UIIIL	Unit Price	Total	Unit Price	Total	Labor & Material
1	(1) METALUX: 12EN-LD2-08-UNV-L840- CD1-U	4	EA	\$400.00	\$1,600	\$105.00	\$420	\$2,020.00
2	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	895	EA	\$116.68	\$104,425	\$61.14	\$54,723	\$159,147.50
3	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	248	EA	\$75.00	\$18,600	\$59.50	\$14,756	\$33,356.00
4	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT /7/G4	7	EA	\$115.00	\$805	\$59.50	\$417	\$1,221.50
5	(1) PHILIPS: FSS330L-835-UNV-DIM- SWZDT	24	EA	\$175.00	\$4,200	\$84.00	\$2,016	\$6,216.00
6	(1) PHILIPS: SM530C LED19S/940	281	EA	\$150.00	\$42,150	\$84.00	\$23,604	\$65,754.00
7	(1) PHILIPS: WT470C LED23S/840 PSU WB L1300	213	EA	\$175.00	\$37,275	\$84.00	\$17,892	\$55,167.00
8	(1) Rab: C6R7/10/189FAUNVW	76	EA	\$66.00	\$5,016	\$49.00	\$3,724	\$8,740.00
9	(1) Rab: C8R10/15/229FAUNVW	251	EA	\$66.00	\$16,566	\$49.00	\$12,299	\$28,865.00
10	(1) RAB: EZPAN1X4-17/D10 & SMKEZPAN1X4	123	EA	\$200.00	\$24,600	\$105.00	\$12,915	\$37,515.00
11	(1) RAB: EZPAN2X4-30N/D10 & SMKEZPAN2X4	346	EA	\$200.00	\$69,200	\$105.00	\$36,330	\$105,530.00
12	(1) RAB: W3455L	1	EA	\$290.00	\$290	\$119.00	\$119	\$409.00
13	(1) RAB: WPLED18N/PC	4	EA	\$290.00	\$1,160	\$119.00	\$476	\$1,636.00
14	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	371	EA	\$55.20	\$20,478	\$56.00	\$20,776	\$41,254.00
15	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & ICN-2P16-TLED-N	52	EA	\$59.00	\$3,068	\$52.50	\$2,730	\$5,798.00
16	(2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & ICN-3P16-TLED-N	1	EA	\$135.00	\$135	\$49.00	\$49	\$184.00
17	(2) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT /7/G4	1,402	EA	\$115.00	\$161,230	\$85.00	\$119,170	\$280,400.00
18	LEAVE AS IS	6	EA	\$0.00	\$0	\$0.00	\$0	\$0.00
		SUB	TOTALS:	Materials:	\$510,798	Labor:	\$322,415	\$833,213.00
								A022 242 24
							TOTAL:	\$833,213.00

Ambulatory Care Facility

Lighting Upgrades

Measure Summary										
Electrical Energy Savings										
Electrical Demand Savings	174.2	Avg. kW/Month								
Electrical Consumption Savings	790,944	kWh/Year								
Fossil Fuel Energy Savings										
Fossil Fuel Savings	(604.9)	mmBtu/Year								
Fuel Conversion	10.000	Therms/mmBtu								
Natural Gas Savings	(6,049)	Therms/Year								
Water Savi	ngs									
Water Consumption Savings	-	kGal/Year								
O&M Savings										
Annual O&M Savings	\$5,628	/Year								

Project: Ambulatory Care Facility

Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.142 HVACc: 0.014 HVACg: -0.017

Nearest City: Buffalo System Type: AC with gas heat % of Building Cooled: 6%

Building Type: Multi Family Low Rise

Electric:

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

Fuel³ HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

% of Building Heated: 90%

173.7 kW Lighting Monthly kW Savings Total Annual Lighting Savings kWh 790,722 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	174.2
Electric Consumption Savings (kWh)	790,944
Fuel Savings (mmBtu)	(604.9)

Notes

(1) Based on NY Tech Manual Method: Version 6.1

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Ambulatory Care Facility

Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9

Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = Σ (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- P Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- Q Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

Ambulatory Care Facility EEM 1.1 - Lighting Upgrades

				tails		E	F	G	н	L	Р	Q	R					
				Lighting Description										En	ergy U	se		
Measure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual KWh	Total Annual Lighting Savings KWh
1	APLH/SCONCE	1-CFQ26/1-SMB	1-LED PLH/RL	(1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & ICF-2S13-H1-LD	5,398	90%	33	9	52	52	1.716	0.468	1.544	0.421	1.123	9,263	2,526	6,737
2	BBBT8TR	2-F17T8/1-EB	1-LED25/R	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	2,816	90%	31	25	20	20	0.620	0.500	0.558	0.450	0.108	1,746	1,408	338
3	BRCAN6PLH	2-CFQ26/1-SMB	1-LED7/R	(1) Rab: C6R7/10/189FAUNVW	5,309	90%	66	7	1,370	1,370	90.420	9.590	81.378	8.631	72.747	480,000	50,909	429,091
4	вт8	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	4,027	90%	59	24	192	192	11.328	4.608	10.195	4.147	6.048	45,613	18,554	27,059
5	BT8D/IND/WM	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	7,446	90%	59	24	24	24	1.416	0.576	1.274	0.518	0.756	10,544	4,289	6,255
6	BT8TR1	2-F32T8/1-EB	1-LED24/R	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	3,169	90%	59	24	102	102	6.018	2.448	5.416	2.203	3.213	19,070	7,757	11,313
7	вт8WM	2-F32T8/1-EB	1-LED31/NF	(1) PHILIPS: FSS440L-835-UNV-DIM- SWZDT	3,867	90%	59	31	172	172	10.148	5.332	9.133	4.799	4.334	39,238	20,617	18,622
8	COVE	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	2,300	90%	59	24	51	51	3.009	1.224	2.708	1.102	1.607	6,922	2,816	4,106
9	CRCAN10/PLH	3-CFQ26/1-SMB	1-LED14/R	(1) RAB: DLED6AR14YN	7,446	90%	99	14	66	66	6.534	0.924	5.881	0.832	5.049	48,652	6,880	41,772
10	CT8TR	3-F32T8/1-EB	1-LED27/R	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZ DT/7/G4	2,766	90%	90	27	1,037	1,037	93.330	27.999	83.997	25.199	58.798	258,194	77,458	180,736
11	CT8TR 2s	3-F32T8/2-EB	1-LED27/R	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZ DT/7/G4	2,769	90%	120	27	242	242	29.040	6.534	26.136	5.881	20.255	80,417	18,094	62,323
12	LED DEC	LED	LEAVE AS IS	LEAVE AS IS	7,446	90%	20	20	35	35	0.700	0.700	0.630	0.630	0.000	5,212	5,212	0
13	SENSORS	None	Occupancy Sensor	LUTRON						72					-0.306		-2,372	2,372
	TOTAL:		•		•	•		•	3,363	3,435	254.3	60.9	228.9	54.8	173.7	1,004,871	214,149	790,722

Ambulatory Care Facility EEM 1.1 - Lighting Upgrades

	ВВ							DD	FF Operation	and Ma	intenance		нн				וו	ш	NN
,		Curr	ent Lar	nps		Propos	ed Lam	ps	Lamp Savings		Current	Electro	onics	P	roposed	l Electro	nics	Electronics Savings	Saving s
Messure #	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
1 APLH/SCONCE	1	\$10.00	15,000	\$187	1	\$38.00	50,000	\$213	-\$26	1	\$30.00	50,000	\$168	1	\$25.00	50,000	\$140	\$28	\$2
2 BBBT8TR	2	\$7.00	20,000	\$39	2	\$75.00	70,000	\$121	-\$81	1	\$25.00	50,000	\$28	0	\$0.00	0	\$0	\$28	-\$53
3 BRCAN6PLH	2	\$10.00	15,000	\$9,697	1	\$66.00	50,000	\$9,600	\$97	1	\$30.00	50,000	\$4,364	0	\$0.00	0	\$0	\$4,364	\$4,461
4 BT8	2	\$7.00	20,000	\$541	1	\$17.00	70,000	\$188	\$353	1	\$25.00	50,000	\$387	1	\$25.00	50,000	\$387	\$0	\$353
5 BT8D/IND/WM	2	\$7.00	20,000	\$125	2	\$17.00	70,000	\$87	\$38	1	\$25.00	50,000	\$89	1	\$25.00	50,000	\$89	\$0	\$38
6 BT8TR1	2	\$7.00	20,000	\$226	1	\$115.00	70,000	\$531	-\$305	1	\$25.00	50,000	\$162	0	\$0.00	0	\$0	\$162	-\$143
7 BT8WM	2	\$7.00	20,000	\$466	1	\$125.00	70,000	\$1,188	-\$722	1	\$25.00	50,000	\$333	0	\$0.00	0	\$0	\$333	-\$390
8 COVE	2	\$7.00	20,000	\$82	1	\$17.00	70,000	\$28	\$54	1	\$25.00	50,000	\$59	1	\$25.00	50,000	\$59	\$0	\$54
9 CRCAN10/PLH	3	\$10.00	15,000	\$983	1	\$66.00	50,000	\$649	\$334	1	\$30.00	50,000	\$295	0	\$0.00	0	\$0	\$295	\$629
10 CT8TR	3	\$7.00	20,000	\$3,012	1	\$115.00	70,000	\$4,713	-\$1,701	1	\$25.00	50,000	\$1,434	0	\$0.00	0	\$0	\$1,434	-\$266
11 CT8TR 2s	3	\$7.00	20,000	\$704	1	\$115.00	70,000	\$1,101	-\$397	2	\$50.00	50,000	\$1,340	0	\$0.00	0	\$0	\$1,340	\$943
12 LED DEC	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
13 SENSORS																			
TOTAL:				\$16,062		•		\$18,418	-\$2,356				\$8,658				\$675		\$5,628

MATERIAL & LABOR COST ESTIMATE

Project : Ambulatory Care Facility
Project # : 402805

Measure : EEM 1.1 - Lighting Upgrades

Date: 04/06/21

Estimated by: DB2
Checked by:
Approved by:

File: Cost Estimate

Item	December 2	٥٤.	11-24	Mate	rial	Lat	or	Total Cost
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total	Labor & Material
1	(1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & ICF-2S13-H1-LD	52	EA	\$63.00	\$3,276	\$49.00	\$2,548	\$5,824.00
2	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	102	EA	\$115.00	\$11,730	\$59.50	\$6,069	\$17,799.00
3	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	20	EA	\$150.00	\$3,000	\$59.50	\$1,190	\$4,190.00
4	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZD T/7/G4	1,279	EA	\$115.00	\$147,085	\$59.50	\$76,101	\$223,185.50
5	(1) PHILIPS: FSS440L-835-UNV-DIM- SWZDT	172	EA	\$125.00	\$21,500	\$84.00	\$14,448	\$35,948.00
6	(1) Rab: C6R7/10/189FAUNVW	1,370	EA	\$66.00	\$90,420	\$49.00	\$67,130	\$157,550.00
7	(1) RAB: DLED6AR14YN	66	EA	\$66.00	\$4,356	\$49.00	\$3,234	\$7,590.00
8	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	267	EA	\$43.53	\$11,622	\$57.34	\$15,309	\$26,931.00
9	LEAVE AS IS	35	EA	\$0.00	\$0	\$0.00	\$0	\$0.00
10	LUTRON - MS-OPS6M2-DV-WH	53	EA	\$49.00	\$2,597	\$90.00	\$4,770	\$7,367.00
11	LUTRON - LRF2-OCR2B-P-WH	19	EA	\$55.00	\$1,045	\$120.00	\$2,280	\$3,325.00
		SUB	TOTALS:	Materials:	\$296,631	Labor:	\$193,079	\$489,709.50
							TOTAL:	\$489,709.50

Wilder Hall

Lighting Upgrades

Measure Summary										
Electrical Energy Savings										
Electrical Demand Savings	10.2	Avg. kW/Month								
Electrical Consumption Savings	16,602	kWh/Year								
Fossil Fuel Energy Savings										
Fossil Fuel Savings	(12.7)	mmBtu/Year								
Fuel Conversion	10.000	Therms/mmBtu								
Natural Gas Savings	(127)	Therms/Year								
Water Savi	ngs									
Water Consumption Savings	-	kGal/Year								
O&M Savings										
Annual O&M Savings	-\$180	/Year								

Project: Wilder Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.142 HVACc: 0.014 HVACg: -0.017

Nearest City: Buffalo System Type: AC with gas heat

Building Type: Multi Family Low Rise

% of Building Cooled: 6% % of Building Heated: 90%

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year Electric:

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

Fuel³ HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

10.1 kW Lighting Monthly kW Savings Total Annual Lighting Savings kWh 16,598 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	10.2
Electric Consumption Savings (kWh)	16,602
Fuel Savings (mmBtu)	(12.7)

Notes

(1) Based on NY Tech Manual Method: Version 6.1

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Wilder Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9 Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = Σ (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- E Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- O Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

Wilder Hall EEM 1.1 - Lighting Upgrades

					A	В	C Measure I	D Details			E	F	G	н	L	Р	Q	R
				Lighting Description										En	ergy Us	se		
Measure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual KWh	Total Annual Lighting Savings KWh
1	AT8	1-F32T8/1-MB	1-LED12T8/RL	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	8,760	90%	32	12	10	10	0.320	0.120	0.288	0.108	0.180	2,803	1,051	1,752
2	AT8S	1-F32T8/1-MB	1-LED26/NF	(1) PHILIPS: FSS440L-830-UNV-DIM-SWZDT	1,314	90%	32	26	4	4	0.128	0.104	0.115	0.094	0.022	168	137	32
3	вт8	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	1,596	90%	59	24	16	16	0.944	0.384	0.850	0.346	0.504	1,506	613	894
4	вт8вх	2-F32T8/1-EB	1-LED36/NF	(1) RAB: EZPAN2X4-30N/D10 & SMKEZPAN2X4	1,314	90%	59	36	8	8	0.472	0.288	0.425	0.259	0.166	620	378	242
5	BT8BX/P	2-F32T8/1-EB	1-LED20/NF	(1) PHILIPS SP532P LED29S/940 PSD PI5 SM2 L1410 WH	2,816	90%	59	20	8	8	0.472	0.160	0.425	0.144	0.281	1,329	451	879
6	BT8IND	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	6,388	90%	59	24	6	6	0.354	0.144	0.319	0.130	0.189	2,261	920	1,341
7	BT8WM	2-F32T8/1-EB	1-LED31/NF	(1) PHILIPS: FSS440L-835-UNV-DIM-SWZDT	1,112	90%	59	31	48	48	2.832	1.488	2.549	1.339	1.210	3,149	1,654	1,494
8	CFLSI	1-CFL13	1-LEDSI/R	(1) PHILLIPS: A19/LED/9W	1,314	90%	13	9	3	3	0.039	0.027	0.035	0.024	0.011	51	35	16
9	CT8IND	3-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	1,314	90%	90	24	1	1	0.090	0.024	0.081	0.022	0.059	118	32	87
10	HPS70WP	1-HPS70/1-CWA	1-LED20WP/NF	(1) RAB: WPLED18N/PC	3,690	0%	95	20	1	1	0.095	0.020	0.000	0.000	0.000	351	74	277
11	LED 2x2	LED	LEAVE AS IS	LEAVE AS IS	8,760	90%	24	24	25	25	0.600	0.600	0.540	0.540	0.000	5,256	5,256	0
12	LED BT8IND	LED	LEAVE AS IS	LEAVE AS IS	7,540	90%	30	30	7	7	0.210	0.210	0.189	0.189	0.000	1,583	1,583	0
13	LED SI	LED	LEAVE AS IS	LEAVE AS IS	1,314	90%	7	7	5	5	0.035	0.035	0.032	0.032	0.000	46	46	0
14	LEDBT8	LED	LEAVE AS IS	LEAVE AS IS	6,212	90%	15	15	21	21	0.315	0.315	0.284	0.284	0.000	1,957	1,957	0
15	LEDCAN	LED	LEAVE AS IS	LEAVE AS IS	1,314	90%	12	12	7	7	0.084	0.084	0.076	0.076	0.000	110	110	0
16	LEDCIR/WM	LED	LEAVE AS IS	LEAVE AS IS	8,760	90%	5	5	66	66	0.330	0.330	0.297	0.297	0.000	2,891	2,891	0
17	LEDSI	LED	LEAVE AS IS	LEAVE AS IS	5,913	90%	7	7	3	3	0.021	0.021	0.019	0.019	0.000	124	124	0
18	SQCPY	2-CFI23/1	1-LED9/NF	(1) RAB: SK9SYYW	1,136	89%	46	9	228	228	10.488	2.052	9.356	1.831	7.526	11,917	2,332	9,585
	TOTAL:								467	467	17.8	6.4	15.9	5.7	10.1	36,241	19,644	16,598

Wilder Hall EEM 1.1 - Lighting Upgrades

					ВВ				DD	FF Operation	and Ma	intenance		нн				וו	Щ	NN
										Lamp									Electronics	Saving
			Curr	ent Lar	mps		Propos	ed Lam	ps	Savings		Current	Electro	onics		roposed	Electro	nics	Savings	S
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
1	AT8	1	\$7.00	20,000	\$31	1	\$17.00	70,000	\$21	\$9	1	\$25.00	50,000	\$44	1	\$25.00	50,000	\$44	\$0	\$9
2	AT8S	1	\$7.00	20,000	\$2	1	\$125.00	70,000	\$9	-\$8	1	\$25.00	50,000	\$3	0	\$0.00	0	\$0	\$3	-\$5
3	вт8	2	\$7.00	20,000	\$18	1	\$17.00	70,000	\$6	\$12	1	\$25.00	50,000	\$13	1	\$25.00	50,000	\$13	\$0	\$12
4	вт8вх	2	\$7.00	20,000	\$7	1	\$200.00	60,000	\$35	-\$28	1	\$25.00	50,000	\$5	0	\$0.00	0	\$0	\$5	-\$22
5	BT8BX/P	2	\$7.00	20,000	\$16	1	\$150.00	70,000	\$48	-\$33	1	\$25.00	50,000	\$11	0	\$0.00	0	\$0	\$11	-\$21
6	BT8IND	2	\$7.00	20,000	\$27	2	\$17.00	70,000	\$19	\$8	1	\$25.00	50,000	\$19	1	\$25.00	50,000	\$19	\$0	\$8
7	вт8WM	2	\$7.00	20,000	\$37	1	\$125.00	70,000	\$95	-\$58	1	\$25.00	50,000	\$27	0	\$0.00	0	\$0	\$27	-\$31
8	CFLSI	1	\$4.00	5,000	\$3	1	\$5.52	15,000	\$1	\$2	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$2
9	CT8IND	3	\$7.00	20,000	\$1	3	\$17.00	70,000	\$1	\$0	1	\$25.00	50,000	\$1	1	\$0.00	0	\$0	\$1	\$1
10	HPS70WP	1	\$15.00	24,000	\$2	1	\$290.00	100,000	\$11	-\$8	1	\$25.00	50,000	\$2	0	\$0.00	0	\$0	\$2	-\$7
11	LED 2x2	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
12	LED BT8IND	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
13	LED SI	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
14	LEDBT8	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
15	LEDCAN	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
16	LEDCIR/WM	1	\$0.00	20,000	\$0	1	\$0.00	20,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
17	LEDSI	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
18	SQCPY	1	\$4.00	15,000	\$69	1	\$75.00	100,000	\$194	-\$125	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	-\$125
	TOTAL:				\$214				\$441	-\$228				\$124				\$76		-\$180

MATERIAL & LABOR COST ESTIMATE

Project : Wilder Hall Estimated by: DB2

Project # : 402805 Checked by:

Measure : EEM 1.1 - Lighting Upgrades Approved by:

Date: 04/06/21 File: Cost Estimate

Item	Description	Qty.	Unit	Mate	rial	Lab	or	Total Cost	
No.	Description	Qıy.	Offic	Unit Price	Total	Unit Price	Total	Labor & Material	
1	(1) PHILIPS SP532P LED29S/940 PSD PI5 SM2 L1410 WH	8	EA	\$150.00	\$1,200	\$84.00	\$672	\$1,872.00	
2	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	10	EA	\$42.00	\$420	\$49.00	\$490	\$910.00	
3	(1) PHILIPS: FSS440L-830-UNV-DIM-SWZDT	4	EA	\$125.00	\$500	\$84.00	\$336	\$836.00	
4	(1) PHILIPS: FSS440L-835-UNV-DIM-SWZDT	48	EA	\$125.00	\$6,000	\$84.00	\$4,032	\$10,032.00	
5	(1) PHILLIPS: A19/LED/9W	3	EA	\$11.05	\$33	\$17.50	\$53	\$85.65	
6	(1) RAB: EZPAN2X4-30N/D10 & SMKEZPAN2X4	8	EA	\$200.00	\$1,600	\$105.00	\$840	\$2,440.00	
7	(1) RAB: SK9SYYW	228	EA	\$75.00	\$17,100	\$84.00	\$19,152	\$36,252.00	
8	(1) RAB: WPLED18N/PC	1	EA	\$290.00	\$290	\$119.00	\$119	\$409.00	
9	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	23	EA	\$47.91	\$1,102	\$56.00	\$1,288	\$2,390.00	
10	LEAVE AS IS	134	EA	\$0.00	\$0	\$0.00	\$0	\$0.00	
		SUB	TOTALS:	Materials:	\$28,245	Labor:	\$26,982	\$55,226.65	
							TOTAL:	\$55,226.65	

Fauver Stadium

Lighting Upgrades

Measure Summary													
Electrical Energy Savings													
Electrical Demand Savings	5.3	Avg. kW/Month											
Electrical Consumption Savings	18,592	kWh/Year											
Fossil Fuel Energy Savings													
Fossil Fuel Savings	(14.2)	mmBtu/Year											
Fuel Conversion	10.000	Therms/mmBtu											
Natural Gas Savings	(142)	Therms/Year											
Water Savi	ngs												
Water Consumption Savings	-	kGal/Year											
O&M Savir	igs												
Annual O&M Savings	-\$354	/Year											

Project: Fauver Stadium Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.142 HVACc: 0.014 HVACg: -0.017

Nearest City: Buffalo System Type: AC with gas heat % of Building Cooled: 6%

Building Type: Multi Family Low Rise

Electric:

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

Fuel³ HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

% of Building Heated: 90%

5.2 kW Lighting Monthly kW Savings Total Annual Lighting Savings kWh 18,587 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	5.3
Electric Consumption Savings (kWh)	18,592
Fuel Savings (mmBtu)	(14.2)

Notes

(1) Based on NY Tech Manual Method: Version 6.1

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Fauver Stadium
Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9 Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = \sum (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- L Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- R Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- L Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- O Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

Fauver Stadium EEM 1.1 - Lighting Upgrades

				A	В	c Measure	D Details			E	F	G	н	L	Р	Q	R
			Lighting Description										Er	nergy Us	e		
Measure #	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual KWh	Total Annual Lighting Savings KWh
1 A8T8BX/INDIRECT	1-F96T8/1-EB	2-LED14/NF	(2) PHILIPS: SM530C LED19S/940	939	90%	58	28	1	1	0.058	0.028	0.052	0.025	0.027	54	26	28
2 ASTSBX/WM/INDIR	1-F96T8/1-EB	1-LEDBX/NF	(2) PHILIPS: SM530C LED19S/940	1,877	90%	58	28	4	4	0.232	0.112	0.209	0.101	0.108	435	210	225
3 AAAT8TR1	1-F17T8/1-EB	1-LED10/R	(1) METALUX: 12EN-LD2-08-UNV-L840-CD1-U	8,760	90%	20	10	3	3	0.060	0.030	0.054	0.027	0.027	526	263	263
4 AAT8TR1	1-F30T8/1-EB	1-LED24/R	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	1,877	90%	32	24	1	1	0.032	0.024	0.029	0.022	0.007	60	45	15
5 ALEDT8	1-LEDT8	LEAVE AS IS	LEAVE AS IS	1,314	90%	15	0	2	2	0.030	0.000	0.027	0.000	0.027	39	0	39
6 AT12BX/P	1-F34T12/1-MB	1-LED14/RF	(1) PHILIPS: SP531P LED15S/940	1,095	90%	34	14	6	6	0.204	0.084	0.184	0.076	0.108	223	92	131
7 AT12BX/WM	1-F34T12/1-MB	1-LED14/NF	(1) PHILIPS: SP531P LED15S/940	6,466	90%	34	14	3	3	0.102	0.042	0.092	0.038	0.054	660	272	388
8 AT12BX/WM/INDIR	1-F34T12/1-MB	1-LED14/NF	(1) PHILIPS: SP531P LED15S/940	1,877	90%	34	14	1	1	0.034	0.014	0.031	0.013	0.018	64	26	38
9 AT12TR1	1-F34T12/1-MB	1-LED24/R	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	1,877	90%	34	24	11	11	0.374	0.264	0.337	0.238	0.099	702	496	206
10 AT8S/WM	1-F32T8/1-MB	1-LED26/NF	(1) PHILIPS: FSS440L-830-UNV-DIM-SWZDT	1,877	90%	32	26	1	1	0.032	0.026	0.029	0.023	0.005	60	49	11
11 BBT8BX/P	2-F25T8/1-EB	1-LED20/NF	(1) PHILIPS SP532P LED29S/940 PSD PI5 SM2 L1410 WH	8,760	90%	46	20	2	2	0.092	0.040	0.083	0.036	0.047	806	350	456
12 BRCAN8PLH	2-CFQ26/1-SMB	1-LED10/R	(1) Rab: C8R10/15/229FAUNVW	1,314	90%	66	10	4	4	0.264	0.040	0.238	0.036	0.202	347	53	294
13 BT12BX/P	2-34T12/1-MB	1-LED20/NF	(1) PHILIPS SP532P LED29S/940 PSD PI5 SM2 L1410 WH	3,598	90%	68	20	8	8	0.544	0.160	0.490	0.144	0.346	1,957	576	1,382
14 BT12BX/SM/INDIR ECT	2-34T12/1-MB	1-LED14/NF	(1) PHILIPS: SM530C LED19S/940	1,877	90%	68	14	7	7	0.476	0.098	0.428	0.088	0.340	894	184	710
15 BT12BX/WM/INDIR	2-34T12/1-MB	1-LED14/NF	(1) PHILIPS: SM530C LED19S/940	1,877	90%	68	14	1	1	0.068	0.014	0.061	0.013	0.049	128	26	101
16 BT12IND	2-34T12/1-MB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	1,877	90%	68	24	3	3	0.204	0.072	0.184	0.065	0.119	383	135	248
17 BT8	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	1,314	90%	59	24	1	1	0.059	0.024	0.053	0.022	0.032	78	32	46
18 BT8BX/D/IND	2-F32T8/1-EB	1-LED20/NF	(1) PHILIPS SP532P LED29S/940 PSD PI5 SM2 L1410 WH	8,760	90%	59	20	2	2	0.118	0.040	0.106	0.036	0.070	1,034	350	683
19 BT8BX/P	2-F32T8/1-EB	1-LED20/NF	(1) PHILIPS SP532P LED29S/940 PSD PI5 SM2 L1410 WH	939	90%	59	20	10	10	0.590	0.200	0.531	0.180	0.351	554	188	366
20 BT8IND	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	1,877	90%	59	24	3	3	0.177	0.072	0.159	0.065	0.095	332	135	197
21 BT8SM/INDIRECT	2-F32T8/1-EB	1-LED14/NF	(1) PHILIPS: SM530C LED19S/940	2,860	90%	59	14	7	7	0.413	0.098	0.372	0.088	0.284	1,181	280	901

					A	В	c Measure	D Details			E	F	G	н	L	Р	Q	R
				Lighting Description										Er	nergy Us	е		
Measure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected KW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual KWh	Total Annual Lighting Savings KWh
22	BT8TR1	2-F32T8/1-EB	1-LED24/R	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	2,628	90%	59	24	1	1	0.059	0.024	0.053	0.022	0.032	155	63	92
23	BT8U	2-F32T8U/1-EB	1-LED25/R	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	1,877	90%	59	25	1	1	0.059	0.025	0.053	0.023	0.031	111	47	64
24	BT8UTR	2-F32T8U/1-EB	1-LED25/R	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	1,877	90%	59	25	1	1	0.059	0.025	0.053	0.023	0.031	111	47	64
25	BT8W	2-F32T8/1-EB	1-LED31/NF	(1) PHILIPS: FSS440L-835-UNV-DIM-SWZDT	3,254	90%	59	31	5	5	0.295	0.155	0.266	0.140	0.126	960	504	456
26	CT8TR	3-F32T8/1-EB	1-LED27/R	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/ 7/G4	1,877	90%	90	27	45	45	4.050	1.215	3.645	1.094	2.552	7,602	2,281	5,322
27	D(B)T8TR	2-F32T8/1-EB	1-LED27/R	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/ 7/G4	2,628	90%	59	27	5	5	0.295	0.135	0.266	0.122	0.144	775	355	420
28	HPS150WP	1-HPS150/1-CWA	1-LED51FL/NF	(1) RAB: W3455L	3,690	0%	190	51	1	1	0.190	0.051	0.000	0.000	0.000	701	188	513
29	HPS400FL	1-HPS400/1-CWA	1-LED164FL/NF	(1) RAB: FXLED150TN/PCT	3,690	0%	465	164	4	4	1.860	0.656	0.000	0.000	0.000	6,863	2,421	4,443
30	HPS50PHONE	1-HPS50/1-CWA	LEAVE AS IS	LEAVE AS IS	3,690	0%	60	60	1	1	0.060	0.060	0.000	0.000	0.000	221	221	0
31	LED	LED	LEAVE AS IS	LEAVE AS IS	1,904	90%	15	15	189	189	2.835	2.835	2.552	2.552	0.000	5,399	5,399	0
32	LED Vanity	LED	LEAVE AS IS	LEAVE AS IS	1,117	90%	15	15	8	8	0.120	0.120	0.108	0.108	0.000	134	134	0
33	LED/1x4P	LED	LEAVE AS IS	LEAVE AS IS	1,229	90%	15	15	45	45	0.675	0.675	0.608	0.608	0.000	829	829	0
34	LED/1x4S	LED	LEAVE AS IS	LEAVE AS IS	909	90%	15	15	29	29	0.435	0.435	0.392	0.392	0.000	396	396	0
35	LED2x2BX	LED	LEAVE AS IS	LEAVE AS IS	1,314	90%	30	30	1	1	0.030	0.030	0.027	0.027	0.000	39	39	0
36	LED8x8BX	LED	LEAVE AS IS	LEAVE AS IS	1,314	90%	60	60	1	1	0.060	0.060	0.054	0.054	0.000	79	79	0
37	LEDBT8INC	LED	LEAVE AS IS	LEAVE AS IS	8,760	90%	15	15	3	3	0.045	0.045	0.041	0.041	0.000	394	394	0
38	LEDCAN	LED	LEAVE AS IS	LEAVE AS IS	5,913	90%	12	12	12	12	0.144	0.144	0.130	0.130	0.000	851	851	0
39	LEDCYL/P	LED	LEAVE AS IS	LEAVE AS IS	1,314	90%	20	20	8	8	0.160	0.160	0.144	0.144	0.000	210	210	0
40	LEDFL	LED	LEAVE AS IS	LEAVE AS IS	3,690	0%	20	20	1	1	0.020	0.020	0.000	0.000	0.000	74	74	0
41	LEDP	LED	LEAVE AS IS	LEAVE AS IS	3,222	90%	20	20	3	3	0.060	0.060	0.054	0.054	0.000	193	193	0

					A	В	c Measure	Details			E	F	G	н	L	Р	Q	R
				Lighting Description										Er	nergy Us	e		
	Messure#	Existing Equipment	Replacement Equipment	Replacement Model #	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual kWh	Total Annual Lighting Savings kWh
	42 LEDS	LED	LEAVE AS IS	LEAVE AS IS	5,913	90%	15	15	1	1	0.015	0.015	0.014	0.014	0.000	89	89	0
	43 LEDW	LED	LEAVE AS IS	LEAVE AS IS	1,877	90%	15	15	2	2	0.030	0.030	0.027	0.027	0.000	56	56	0
	44 LEDWP	LED	LEAVE AS IS	LEAVE AS IS	3,690	90%	25	25	1	1	0.025	0.025	0.023	0.023	0.000	92	92	0
	45 SENSORS	None	Occupancy Sensor	LUTRON - MS-OPS6M2-DV-WH						27					-0.087	0	-485	485
ĺ	TOTAL:				•				449	476	15.7	8.5	12.3	6.9	5.2	36,853	18,266	18,587

				ВВ				DD	FF Operation	and Ma	intenance		нн				'n	Щ	NN
		0	ent Lar			Dyonas	ed Lam		Lamp			Electro	miss			Electro	mina	Electronics	Total
Messure#	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Savings Savings savings savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Savings Savings	Savings Savings
1 A8T8BX/INDIRECT	1	\$7.00	20,000	\$0	2	\$150.00	70,000	\$4	-\$4	1	\$25.00	50,000	\$0	0	\$0.00	50,000	\$0	\$0	-\$3
2 A8T8BX/WM/INDIR	1	\$7.00	20,000	\$3	2	\$150.00	70,000	\$32	-\$30	1	\$25.00	50,000	\$4	0	\$0.00	50,000	\$0	\$4	-\$26
3 AAAT8TR1	1	\$7.00	20,000	\$9	1	\$200.00	50,000	\$105	-\$96	1	\$25.00	50,000	\$13	0	\$0.00	0	\$0	\$13	-\$83
4 AAT8TR1	1	\$7.00	20,000	\$1	1	\$115.00	70,000	\$3	-\$2	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	-\$2
5 ALEDT8	1	\$0.00	0	\$0	1	\$0.00	0	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
6 AT12BX/P	1	\$7.00	20,000	\$2	1	\$150.00	70,000	\$14	-\$12	1	\$25.00	50,000	\$3	0	\$0.00	0	\$0	\$3	-\$8
7 AT12BX/WM	1	\$7.00	20,000	\$7	1	\$150.00	70,000	\$42	-\$35	1	\$25.00	50,000	\$10	0	\$0.00	0	\$0	\$10	-\$25
8 AT12BX/WM/INDIR	1	\$7.00	20,000	\$1	1	\$150.00	70,000	\$4	-\$3	1	\$25.00	50,000	\$1	0	\$0.00	0	\$0	\$1	-\$2
9 AT12TR1	1	\$7.00	20,000	\$7	1	\$115.00	70,000	\$34	-\$27	1	\$25.00	50,000	\$10	0	\$0.00	0	\$0	\$10	-\$16
10 AT8S/WM	1	\$7.00	20,000	\$1	1	\$125.00	70,000	\$3	-\$3	1	\$25.00	50,000	\$1	0	\$0.00	0	\$0	\$1	-\$2
11 BBT8BX/P	2	\$7.00	20,000	\$12	1	\$150.00	70,000	\$38	-\$25	1	\$25.00	50,000	\$9	0	\$0.00	0	\$0	\$9	-\$17
12 BRCAN8PLH	2	\$10.00	15,000	\$7	1	\$66.00	50,000	\$7	\$0	1	\$30.00	50,000	\$3	0	\$0.00	0	\$0	\$3	\$3
13 BT12BX/P	2	\$7.00	20,000	\$20	1	\$150.00	70,000	\$62	-\$42	1	\$25.00	50,000	\$14	0	\$0.00	0	\$0	\$14	-\$27
14 BT12BX/SM/INDIR ECT	2	\$7.00	20,000	\$9	1	\$150.00	70,000	\$28	-\$19	1	\$25.00	50,000	\$7	0	\$0.00	0	\$0	\$7	-\$12
15 BT12BX/WM/INDIR	2	\$7.00	20,000	\$1	1	\$150.00	70,000	\$4	-\$3	1	\$25.00	50,000	\$1	0	\$0.00	0	\$0	\$1	-\$2
16 BT12IND	2	\$7.00	20,000	\$4	2	\$17.00	70,000	\$3	\$1	1	\$25.00	50,000	\$3	1	\$25.00	50,000	\$3	\$0	\$1
17 BT8	2	\$7.00	20,000	\$1	1	\$17.00	70,000	\$0	\$1	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$1
18 BT8BX/D/IND	2	\$7.00	20,000	\$12	1	\$150.00	70,000	\$38	-\$25	1	\$25.00	50,000	\$9	0	\$0.00	0	\$0	\$9	-\$17
19 BT8BX/P	2	\$7.00	20,000	\$7	1	\$150.00	70,000	\$20	-\$14	1	\$25.00	50,000	\$5	0	\$0.00	0	\$0	\$5	-\$9
20 BT8IND	2	\$7.00	20,000	\$4	2	\$17.00	70,000	\$3	\$1	1	\$25.00	50,000	\$3	1	\$25.00	50,000	\$3	\$0	\$1
21 BT8SM/INDIRECT	2	\$7.00	20,000	\$14	1	\$150.00	70,000	\$43	-\$29	1	\$25.00	50,000	\$10	0	\$0.00	50,000	\$0	\$10	-\$19

					ВВ				DD	FF Operation	and Ma	intenance		НН				וו	ш	NN
			Curr	ent Lar	mps		Propos	ed Lam	ıps	Lamp Savings	(Current	: Electro	onics	Pı	roposed	Electro	onics	Electronics Savings	Total Savings
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
22	BT8TR1	2	\$7.00	20,000	\$2	1	\$115.00	70,000	\$4	-\$2	1	\$25.00	50,000	\$1	0	\$0.00	0	\$0	\$1	-\$1
23	BT8U	2	\$7.00	20,000	\$1	1	\$75.00	70,000	\$2	-\$1	1	\$25.00	50,000	\$1	0	\$0.00	0	\$0	\$1	\$0
24	BT8UTR	2	\$7.00	20,000	\$1	1	\$75.00	70,000	\$2	-\$1	1	\$25.00	50,000	\$1	0	\$0.00	0	\$0	\$1	\$0
25	BT8W	2	\$7.00	20,000	\$11	1	\$125.00	70,000	\$29	-\$18	1	\$25.00	50,000	\$8	0	\$0.00	0	\$0	\$8	-\$10
26	CT8TR	3	\$7.00	20,000	\$89	1	\$115.00	70,000	\$139	-\$50	1	\$25.00	50,000	\$42	0	\$0.00	0	\$0	\$42	-\$8
27	D(B)T8TR	2	\$7.00	20,000	\$9	1	\$115.00	70,000	\$22	-\$12	1	\$25.00	50,000	\$7	0	\$0.00	0	\$0	\$7	-\$6
28	HPS150WP	1	\$15.00	24,000	\$2	1	\$290.00	50,000	\$21	-\$19	1	\$25.00	50,000	\$2	0	\$0.00	0	\$0	\$2	-\$17
29	HPS400FL	1	\$15.00	24,000	\$9	1	\$445.00	100,000	\$66	-\$56	1	\$25.00	50,000	\$7	0	\$0.00	0	\$0	\$7	-\$49
30	HPS50PHONE	1	\$0.00	0	\$0	1	\$0.00	0	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
31	LED	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
32	LED Vanity	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
33	LED/1x4P	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
34	LED/1x4S	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
35	LED2x2BX	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
36	LED8x8BX	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
37	LEDBT8INC	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
38	LEDCAN	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
39	LEDCYL/P	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
40	LEDFL	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
41	LEDP	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0

					ВВ				DD	FF Operation	and Ma	intenance		НН				'n	ш	NN
_			Curr	ent Lar	nps		Propos	ed Lam	ps	Lamp Savings	(Current	Electro	onics	P	roposed	Electro	nics	Electronics Savings	Total Savings
	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
4	2 LEDS	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
4	3 LEDW	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
4	4 LEDWP	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
4	5 SENSORS																			
	TOTAL:				\$247				\$771	-\$524				\$176				\$7		-\$354

MATERIAL & LABOR COST ESTIMATE

Project : Fauver Stadium Estimated by: DB2

Project # : 402805 Checked by:

Measure : EEM 1.1 - Lighting Upgrades Approved by:

Date: 04/06/21 File: Cost Estimate

Item	Description	Otv	Unit	Mate	rial	Lab	or	Total Cost
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total	Labor & Material
1	(1) METALUX: 12EN-LD2-08-UNV-L840- CD1-U	3	EA	\$200.00	\$600	\$105.00	\$315	\$915.00
2	(1) PHILIPS SP532P LED29S/940 PSD PI5 SM2 L1410 WH	22	EA	\$150.00	\$3,300	\$84.00	\$1,848	\$5,148.00
3	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	13	EA	\$116.92	\$1,520	\$82.12	\$1,068	\$2,587.50
4	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	2	EA	\$75.00	\$150	\$59.50	\$119	\$269.00
5	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/ 7/G4	50	EA	\$115.00	\$5,750	\$59.50	\$2,975	\$8,725.00
6	(1) PHILIPS: FSS440L-830-UNV-DIM- SWZDT	1	EA	\$125.00	\$125	\$84.00	\$84	\$209.00
7	(1) PHILIPS: FSS440L-835-UNV-DIM- SWZDT	5	EA	\$125.00	\$625	\$84.00	\$420	\$1,045.00
8	(1) PHILIPS: SM530C LED19S/940	15	EA	\$150.00	\$2,250	\$84.00	\$1,260	\$3,510.00
0	(1) PHILIPS: SP531P LED15S/940	10	EA	\$150.00	\$1,500	\$84.00	\$840	\$2,340.00
10	(1) Rab: C8R10/15/229FAUNVW	4	EA	\$66.00	\$264	\$49.00	\$196	\$460.00
11	(1) RAB: FXLED150TN/PCT	4	EA	\$445.00	\$1,780	\$119.00	\$476	\$2,256.00
12	(1) RAB: W3455L	1	EA	\$290.00	\$290	\$119.00	\$119	\$409.00
13	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	7	EA	\$56.57	\$396	\$56.00	\$392	\$788.00
14	(2) PHILIPS: SM530C LED19S/940	5	EA	\$300.00	\$1,500	\$84.00	\$420	\$1,920.00
15	LEAVE AS IS	307	EA	\$0.00	\$0	\$0.00	\$0	\$0.00
14	LUTRON - MS-OPS6M2-DV-WH	27	EA	\$49.00	\$1,323	\$90.00	\$2,430	\$3,753.00
		SUB	TOTALS:	Materials:	\$21,373	Labor:	\$12,962	\$34,334.50
							TOTAL:	\$34,334.50

Schlegel Hall

Lighting Upgrades

Measure Sur	nmary												
Electrical Energy	Savings												
Electrical Demand Savings	39.0	Avg. kW/Month											
Electrical Consumption Savings	140,315	kWh/Year											
Fossil Fuel Energy Savings													
Fossil Fuel Savings	(107.3)	mmBtu/Year											
Fuel Conversion	10.000	Therms/mmBtu											
Natural Gas Savings	(1,073)	Therms/Year											
Water Savi	ngs												
Water Consumption Savings	-	kGal/Year											
O&M Savir	ngs												
Annual O&M Savings	\$91	/Year											

Project: Schlegel Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.142 HVACc: 0.014 HVACg: -0.017

Nearest City: Buffalo System Type: AC with gas heat % of Building Cooled: 6%

Building Type: Multi Family Low Rise

Electric:

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

Fuel³ HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

% of Building Heated: 90%

38.9 kW Lighting Monthly kW Savings Total Annual Lighting Savings kWh 140,276 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	39.0
Electric Consumption Savings (kWh)	140,315
Fuel Savings (mmBtu)	(107.3)

Notes

(1) Based on NY Tech Manual Method: Version 6.1

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Schlegel Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9

Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = Σ (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- L Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- O Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

					A	В	c Measure	D Details			E	F	G	н	L	Р	Q	R
				Lighting Description										En	ergy U	se		
Measure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected KW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual kWh	Total Annual Lighting Savings kWh
1	AAAT8	1-F17T8/1-EB	1-LED7T8/RL	(1) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & ICN-2P16-TLED-N	2,346	90%	20	7	2	2	0.040	0.014	0.036	0.013	0.023	94	33	61
2	AAAT8TR1	1-F17T8/1-EB	1-LED10/R	(1) METALUX: 12EN-LD2-08-UNV-L840-CD1-U	2,346	90%	20	10	1	1	0.020	0.010	0.018	0.009	0.009	47	23	23
3	AAT8TR1	1-F30T8/1-EB	1-LED24/R	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	2,346	90%	32	24	7	7	0.224	0.168	0.202	0.151	0.050	526	394	131
4	ACAN8PLV	1-CFQ26/1-SMB	1-LED10/R	(1) Rab: C8R10/15/229FAUNVW	5,913	90%	33	10	15	15	0.495	0.150	0.446	0.135	0.311	2,927	887	2,040
5	ARCAN6PLH	1-CFQ26/1-SMB	1-LED7/R	(1) Rab: C6R7/10/189FAUNVW	3,684	90%	33	7	16	16	0.528	0.112	0.475	0.101	0.374	1,945	413	1,532
6	ARCAN6PLV	1-CFQ26/1-SMB	1-LED7/R	(1) Rab: C6R7/10/189FAUNVW	2,346	90%	33	7	34	34	1.122	0.238	1.010	0.214	0.796	2,633	558	2,074
7	ARCAN8PLH	1-CFQ26/1-SMB	1-LED10/R	(1) Rab: C8R10/15/229FAUNVW	5,913	90%	33	10	8	8	0.264	0.080	0.238	0.072	0.166	1,561	473	1,088
8	ARCAN8PLV	1-CFQ26/1-SMB	1-LED10/R	(1) Rab: C8R10/15/229FAUNVW	5,913	90%	33	10	10	10	0.330	0.100	0.297	0.090	0.207	1,951	591	1,360
9	ARCAN8WW	1-CFQ26/1-SMB	1-LED14/R	(1) RAB: DLED6AR14YN	5,913	90%	33	14	4	4	0.132	0.056	0.119	0.050	0.068	781	331	449
10	AT8/INDIRECT	1-F32T8/1-MB	1-LED12T8/RL	(1) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16- TLED-N	2,346	90%	32	12	53	53	1.696	0.636	1.526	0.572	0.954	3,980	1,492	2,487
11	AT8TR1	1-F32T8/1-MB	1-LED24/R	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	2,229	90%	32	24	176	176	5.632	4.224	5.069	3.802	1.267	12,554	9,416	3,139
12	вввт8	2-F17T8/1-EB	2-LED7T8/RL	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & ICN-2P16-TLED-N	2,346	90%	31	14	56	56	1.736	0.784	1.562	0.706	0.857	4,073	1,840	2,234
13	BBBT8/WW	2-F17T8/1-EB	2-LED7T8/RL	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & ICN-2P16-TLED-N	2,346	90%	31	14	6	6	0.186	0.084	0.167	0.076	0.092	436	197	239
14	BBT8W/D/IND	2-F25T8/1-EB	2-LED8.5T8/RL	(2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & ICN-3P16-TLED-N	2,346	90%	46	18	7	7	0.322	0.126	0.290	0.113	0.176	756	296	460
15	BRCAN10PLH	2-CFQ26/1-SMB	1-LED20/R	(1) Rab: C9.5R20/25/329FAUNVW	5,792	90%	66	20	76	76	5.016	1.520	4.514	1.368	3.146	29,053	8,804	20,249
16	BRCAN6PLH	2-CFQ26/1-SMB	1-LED7/R	(1) Rab: C6R7/10/189FAUNVW	3,484	90%	66	7	32	32	2.112	0.224	1.901	0.202	1.699	7,359	781	6,579
17	BRCAN6PLV	2-CFQ26/1-SMB	1-LED7/R	(1) Rab: C6R7/10/189FAUNVW	5,913	90%	66	7	5	5	0.330	0.035	0.297	0.032	0.266	1,951	207	1,744
18	BRCAN8/WW	2-CFQ26/1-SMB	1-LED14/R	(1) RAB: DLED6AR14YN	5,913	90%	66	14	10	10	0.660	0.140	0.594	0.126	0.468	3,903	828	3,075
19	BRCAN8PLH	2-CFQ26/1-SMB	1-LED10/R	(1) Rab: C8R10/15/229FAUNVW	2,610	90%	66	10	168	168	11.088	1.680	9.979	1.512	8.467	28,945	4,386	24,560
20	BT12UTR	2-F34T8U/1-EB	1-LED25/R	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	1,877	90%	68	25	1	1	0.068	0.025	0.061	0.023	0.039	128	47	81
21	BT12W/WM	2-34T12/1-MB	1-LED26/NF	(1) PHILIPS: FSS436L-835-UNV-DIM-SWZDT	7,337	90%	68	26	26	26	1.768	0.676	1.591	0.608	0.983	12,971	4,959	8,011

					A	В	c Measure	D Details			E	F	G	н	L	Р	Q	R
				Lighting Description										En	ergy U	se		
Measure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected KW	Total New Connected KW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual KWh	Total Annual Lighting Savings KWh
22	вт8	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16- TLED-N	2,280	90%	59	24	156	156	9.204	3.744	8.284	3.370	4.914	20,987	8,537	12,450
23	BT8IND	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16- TLED-N	1,312	90%	59	24	58	58	3.422	1.392	3.080	1.253	1.827	4,491	1,827	2,664
24	BT8TR	2-F32T8/1-EB	1-LED27/R	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/7/G4	939	90%	59	27	4	4	0.236	0.108	0.212	0.097	0.115	222	101	120
25	BT8TR1	2-F32T8/1-EB	1-LED24/R	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	3,387	90%	59	24	22	22	1.298	0.528	1.168	0.475	0.693	4,397	1,789	2,608
26	BT8UTR	2-F32T8U/1-EB	1-LED25/R	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	2,145	90%	59	25	7	7	0.413	0.175	0.372	0.158	0.214	886	375	511
27	BT8W/D/IND	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16- TLED-N	2,346	90%	59	24	7	7	0.413	0.168	0.372	0.151	0.221	969	394	575
28	BT8W/P	2-F32T8/1-EB	1-LED31/NF	(1) PHILIPS: FSS440L-835-UNV-DIM-SWZDT	7,337	90%	59	31	2	2	0.118	0.062	0.106	0.056	0.050	866	455	411
29	вт8WM	2-F32T8/1-EB	1-LED31/NF	(1) PHILIPS: FSS440L-835-UNV-DIM-SWZDT	1,877	90%	59	31	8	8	0.472	0.248	0.425	0.223	0.202	886	466	420
30	CT12TR	3-FT3412/1-MB	1-LED27/R	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/7/G4	1,652	90%	102	27	5	5	0.510	0.135	0.459	0.122	0.338	842	223	619
31	CT8TR	3-F32T8/1-EB	1-LED27/R	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/7/G4	1,972	90%	90	27	107	107	9.630	2.889	8.667	2.600	6.067	18,989	5,697	13,292
32	CT8TR 2s	3-F32T8/2-EB	1-LED27/R	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/7/G4	1,554	90%	120	27	18	18	2.160	0.486	1.944	0.437	1.507	3,356	755	2,601
33	FLOOD	1-HPS150/1-CWA	1-LED42FL/NF	(1) RAB: FFLED39TN/PCT	3,690	0%	190	42	5	5	0.950	0.210	0.000	0.000	0.000	3,506	775	2,731
34	HPS70WP	1-HPS70/1-CWA	1-LED20WP/NF	(1) RAB: WPLED18N/PC	2,314	90%	95	20	8	8	0.760	0.160	0.684	0.144	0.540	1,759	370	1,389
35	LED	LED	LEAVE AS IS	LEAVE AS IS	4,108	90%	15	15	35	35	0.525	0.525	0.473	0.473	0.000	2,157	2,157	0
36	PENDANT	1-HPS70/1-CWA	LEAVE AS IS	LEAVE AS IS	3,690	0%	95	95	1	1	0.095	0.095	0.000	0.000	0.000	351	351	0
37	WALL SCONCE	2-CFQ26/1-SMB	2-LED PLV/RL	(2) PHILIPS: 8.5PL-C/T LED/26V-3500 IF 4P & (1) ICF-2S13-H1-LD	3,018	45%	66	18	12	12	0.792	0.216	0.356	0.097	0.259	2,390	652	1,739
38	WM SCONCE	1-HPS70/1-CWA	1-LED PLH/RL	(1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & ICF-2S13-H1-LD	8,760	90%	95	9	21	21	1.995	0.189	1.796	0.170	1.625	17,476	1,656	15,821
39	SENSORS	None	Occupancy Sensor			37					-0.133		-708	708				
	TOTAL		1,189	1,226	66.8	22.4	58.8	19.8	38.9	203,102	62,827	140,276						

					ВВ				DD	FF Operation	and Ma	intenance		НН				Π	щ	NN
							_			Lamp									Electronics	Saving
		nre		ent Lar ຼົ	nps tsoo	nre		ed Lam _ହ	cost Cost	Savings			Electro	onics tg			Electro §	tsoo	Savings	S
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance C Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance C Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance C Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance C Per Year	Total Electronics Savings	Maintenance Savings
1	AAAT8	1	\$7.00	20,000	\$2	1	\$17.00	70,000	\$1	\$1	1	\$25.00	50,000	\$2	1	\$25.00	50,000	\$2	\$0	\$1
2	AAAT8TR1	1	\$7.00	20,000	\$1	1	\$200.00	50,000	\$9	-\$9	1	\$25.00	50,000	\$1	0	\$0.00	0	\$0	\$1	-\$7
3	AAT8TR1	1	\$7.00	20,000	\$6	1	\$115.00	70,000	\$27	-\$21	1	\$25.00	50,000	\$8	1	\$25.00	50,000	\$8	\$0	-\$21
4	ACAN8PLV	1	\$10.00	15,000	\$59	1	\$66.00	50,000	\$117	-\$58	1	\$30.00	50,000	\$53	0	\$0.00	0	\$0	\$53	-\$5
5	ARCAN6PLH	1	\$10.00	15,000	\$39	1	\$66.00	50,000	\$78	-\$39	1	\$30.00	50,000	\$35	0	\$0.00	0	\$0	\$35	-\$3
6	ARCAN6PLV	1	\$10.00	15,000	\$53	1	\$66.00	50,000	\$105	-\$52	1	\$30.00	50,000	\$48	0	\$0.00	0	\$0	\$48	-\$4
7	ARCAN8PLH	1	\$10.00	15,000	\$32	1	\$66.00	50,000	\$62	-\$31	1	\$30.00	50,000	\$28	0	\$0.00	0	\$0	\$28	-\$3
8	ARCAN8PLV	1	\$10.00	15,000	\$39	1	\$66.00	50,000	\$78	-\$39	1	\$30.00	50,000	\$35	0	\$0.00	0	\$0	\$35	-\$3
9	ARCAN8WW	1	\$12.00	15,000	\$19	1	\$66.00	50,000	\$31	-\$12	1	\$30.00	50,000	\$14	0	\$0.00	0	\$0	\$14	\$2
10	AT8/INDIRECT	1	\$7.00	20,000	\$44	1	\$17.00	70,000	\$30	\$13	1	\$25.00	50,000	\$62	1	\$0.00	0	\$0	\$62	\$76
11	AT8TR1	1	\$7.00	20,000	\$137	1	\$115.00	70,000	\$645	-\$507	1	\$25.00	50,000	\$196	0	\$0.00	0	\$0	\$196	-\$311
12	вввт8	2	\$7.00	20,000	\$92	2	\$17.00	70,000	\$64	\$28	1	\$25.00	50,000	\$66	1	\$25.00	50,000	\$66	\$0	\$28
13	BBBT8/WW	2	\$7.00	20,000	\$10	2	\$17.00	70,000	\$7	\$3	1	\$25.00	50,000	\$7	1	\$25.00	50,000	\$7	\$0	\$3
14	BBT8W/D/IND	2	\$7.00	20,000	\$11	2	\$55.00	70,000	\$26	-\$14	1	\$25.00	50,000	\$8	0	\$0.00	0	\$0	\$8	-\$6
15	BRCAN10PLH	2	\$10.00	15,000	\$587	1	\$72.00	50,000	\$634	-\$47	1	\$30.00	50,000	\$264	0	\$0.00	0	\$0	\$264	\$217
16	BRCAN6PLH	2	\$10.00	15,000	\$149	1	\$66.00	50,000	\$147	\$1	1	\$30.00	50,000	\$67	0	\$0.00	0	\$0	\$67	\$68
17	BRCAN6PLV	2	\$10.00	15,000	\$39	1	\$66.00	50,000	\$39	\$0	1	\$30.00	50,000	\$18	0	\$0.00	0	\$0	\$18	\$18
18	BRCAN8/WW	2	\$10.00	15,000	\$79	1	\$66.00	50,000	\$78	\$1	1	\$30.00	50,000	\$35	0	\$0.00	0	\$0	\$35	\$36
19	BRCAN8PLH	2	\$10.00	15,000	\$585	1	\$66.00	50,000	\$579	\$6	1	\$30.00	50,000	\$263	0	\$0.00	0	\$0	\$263	\$269
20	BT12UTR	2	\$7.00	20,000	\$1	1	\$75.00	70,000	\$2	-\$1	1	\$25.00	50,000	\$1	0	\$0.00	0	\$0	\$1	\$0
21	BT12W/WM	2	\$7.00	20,000	\$134	1	\$125.00	70,000	\$341	-\$207	1	\$25.00	50,000	\$95	0	\$0.00	0	\$0	\$95	-\$112

					ВВ				DD	FF Operation	and Ma	intenance		нн				ມ	Щ	NN
							_			Lamp					_				Electronics	Saving
			Curr	ent Lar			Propos	ed Lam		Savings		Current		onics		roposed		nics	Savings	S
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
22	вт8	2	\$7.00	20,000	\$249	1	\$17.00	70,000	\$86	\$163	1	\$25.00	50,000	\$178	1	\$25.00	50,000	\$178	\$0	\$163
23	BT8IND	2	\$7.00	20,000	\$53	2	\$17.00	70,000	\$37	\$16	1	\$25.00	50,000	\$38	1	\$25.00	50,000	\$38	\$0	\$16
24	BT8TR	2	\$7.00	20,000	\$3	1	\$115.00	70,000	\$6	-\$4	1	\$25.00	50,000	\$2	0	\$0.00	0	\$0	\$2	-\$2
25	BT8TR1	2	\$7.00	20,000	\$52	1	\$115.00	70,000	\$122	-\$70	1	\$25.00	50,000	\$37	0	\$0.00	0	\$0	\$37	-\$33
26	BT8UTR	2	\$7.00	20,000	\$11	1	\$75.00	70,000	\$16	-\$6	1	\$25.00	50,000	\$8	0	\$0.00	0	\$0	\$8	\$2
27	BT8W/D/IND	2	\$7.00	20,000	\$11	1	\$17.00	70,000	\$4	\$8	1	\$25.00	50,000	\$8	1	\$25.00	50,000	\$8	\$0	\$8
28	BT8W/P	2	\$7.00	20,000	\$10	1	\$125.00	70,000	\$26	-\$16	1	\$25.00	50,000	\$7	0	\$0.00	0	\$0	\$7	-\$9
29	вт8WM	2	\$7.00	20,000	\$11	1	\$125.00	70,000	\$27	-\$16	1	\$25.00	50,000	\$8	0	\$0.00	0	\$0	\$8	-\$9
30	CT12TR	3	\$7.00	20,000	\$9	1	\$115.00	70,000	\$14	-\$5	1	\$25.00	50,000	\$4	0	\$0.00	0	\$0	\$4	-\$1
31	CT8TR	3	\$7.00	20,000	\$222	1	\$115.00	70,000	\$347	-\$125	1	\$25.00	50,000	\$105	0	\$0.00	0	\$0	\$105	-\$20
32	CT8TR 2s	3	\$7.00	20,000	\$29	1	\$115.00	70,000	\$46	-\$17	2	\$50.00	50,000	\$56	0	\$0.00	0	\$0	\$56	\$39
33	FLOOD	1	\$15.00	24,000	\$12	1	\$400.00	100,000	\$74	-\$62	1	\$25.00	50,000	\$9	0	\$0.00	0	\$0	\$9	-\$53
34	HPS70WP	1	\$15.00	24,000	\$12	1	\$290.00	100,000	\$54	-\$42	1	\$25.00	50,000	\$9	0	\$0.00	0	\$0	\$9	-\$33
35	LED	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
36	PENDANT	1	\$15.00	24,000	\$2	1	\$0.00	100,000	\$0	\$2	1	\$25.00	50,000	\$2	0	\$0.00	50,000	\$0	\$2	\$4
37	WALL SCONCE	2	\$10.00	15,000	\$48	1	\$38.00	20,000	\$69	-\$21	1	\$30.00	50,000	\$22	1	\$25.00	50,000	\$18	\$4	-\$17
38	WM SCONCE	1	\$10.00	15,000	\$123	1	\$38.00	20,000	\$350	-\$227	1	\$30.00	50,000	\$110	1	\$25.00	50,000	\$92	\$18	-\$208
39	SENSORS																			
	TOTAL:				\$2,973				\$4,377	-\$1,404				\$1,913				\$418		\$91

MATERIAL & LABOR COST ESTIMATE

Project : Schlegel Hall

Project # : 402805

Measure : EEM 1.1 - Lighting Upgrades

Estimated by: DB2

Checked by:

Approved by:

Measure : EEM 1.1 - Lighting Upgrades Approved by:

Date : 04/06/21 File: Cost Estimate

Item	Description	Qty.	Unit	Mate	rial	Lat	oor	Total Cost
No.	Description	Qty.	Offic	Unit Price	Total	Unit Price	Total	Labor & Material
1	(1) METALUX: 12EN-LD2-08-UNV-L840-CD1-U	1	EA	\$200.00	\$200	\$105.00	\$105	\$305.00
2	(1) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	53	EA	\$42.00	\$2,226	\$49.00	\$2,597	\$4,823.00
3	(1) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & ICN-2P16-TLED-N	2	EA	\$42.00	\$84	\$49.00	\$98	\$182.00
4	(1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & ICF-2S13-H1-LD	21	EA	\$63.00	\$1,323	\$49.00	\$1,029	\$2,352.00
5	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	205	EA	\$115.85	\$23,750	\$81.37	\$16,681	\$40,431.00
6	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	8	EA	\$75.00	\$600	\$59.50	\$476	\$1,076.00
7	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/7/G 4	134	EA	\$115.00	\$15,410	\$59.50	\$7,973	\$23,383.00
8	(1) PHILIPS: FSS436L-835-UNV-DIM-SWZDT	26	EA	\$125.00	\$3,250	\$84.00	\$2,184	\$5,434.00
9	(1) PHILIPS: FSS440L-835-UNV-DIM-SWZDT	10	EA	\$125.00	\$1,250	\$84.00	\$840	\$2,090.00
10	(1) Rab: C6R7/10/189FAUNVW	87	EA	\$66.00	\$5,742	\$49.00	\$4,263	\$10,005.00
11	(1) Rab: C8R10/15/229FAUNVW	201	EA	\$66.00	\$13,266	\$49.00	\$9,849	\$23,115.00
12	(1) Rab: C9.5R20/25/329FAUNVW	76	EA	\$72.00	\$5,472	\$49.00	\$3,724	\$9,196.00
13	(1) RAB: DLED6AR14YN	14	EA	\$66.00	\$924	\$49.00	\$686	\$1,610.00
14	(1) RAB: FFLED39TN/PCT	5	EA	\$400.00	\$2,000	\$119.00	\$595	\$2,595.00
15	(1) RAB: WPLED18N/PC	8	EA	\$290.00	\$2,320	\$119.00	\$952	\$3,272.00
16	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	221	EA	\$46.46	\$10,268	\$56.00	\$12,376	\$22,644.00
17	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & ICN-2P16-TLED-N	62	EA	\$59.00	\$3,658	\$52.50	\$3,255	\$6,913.00
18	(2) PHILIPS: 8.5PL-C/T LED/26V-3500 IF 4P & (1) ICF-2S13-H1-LD	12	EA	\$63.00	\$756	\$49.00	\$588	\$1,344.00
19	(2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & ICN-3P16-TLED-N	7	EA	\$110.00	\$770	\$49.00	\$343	\$1,113.00
20	LEAVE AS IS	36	EA	\$0.00	\$0	\$0.00	\$0	\$0.00
23	LUTRON - MS-OPS6M2-DV-WH	17	EA	\$49.00	\$833	\$90.00	\$1,530	\$2,363.00
21	LUTRON - LRF2-OCR2B-P-WH	20	EA	\$55.00	\$1,100	\$120.00	\$2,400	\$3,500.00
		SUB	TOTALS:	Materials:	\$95,202	Labor:	\$72,544	\$167,746.00
							TOTAL:	\$167,746.00

Wallis Hall

Lighting Upgrades

Measure Sur	nmary										
Electrical Energy	Savings										
Electrical Demand Savings	30.3	Avg. kW/Month									
Electrical Consumption Savings	109,636	kWh/Year									
Fossil Fuel Energy Savings Fossil Fuel Savings (83.8) mmBtu/Year											
Fossil Fuel Savings	(83.8)	mmBtu/Year									
Fuel Conversion	10.000	Therms/mmBtu									
Natural Gas Savings	(838)	Therms/Year									
Water Savi	ngs										
Water Consumption Savings	-	kGal/Year									
0&M Savir	igs										
Annual O&M Savings	\$165	/Year									

Project: Wallis Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.142 HVACc: 0.014 HVACg: -0.017

Nearest City: Buffalo System Type: AC with gas heat

Building Type: Multi Family Low Rise

% of Building Cooled: 6% % of Building Heated: 90%

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year Electric:

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

30.2 kW Lighting Monthly kW Savings Total Annual Lighting Savings kWh 109,605 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	30.3
Electric Consumption Savings (kWh)	109,636
Fuel Savings (mmBtu)	(83.8)

Notes

Fuel³

(1) Based on NY Tech Manual Method: Version 6.1

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Wallis Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9 Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = Σ (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- L Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- P Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- O Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

C D Measure Details E F G н L Р Q R Α **Lighting Description Energy Use** Ē Existing ected kW 1 60WINC 1-160 1-LEDSI/RL (1) PHILLIPS: A19/LED/9W 1,314 90% 60 9 1 1 0.060 0.009 0.054 0.008 0.046 79 12 67 2 AAAAT5STRIP 1-F14T5/1-EB LEAVE AS IS LEAVE AS IS 1,877 90% 14 0 1 1 0.014 0.000 0.013 0.000 0.013 26 0 26 3 AAT5 STRIP 1-F24T5/1-EB LEAVE AS IS LEAVE AS IS 1,877 90% 24 0 0.024 0.000 0.022 0.000 0.022 45 0 45 1 1 4 AHAL PAR 30 6" 1-PAR30 1-LED7/R (1) Rab: C6R7/10/189FAUNVW 2.816 90% 60 7 6 6 0.360 0.042 0.324 0.038 0.286 1.014 118 895 5 ARCAN4PAR30 1-PAR30 1-LED7/R (1) Rab: C6R7/10/189FAUNVW 2,816 90% 60 7 12 12 0.720 0.084 0.648 0.076 0.572 2,027 237 1,791 6 ARCAN6PLV 1-CFQ26/1-SMB 1-LED7/R (1) Rab: C6R7/10/189FAUNVW 3,650 90% 33 7 26 26 0.858 0.182 0.772 0.164 0.608 3,131 664 2,467 7 AT5CAB LEAVE AS IS I FAVE AS IS 111 1-F54T5/1-EB 1.877 90% 59 0 1 1 0.059 0.000 0.053 0.000 0.053 111 Ω (1) RAB: EZPAN1X4-17/D10 & 8 ATSBX1 1-F32T8/1-MB 1-LED36/NF 5.913 90% 32 36 29 29 0.928 1.044 0.835 0.940 -0.104 5.487 6.173 -686 SMKEZPAN1X4 (1) PHILIPS: EvoKit CLKE 1x4 32L 24W 9 AT8TR1 1-F32T8/1-MB 1-LED24/R 5,913 90% 32 24 35 35 1.120 0.840 1.008 0.756 0.252 6,623 4,967 1,656 835 UNV SW7 P1 (1) PHILIPS: FSS440L-835-UNV-DIM-10 B8T12S 2-F96T8/1-EB 1-LED62/NF 2,102 90% 116 62 5 5 0.580 0.310 0.522 0.279 0.243 1,219 652 568 SWZDT (2) PHILIPS: 7T8/MAS/24-835/IF10/P 0.474 **11** BBBT8 90% 2-F17T8/1-EB 2-LED7T8/RL 2,319 31 14 17 17 0.527 0.238 0.214 0.260 1,222 552 670 10/1 & ICN-2P16-TLED-N 12 BRCAN6PLH 2-CFQ26/1-SMB 1-LED7/R (1) Rab: C6R7/10/189FAUNVW 4,224 90% 66 7 53 53 3.498 0.371 3.148 0.334 2.814 14,774 1,567 13,207 (2) PHILIPS: 12T8/48-3500/IF/10-1 & 13 BT8 2-F32T8/1-EB 2-LED12T8/RL 2,229 90% 59 24 0.236 0.096 0.212 0.086 0.126 526 214 312 ICN-3P16-TLED-N (1) RAB: EZPAN2X4-30N/D10 & 14 BT8BX 2-F32T8/1-EB 1-LED36/NF 2.503 90% 59 36 6 0.354 0.216 0.319 0.194 0.124 886 541 345 6 SMKEZPAN2X4 (2) PHILIPS: 12T8/48-3500/IF/10-1 & 15 BT8IND 2-F32T8/1-EB 2-LED12T8/RL 2,853 90% 59 24 25 25 1.475 0.600 1.328 0.540 0.788 4,209 1,712 2,497 ICN-3P16-TLED-N (1) PHILIPS: 16 BTSTR 2-F32T8/1-EB 1-LED27/R EVOKIT/2X4/P/36L/27W/835/2/SWZDT 2 732 90% 59 27 29 29 1 711 0.783 1 540 0.705 0.835 4 674 2 139 2.535 /7/G4 (1) PHILIPS: EvoKit CLKE 1x4 32L 24W 17 BT8TR1 2-F32T8/1-EB 1-LED24/R 2,924 90% 59 24 71 71 4.189 1.704 3.770 1.534 2.237 12,249 4,983 7,266 835 UNV SWZ P1 (1) PHILIPS: 18 BT8U.5 2-F31T8U/1-EB 1-LED25/R 2,816 90% 59 25 4 4 0.236 0.100 0.212 0.090 0.122 665 282 383 EVOKIT/2X2/P/32L/25W/835/2/G4 (1) PHILIPS: FSS440L-835-UNV-DIM-19 BT8W 2-F32T8/1-EB 1-LED31/NF 2,747 90% 59 31 57 57 3.363 1.767 3.027 1.590 1.436 9,237 4,853 4,384 (1) PHILIPS: FSS440L-835-UNV-DIM-20 BT8W DEC 2-F32T8/1-EB 1-LED31/NF 1 877 90% 59 31 13 13 0.363 0.328 683 0.767 0.403 0.690 1.440 756 SWZDT

C D Measure Details E F G н L Р Q R Α **Lighting Description Energy Use** Ē 21 CFLSI 1-CFL13 1-LEDSI/R (1) PHILLIPS: A19/LED/9W 2,346 90% 13 9 19 19 0.247 0.171 0.222 0.154 0.068 580 401 178 22 CT8TR 3-F32T8/1-EB 1-LED27/R EVOKIT/2X4/P/36L/27W/835/2/SWZDT 3,374 90% 90 27 71 6.390 1.917 5.751 1.725 4.026 21,557 6,467 15,090 71 /7/G4 (1) PHILIPS: 23 CT8TR 2s 3-F32T8/2-EB 1-LED27/R EVOKIT/2X4/P/36L/27W/835/2/SWZDT 2,791 90% 120 27 121 121 14.520 3.267 13.068 2.940 10.128 40,524 9,118 31,406 (1) RAB: EZPAN2X4-30N/D10 & 24 D(B)T8BX 2-F32T8/1-EB 1,877 90% 59 36 2 0.072 0.065 86 1-LED36/NF 2 0.118 0.106 0.041 222 135 SMKEZPAN2X4 (1) PHILIPS: 25 D(B)T8TR 2-F32T8/1-EB 1-LED27/R EVOKIT/2X4/P/36L/27W/835/2/SWZDT 2,816 90% 59 27 61 61 3.599 1.647 3.239 1.482 1.757 10,134 4,637 5,496 /7/G4 (1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT 4-F32T8/2-EB 1-LED27/R 112 26 DT8TR 2.816 90% 27 20 20 2.240 0.540 2.016 0.486 1.530 6.307 1.520 4.787 /7/G4 27 HPS150WP 1-HPS150/1-CWA 1-LED51FL/NF (1) RAB: W3455L 3,690 0% 190 51 2 2 0.380 0.102 0.000 0.000 0.000 1,402 376 1,026 28 HPS250FL 1-HPS250/1-CWA 1-LED79FL/NF (1) RAB: FXLED78TN/PCT 3.690 0% 295 79 1 1 0.295 0.079 0.000 0.000 0.000 1.089 292 797 29 INCSI 1-160 1-LEDSI/RL (1) PHILLIPS: A19/LED/9W 2,315 90% 60 9 3 0.180 0.027 0.162 0.024 0.138 417 63 354 30 LARGE PENDANT 4SI 4-1100 4-LEDSI/RL (4) PHILLIPS: A19/LED/9W 5,913 90% 400 36 1 1 0.400 0.036 0.360 0.032 0.328 2,365 213 2,152 31 LED LED LEAVE AS IS LEAVE AS IS 2,738 90% 15 24 0.360 0.324 0.324 0.000 986 986 0 15 24 0.360 32 LED S I FD I FAVE AS IS LEAVE AS IS 1,314 15 15 0.030 0.027 0 90% 2 2 0.030 0.027 0.000 39 39 33 LED80FL LED LEAVE AS IS LEAVE AS IS 3,690 0% 80 80 1 1 0.080 0.080 0.000 0.000 0.000 295 295 0 34 LEDBRCAN6 LED LEAVE AS IS LEAVE AS IS 90% 12 12 7 0.084 0.076 0.076 497 0 5,913 7 0.084 0.000 497 35 MR16 1-MR16 1-LEDMR16/RL (1) PHILIPS MR16/GU10/PAR16 4.468 90% 50 7 15 15 0.750 0.105 0.675 0.095 0.581 3 351 469 2 882 (1) PHILIPS: 36 PAR20 1-PAR20 1-LED14/RL 14PAR38/COR/927/F25/DIM/120V T20 2,816 90% 50 14 3 0.150 0.042 0.135 0.038 0.097 422 118 304 3 6/1FB 37 PAR20 RCAN4 1-MR20 1-LED14/NF (1) RAB: G4R14940120W 2.816 90% 75 14 4 0.300 0.056 0.270 0.050 0.220 845 158 687 (1) PHILIPS: 38 PAR30 1-PAR30 1-LED14/RL 14PAR38/COR/927/F25/DIM/120V T20 2,647 90% 60 14 15 15 0.900 0.210 0.810 0.189 0.621 2,382 556 1,826 PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P 39 PLH 1-CFQ26/1-SMB 1-LED PLH/RL 1,314 90% 33 9 2 2 0.066 0.018 0.059 0.016 0.043 87 24 63 & (1) ICF-2S13-H1-LD 40 SENSORS Occupancy Sensor Lutron 0 118 -0.398 -3,248 3,248 TOTAL: 770 888 52.2 17.6 46.3 15.6 30.2 163.142 53.537 109.605

					ВВ				DD	FF Operation	and Ma	intenance		нн				וו	ш	NN
										Lamp									Electronics	Total
		Φ	Curr	ent Lar		o o	Propos	ed Lam		Savings		Current	Electro			Proposed			Savings	Savings
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
1	60WINC	1	\$4.00	1,000	\$5	1	\$5.52	15,000	\$0	\$5	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$5
2	AAAAT5STRIP	1	\$0.00	0	\$0	1	\$0.00	0	\$0	\$0	1	\$0.00	0	\$0	1	\$0.00	0	\$0	\$0	\$0
3	AAT5 STRIP	1	\$20.00	20,000	\$2	1	\$20.00	20,000	\$2	\$0	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	\$0
4	AHAL PAR 30 6" CAN	1	\$5.00	1,500	\$56	1	\$66.00	50,000	\$22	\$34	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$34
5	ARCAN4PAR30	1	\$5.00	1,500	\$113	1	\$66.00	50,000	\$45	\$68	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$68
6	ARCAN6PLV	1	\$10.00	15,000	\$63	1	\$66.00	50,000	\$125	-\$62	1	\$30.00	50,000	\$57	0	\$0.00	0	\$0	\$57	-\$5
7	AT5CAB	1	\$4.00	20,000	\$0	1	\$0.00	70,000	\$0	\$0	1	\$20.00	50,000	\$1	1	\$0.00	50,000	\$0	\$1	\$1
8	AT8BX1	1	\$7.00	20,000	\$60	1	\$200.00	60,000	\$572	-\$512	1	\$25.00	50,000	\$86	0	\$0.00	0	\$0	\$86	-\$426
9	ATSTR1	1	\$7.00	20,000	\$72	1	\$115.00	70,000	\$340	-\$268	1	\$25.00	50,000	\$103	0	\$0.00	0	\$0	\$103	-\$164
10	B8T12S	2	\$30.00	18,000	\$35	2	\$175.00	70,000	\$53	-\$18	1	\$25.00	50,000	\$5	0	\$0.00	0	\$0	\$5	-\$12
11	BBBT8	2	\$7.00	20,000	\$28	2	\$17.00	70,000	\$19	\$8	1	\$25.00	50,000	\$20	1	\$25.00	50,000	\$20	\$0	\$8
12	BRCAN6PLH	2	\$10.00	15,000	\$298	1	\$66.00	50,000	\$295	\$3	1	\$30.00	50,000	\$134	0	\$0.00	0	\$0	\$134	\$137
13	вт8	2	\$7.00	20,000	\$6	1	\$17.00	70,000	\$2	\$4	1	\$25.00	50,000	\$4	1	\$25.00	50,000	\$4	\$0	\$4
14	вт8вх	2	\$7.00	20,000	\$11	1	\$200.00	60,000	\$50	-\$40	1	\$25.00	50,000	\$8	0	\$0.00	0	\$0	\$8	-\$32
15	BT8IND	2	\$7.00	20,000	\$50	2	\$17.00	70,000	\$35	\$15	1	\$25.00	50,000	\$36	1	\$25.00	50,000	\$36	\$0	\$15
16	BT8TR	2	\$7.00	20,000	\$55	1	\$115.00	70,000	\$130	-\$75	1	\$25.00	50,000	\$40	0	\$0.00	0	\$0	\$40	-\$35
17	BT8TR1	2	\$7.00	20,000	\$145	1	\$115.00	70,000	\$341	-\$196	1	\$25.00	50,000	\$104	0	\$0.00	0	\$0	\$104	-\$92
18	BT8U.5	2	\$12.00	24,000	\$11	1	\$75.00	70,000	\$12	-\$1	1	\$0.00	50,000	\$0	0	\$0.00	0	\$0	\$0	-\$1
19	BT8W	2	\$7.00	20,000	\$110	1	\$125.00	70,000	\$280	-\$170	1	\$25.00	50,000	\$78	0	\$0.00	0	\$0	\$78	-\$92
20	BT8W DEC	2	\$7.00	20,000	\$17	1	\$125.00	70,000	\$44	-\$26	1	\$25.00	50,000	\$12	0	\$0.00	0	\$0	\$12	-\$14

					ВВ				DD	FF Operation	and Ma	intenance		НН				'n	u	NN
										Lamp									Electronics	Total
			Curr	ent Lar			Propos	ed Lam	-	Savings		Current	Electro		ø	Proposed			Savings	Savings
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixtur	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
21	CFLSI	1	\$4.00	5,000	\$36	1	\$5.52	15,000	\$16	\$19	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$19
22	CT8TR	3	\$7.00	20,000	\$251	1	\$115.00	70,000	\$394	-\$142	1	\$25.00	50,000	\$120	0	\$0.00	0	\$0	\$120	-\$22
23	CT8TR 2s	3	\$7.00	20,000	\$355	1	\$115.00	70,000	\$555	-\$200	2	\$50.00	50,000	\$675	0	\$0.00	0	\$0	\$675	\$475
24	D(B)T8BX	2	\$7.00	20,000	\$3	1	\$200.00	60,000	\$13	-\$10	1	\$25.00	50,000	\$2	0	\$0.00	0	\$0	\$2	-\$8
25	D(B)T8TR	2	\$7.00	20,000	\$120	1	\$115.00	70,000	\$282	-\$162	1	\$25.00	50,000	\$86	0	\$0.00	0	\$0	\$86	-\$76
26	DT8TR	4	\$7.00	20,000	\$79	1	\$115.00	70,000	\$93	-\$14	2	\$50.00	50,000	\$113	0	\$0.00	0	\$0	\$113	\$99
27	HPS150WP	1	\$15.00	24,000	\$5	1	\$290.00	50,000	\$43	-\$38	1	\$25.00	50,000	\$4	0	\$0.00	0	\$0	\$4	-\$35
28	HPS250FL	1	\$15.00	24,000	\$2	1	\$400.00	100,000	\$1 5	-\$12	1	\$25.00	50,000	\$2	0	\$0.00	0	\$0	\$2	-\$11
29	INCSI	1	\$4.00	1,000	\$28	1	\$5.52	15,000	\$3	\$25	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$25
30	LARGE PENDANT 4SI	1	\$4.00	1,000	\$24	1	\$5.52	15,000	\$2	\$21	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$21
31	LED	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
32	LED S	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
33	LED80FL	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
34	LEDBRCAN6	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
35	MR16	1	\$5.00	2,000	\$168	1	\$15.00	25,000	\$40	\$127	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$127
36	PAR20	1	\$5.00	1,500	\$28	1	\$12.00	25,000	\$4	\$24	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$24
37	PAR20 RCAN4	1	\$5.00	2,000	\$28	1	\$75.00	50,000	\$17	\$11	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$11
38	PAR30	1	\$5.00	1,500	\$132	1	\$12.00	25,000	\$19	\$113	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$113
39	PLH	1	\$10.00	15,000	\$2	1	\$38.00	50,000	\$2	\$0	1	\$30.00	50,000	\$2	1	\$25.00	50,000	\$1	\$0	\$0
40	SENSORS																			
	TOTAL:				\$2,398				\$3,863	-\$1,465				\$1,690				\$61		\$165

MATERIAL & LABOR COST ESTIMATE

Project : Wallis Hall Estimated by: DB2

Project # : 402805 Checked by:

Measure : EEM 1.1 - Lighting Upgrades Approved by:

Date: 04/06/21 File: Cost Estimate

Item	Bassian	~	11	Mate	rial	Lab	or	Total Cost
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total	Labor & Material
1	(1) PHILIPS MR16/GU10/PAR16	15	EA	\$15.00	\$225	\$17.50	\$263	\$487.50
2	(1) PHILIPS: 14PAR38/COR/927/F25/DIM/120V T20 6/1FB	18	EA	\$12.00	\$216	\$14.00	\$252	\$468.00
3	(1) PHILIPS: EvoKit CLKE 1x4 32L 24W 835 UNV SWZ P1	106	EA	\$115.00	\$12,190	\$67.59	\$7,165	\$19,354.50
4	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	4	EA	\$75.00	\$300	\$59.50	\$238	\$538.00
5	(1) PHILIPS: EVOKIT/2X4/P/36L/27W/835/2/SWZDT/ 7/G4	302	EA	\$115.00	\$34,730	\$59.50	\$17,969	\$52,699.00
6	(1) PHILIPS: FSS440L-835-UNV-DIM- SWZDT	75	EA	\$140.00	\$10,500	\$84.00	\$6,300	\$16,800.00
7	(1) PHILLIPS: A19/LED/9W	23	EA	\$11.05	\$254	\$17.50	\$403	\$656.65
8	(1) Rab: C6R7/10/189FAUNVW	97	EA	\$66.00	\$6,402	\$49.00	\$4,753	\$11,155.00
9	(1) RAB: EZPAN1X4-17/D10 & SMKEZPAN1X4	29	EA	\$200.00	\$5,800	\$105.00	\$3,045	\$8,845.00
10	(1) RAB: EZPAN2X4-30N/D10 & SMKEZPAN2X4	8	EA	\$200.00	\$1,600	\$105.00	\$840	\$2,440.00
11	(1) RAB: FXLED78TN/PCT	1	EA	\$400.00	\$400	\$119.00	\$119	\$519.00
12	(1) RAB: G4R14940120W	4	EA	\$75.00	\$300	\$49.00	\$196	\$496.00
13	(1) RAB: W3455L	2	EA	\$290.00	\$580	\$119.00	\$238	\$818.00
14	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN- 3P16-TLED-N	29	EA	\$56.66	\$1,643	\$56.00	\$1,624	\$3,267.00
15	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & ICN-2P16-TLED-N	17	EA	\$59.00	\$1,003	\$52.50	\$893	\$1,895.50
16	(4) PHILLIPS: A19/LED/9W	1	EA	\$44.20	\$44	\$17.50	\$18	\$61.70
17	LEAVE AS IS	37	EA	\$0.68	\$25	\$0.00	\$0	\$25.00
18	PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	2	EA	\$38.00	\$76	\$43.00	\$86	\$162.00
19	LUTRON - MS-OPS6M2-DV-WH	114	EA	\$49.00	\$5,586	\$90.00	\$10,260	\$15,846.00
20	LUTRON - LRF2-OCR2B-P-WH	4	EA	\$55.00	\$220	\$210.00	\$840	\$1,060.00
		SUB	TOTALS:	Materials:	\$82,094	Labor:	\$55,500	\$137,593.85
							TOTAL:	\$137,593.85

Kornberg Medical Research Building (KMRB)

Lighting Upgrades

Measure SummaryElectrical Energy SavingsElectrical Demand Savings182.2Avg. kW/MonthElectrical Consumption Savings631,818kWh/YearFossil Fuel Energy SavingsFossil Fuel Savings(330.9)mmBtu/YearFuel Conversion10.000Therms/mmBtuNatural Gas Savings(3,309)Therms/YearWater SavingsWater Consumption Savings-kGal/Year										
Electrical Energy	Savings									
Electrical Demand Savings	182.2	Avg. kW/Month								
Electrical Consumption Savings	631,818	kWh/Year								
Fossil Fuel Energ	y Savings									
Fossil Fuel Savings	(330.9)	mmBtu/Year								
Fuel Conversion	10.000	Therms/mmBtu								
Natural Gas Savings	(3,309)	Therms/Year								
Water Savi	ngs									
Water Consumption Savings	-	kGal/Year								
O&M Savir	igs									
Annual O&M Savings	\$8,391	/Year								

Project: Kornberg Medical Research Building (KMRB)

Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.200 HVACc: 0.104 HVACg: -0.012

Nearest City: Buffalo System Type: VAV Econ % of Building Cooled: 90% % of Building Heated: 90%

Building Type: University (Univ)

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year Electric:

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

Fuel³ HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

171.9 kW Lighting Monthly kW Savings Total Annual Lighting Savings kWh 612,702 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	182.2
Electric Consumption Savings (kWh)	631,818
Fuel Savings (mmBtu)	(330.9)

Notes

(1) Based on NY Tech Manual Method: Version 7

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Kornberg Medical Research Building (KMRB)

Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9 Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = Σ (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- L Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- P Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- O Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

					A	В	C Me	D asure D	etails		E	F	G	н	L	Р	Q	R
				Lighting Description										E	nergy Us	e		
Measure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual kWh	Total Annual Lighting Savings KWh
1	AAT8TR1	1-F30T8/1-EB	1-LED8.5T8/RL	(1) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	5,758	90%	32	8.5	60	60	1.920	0.510	1.728	0.459	1.269	11,056	2,937	8,119
2	ARCANSI	1-CFL23	1-LEDSI/RL	(1) PHILLIPS: A19/LED/9W	2,816	90%	23	9	76	76	1.748	0.684	1.573	0.616	0.958	4,922	1,926	2,996
3	AT12VAP	1-F34T12/1-MB	1-LED12T8/RL	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,112	90%	34	12	32	32	1.088	0.384	0.979	0.346	0.634	2,298	811	1,487
4	AT8VAP	1-F32T8/1-MB	1-LED12T8/RL	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,112	90%	32	12	32	32	1.024	0.384	0.922	0.346	0.576	2,162	811	1,352
5	вввт8	2-F17T8/1-EB	2-LED7T8/RL	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & (1) ICN-2P16-TLED-N	2,112	90%	31	14	48	48	1.488	0.672	1.339	0.605	0.734	3,142	1,419	1,723
6	BBBT8COVE	2-F17T8/1-EB	2-LED7T8/RL	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & (1) ICN-2P16-TLED-N	2,816	90%	31	14	4	4	0.124	0.056	0.112	0.050	0.061	349	158	191
7	BBBT8TR1	2-F17T8/1-EB	2-LED7T8/RL	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & (1) ICN-2P16-TLED-N	5,913	90%	31	14	4	4	0.124	0.056	0.112	0.050	0.061	733	331	402
8	BBT8TR1	2-F25T8/1-EB	2-LED8.5T8/RL	(2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	5,913	90%	46	18	1	1	0.046	0.018	0.041	0.016	0.025	272	106	166
9	BBT8WM	2-F25T8/1-EB	2-LED8.5T8/RL	(2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	2,346	90%	46	18	24	24	1.104	0.432	0.994	0.389	0.605	2,590	1,014	1,577
10	BRCAN8PLH	2-CFQ26/1-SMB	2-LED PLH/RL	(2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	3,860	90%	66	18	251	251	16.566	4.518	14.916	4.068	10.848	63,942	17,439	46,504
11	вт8	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	3,603	90%	59	24	83	83	4.897	1.992	4.407	1.793	2.615	17,643	7,177	10,466
12	BT8/INDIRECT	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	5,913	90%	59	24	184	184	10.856	4.416	9.770	3.974	5.796	64,192	26,112	38,080
13	вт8вх	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	5,851	90%	59	24	346	346	20.414	8.304	18.373	7.474	10.899	119,445	48,588	70,857
14	BT8BX1	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	5,357	90%	59	24	39	39	2.301	0.936	2.071	0.842	1.229	12,327	5,014	7,312
15	BT8COVE	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,816	90%	59	24	88	88	5.192	2.112	4.673	1.901	2.772	14,619	5,947	8,672
16	BT8IND	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,772	90%	59	24	200	200	11.800	4.800	10.620	4.320	6.300	32,705	13,304	19,401
17	BT8TR1	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,508	90%	59	24	127	127	7.493	3.048	6.744	2.743	4.001	18,795	7,645	11,149
18	BT8TR1/VP	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,942	90%	59	24	149	149	8.791	3.576	7.912	3.218	4.694	25,866	10,522	15,344
19	BT8U	2-F32T8U/1-EB	2-LED13UT8/RL	(2) PHILIPS: 13T8-6U/MAS/24- 835/IF20/P 10/1 & (1) ICN-2P16-TLED-N	2,089	90%	59	26	248	248	14.632	6.448	13.169	5.803	7.366	30,567	13,470	17,097

				A	В	c Me	D asure D	etails		E	F	G	н	L	Р	Q	R
			Lighting Description										E	nergy Us	е		
Measure #	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual KWh	Total Annual Lighting Savings KWh
20 BT8WM/IND	2-F32T8/1-EB	2-I FD12T8 /PI	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	3,218	90%	59	24	97	97	5.723	2.328	5.151	2.095	3.056	18,418	7,492	10,926
21 CT8BX1	3-F32T8/1-EB	3-LED12T8/RL	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,816	90%	90	36	84	84	7.560	3.024	6.804	2.722	4.082	21,287	8,515	12,772
22 CT8BX1 2S	3-F32T8/2-EB		(3) PHILIPS: 12T8/48-3500/IF/10-1 & (2) ICN-3P16-TLED-N	2,816	90%	90	36	8	8	0.720	0.288	0.648	0.259	0.389	2,027	811	1,216
23 CT8TR	3-F32T8/1-EB	3-LED12T8/RL	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,682	90%	90	36	7	7	0.630	0.252	0.567	0.227	0.340	1,689	676	1,014
24 CT8TR1	3-F32T8/1-EB	3-LED12T8/RL	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,816	90%	90	36	708	708	63.720	25.488	57.348	22.939	34.409	179,417	71,767	107,650
25 CT8TR1 2s	3-F32T8/2-EB	3-LED12T8/RL	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (2) ICN-3P16-TLED-N	2,856	90%	90	36	1,394	1,394	125.460	50.184	112.914	45.166	67.748	358,277	143,311	214,966
26 HPS150WP	1-HPS150/1-CWA	1-LED42FL/NF	(1) RAB: (1) FFLED39TN/PCT	2,816	90%	190	42	1	1	0.190	0.042	0.171	0.038	0.133	535	118	417
27 LED	LED	Leave As Is	LEAVE AS IS	1,877	90%	15	15	6	6	0.090	0.090	0.081	0.081	0.000	169	169	0
28 WP	1-HPS70/1-CWA	1-LED20WP/NF	(1) RAB: (1) WPLED18N/PC	2,816	90%	95	20	4	4	0.380	0.080	0.342	0.072	0.270	1,070	225	845
тот	AL:			4,305	4,305	316.1	125.1	284.5	112.6	171.9	1,010,515	397,814	612,702				

				ВВ				DD	FF Operation	and Ma	intenance		нн				'n	LL	NN
									Lamp									Electronics	Saving
		Curr	ent Lar	nps		Propos	ed Lam	ps	Savings		Current	Electro	onics		roposed	Electro	nics	Savings	S
Measure#	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
1 AAT8TR1	1	\$7.00	20,000	\$121	1	\$18.00	70,000	\$89	\$32	1	\$25.00	50,000	\$173	1	\$25.00	50,000	\$173	\$0	\$32
2 ARCANSI	1	\$4.00	1,000	\$856	1	\$5.52	15,000	\$79	\$777	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$777
3 AT12VAP	1	\$7.00	20,000	\$24	1	\$17.00	70,000	\$16	\$7	1	\$25.00	50,000	\$34	1	\$25.00	50,000	\$34	\$0	\$7
4 AT8VAP	1	\$7.00	20,000	\$24	1	\$17.00	70,000	\$16	\$7	1	\$25.00	50,000	\$34	1	\$25.00	50,000	\$34	\$0	\$7
5 BBBT8	2	\$7.00	20,000	\$71	2	\$17.00	70,000	\$49	\$22	1	\$25.00	50,000	\$51	1	\$25.00	50,000	\$51	\$0	\$22
6 BBBT8COVE	2	\$7.00	20,000	\$8	2	\$17.00	70,000	\$5	\$2	1	\$25.00	50,000	\$6	1	\$25.00	50,000	\$6	\$0	\$2
7 BBBT8TR1	2	\$7.00	20,000	\$17	2	\$17.00	70,000	\$11	\$5	1	\$25.00	50,000	\$12	1	\$25.00	50,000	\$12	\$0	\$5
8 BBT8TR1	2	\$7.00	20,000	\$4	2	\$55.00	70,000	\$9	-\$5	1	\$25.00	50,000	\$3	1	\$25.00	50,000	\$3	\$0	-\$5
9 BBT8WM	2	\$7.00	20,000	\$39	2	\$55.00	70,000	\$88	-\$49	1	\$25.00	50,000	\$28	1	\$25.00	50,000	\$28	\$0	-\$49
10 BRCAN8PLH	2	\$10.00	15,000	\$1,292	2	\$38.00	50,000	\$1,473	-\$181	1	\$30.00	50,000	\$581	1	\$20.00	50,000	\$388	\$194	\$13
11 BT8	2	\$7.00	20,000	\$209	2	\$17.00	70,000	\$145	\$64	1	\$25.00	50,000	\$150	1	\$25.00	50,000	\$150	\$0	\$64
12 BT8/INDIRECT	2	\$7.00	20,000	\$762	2	\$17.00	70,000	\$528	\$233	1	\$25.00	50,000	\$544	1	\$25.00	50,000	\$544	\$0	\$233
13 BT8BX	2	\$7.00	20,000	\$1,417	2	\$17.00	70,000	\$983	\$434	1	\$25.00	50,000	\$1,012	1	\$25.00	50,000	\$1,012	\$0	\$434
14 BT8BX1	2	\$7.00	20,000	\$146	2	\$17.00	70,000	\$101	\$45	1	\$25.00	50,000	\$104	1	\$25.00	50,000	\$104	\$0	\$45
15 BT8COVE	2	\$7.00	20,000	\$173	2	\$17.00	70,000	\$120	\$53	1	\$25.00	50,000	\$124	1	\$25.00	50,000	\$124	\$0	\$53
16 BT8IND	2	\$7.00	20,000	\$388	2	\$17.00	70,000	\$269	\$119	1	\$25.00	50,000	\$277	1	\$25.00	50,000	\$277	\$0	\$119
17 BT8TR1	2	\$7.00	20,000	\$223	2	\$17.00	70,000	\$155	\$68	1	\$25.00	50,000	\$159	1	\$25.00	50,000	\$159	\$0	\$68
18 BT8TR1/VP	2	\$7.00	20,000	\$307	2	\$17.00	70,000	\$213	\$94	1	\$25.00	50,000	\$219	1	\$25.00	50,000	\$219	\$0	\$94
19 BT8U	2	\$15.00	20,000	\$777	2	\$25.00	70,000	\$370	\$407	1	\$25.00	50,000	\$259	1	\$25.00	50,000	\$259	\$0	\$407

					ВВ				DD	FF Operation	and Ma	intenance		НН				וו	Щ	NN
			Curr	ent Lar	nps		Propos	ed Lam	ps	Lamp Savings		Current	Electro	onics	P	roposed	Electro	nics	Electronics Savings	Saving s
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
20	BT8WM/IND	2	\$7.00	20,000	\$219	2	\$17.00	70,000	\$152	\$67	1	\$25.00	50,000	\$156	1	\$25.00	50,000	\$156	\$0	\$67
21	. CT8BX1	3	\$7.00	20,000	\$248	3	\$17.00	70,000	\$172	\$76	2	\$50.00	50,000	\$473	2	\$50.00	50,000	\$473	\$0	\$76
22	CT8BX1 2S	3	\$7.00	20,000	\$24	3	\$17.00	70,000	\$16	\$7	2	\$50.00	50,000	\$45	2	\$25.00	50,000	\$23	\$23	\$30
23	CTSTR	3	\$7.00	20,000	\$20	3	\$17.00	70,000	\$14	\$6	1	\$25.00	50,000	\$9	1	\$25.00	50,000	\$9	\$0	\$6
24	CT8TR1	3	\$7.00	20,000	\$2,093	3	\$17.00	70,000	\$1,452	\$641	1	\$25.00	50,000	\$997	1	\$25.00	50,000	\$997	\$0	\$641
25	CT8TR1 2s	3	\$7.00	20,000	\$4,180	3	\$17.00	70,000	\$2,900	\$1,280	2	\$50.00	50,000	\$7,962	2	\$25.00	50,000	\$3,981	\$3,981	\$5,260
26	HPS150WP	1	\$30.00	24,000	\$4	1	\$400.00	100,000	\$11	-\$8	1	\$180.00	50,000	\$10	0	\$0.00	0	\$0	\$10	\$2
27	LED	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
28	WP	1	\$15.00	24,000	\$7	1	\$290.00	100,000	\$33	-\$26	1	\$25.00	50,000	\$6	0	\$0.00	0	\$0	\$6	-\$20
	TOTAL:			1	\$13,652		I		\$9,474	\$4,178		1	ı	\$13,427				\$9,215	\$4,213	\$8,391

MATERIAL & LABOR COST ESTIMATE

Project : Kornberg Medical Research Building (KMRB)

Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 04/06/21

Estimated by: DB2
Checked by:
Approved by:

File: Cost Estimate

Item	Description	04.	l lmit	Mate	rial	Lab	or	Total Cost		
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total	Labor & Material		
1	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	64	EA	\$42.00	\$2,688	\$49.00	\$3,136	\$5,824.00		
2	(1) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	60	EA	\$43.00	\$2,580	\$49.00	\$2,940	\$5,520.00		
3	(1) PHILLIPS: A19/LED/9W	76	EA	\$36.05	\$2,740	\$17.50	\$1,330	\$4,069.80		
4	(1) RAB: (1) FFLED39TN/PCT	1	EA	\$400.00	\$400	\$119.00	\$119	\$519.00		
5	(1) RAB: (1) WPLED18N/PC	4	EA	\$290.00	\$1,160	\$119.00	\$476	\$1,636.00		
6	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,313	EA	\$59.00	\$77,467	\$56.00	\$73,528	\$150,995.00		
7	(2) PHILIPS: 13T8-6U/MAS/24-835/IF20/P 10/1 & (1) ICN-2P16-TLED-N	248	EA	\$59.00	\$14,632	\$52.50	\$13,020	\$27,652.00		
8	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & (1) ICN-2P16-TLED-N	56	EA	\$59.00	\$3,304	\$52.50	\$2,940	\$6,244.00		
9	(2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	251	EA	\$96.00	\$24,096	\$49.00	\$12,299	\$36,395.00		
10	(2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	25	EA	\$135.00	\$3,375	\$49.00	\$1,225	\$4,600.00		
11	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	799	EA	\$83.88	\$67,024	\$59.50	\$47,541	\$114,564.50		
12	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (2) ICN-3P16-TLED-N	1,402	EA	\$101.00	\$141,602	\$85.00	\$119,170	\$260,772.00		
13	LEAVE AS IS	6	EA	\$0.00	\$0	\$0.00	\$0	\$0.00		
	SUBTOTALS: Materials: \$341,068 Labor: \$277,724									
							TOTAL:	\$618,791.30		

Ambulatory Care Facility

Lighting Upgrades

Measure Summary											
Electrical Energy Savings											
Electrical Demand Savings	152.4	Avg. kW/Month									
Electrical Consumption Savings	666,334	kWh/Year									
Fossil Fuel Energy Savings											
Fossil Fuel Savings	(443.9)	mmBtu/Year									
Fuel Conversion	10.000	Therms/mmBtu									
Natural Gas Savings	(4,439)	Therms/Year									
Water Savi	ngs										
Water Consumption Savings	-	kGal/Year									
0&M Savir	igs										
Annual O&M Savings	\$3,036	/Year									

Building Type: Hospital (Hosp)

Nearest City: Buffalo

Project: Ambulatory Care Facility

Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.200 HVACc: 0.044 HVACg: -0.015

System Type: VAV Econ % of Building Cooled: 90% % of Building Heated: 90%

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year Electric:

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

Fuel³ HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

143.8 kW Lighting Monthly kW Savings Total Annual Lighting Savings kWh 657,653 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	152.4
Electric Consumption Savings (kWh)	666,334
Fuel Savings (mmBtu)	(443.9)

Notes

(1) Based on NY Tech Manual Method: Version 7

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Ambulatory Care Facility

Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9 Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = Σ (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- L Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- P Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- L Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- O Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

Ambulatory Care Facility EEM 1.1 - Lighting Upgrades

					A	В	c Me	D asure [Details		E	F	G	н	L	Р	Q	R
							Energy Use											
Measure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual kWh	Total Annual Lighting Savings kWh
1	APLV/SCONCE	1-CFQ26/1-SMB	1-LED PLH/RL	(1) PHILIPS: 8.5PL-C/T LED/26H- 3500 IF 4P & (1) ICF-2S13-H1-LD	5,398	90%	33	9	52	52	1.716	0.468	1.544	0.421	1.123	9,263	2,526	6,737
2	BBBT8TR	2-F17T8/1-EB	2-LED7T8/RL	(2) PHILIPS: 7T8/MAS/24- 835/IF10/P 10/1 & (1) ICN-2P16- TLED-N	2,816	90%	31	14	20	20	0.620	0.280	0.558	0.252	0.306	1,746	788	957
3	BRCAN6PLH	2-CFQ26/1-SMB	2-LED PLH/RL	(2) PHILIPS: 8.5PL-C/T LED/26H- 3500 IF 4P & (1) ICF-2S13-H1-LD	5,309	90%	66	18	1,370	1,370	90.420	24.660	81.378	22.194	59.184	480,000	130,909	349,091
4	вт8	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	4,027	90%	59	24	192	192	11.328	4.608	10.195	4.147	6.048	45,613	18,554	27,059
5	BT8D/IND/WM	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	7,446	90%	59	24	24	24	1.416	0.576	1.274	0.518	0.756	10,544	4,289	6,255
6	BT8TR1	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	3,169	90%	59	24	102	102	6.018	2.448	5.416	2.203	3.213	19,070	7,757	11,313
7	вт8WM	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	3,867	90%	59	24	172	172	10.148	4.128	9.133	3.715	5.418	39,238	15,961	23,277
8	COVE	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,300	90%	59	24	51	51	3.009	1.224	2.708	1.102	1.607	6,922	2,816	4,106
9	CRCAN10/PLH	3-CFQ26/2-SMB	3-LED PLH/RL	(3) PHILIPS: 8.5PL-C/T LED/26H- 3500 IF 4P & (2) ICF-2S13-H1-LD	7,446	90%	99	27	66	66	6.534	1.782	5.881	1.604	4.277	48,652	13,269	35,383
10	CT8TR	3-F32T8/1-EB	3-LED12T8/RL	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,766	90%	90	36	1,037	1,037	93.330	37.332	83.997	33.599	50.398	258,194	103,278	154,916
11	CT8TR 2s	3-F32T8/2-EB	3-LED12T8/RL	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (2) ICN-3P16-TLED-N	2,769	90%	90	36	242	242	21.780	8.712	19.602	7.841	11.761	60,313	24,125	36,188
12	LED DEC	LED	Leave As Is	LEAVE AS IS	7,446	90%	20	20	35	35	0.700	0.700	0.630	0.630	0.000	5,212	5,212	0
	SENSORS	None	Occupancy Sensor	LUTRON						69					-0.306		-2,372	2,372
	TOTAL	L:	1						3,363	3,432	247.0	86.9	222.3	78.2	143.8	984,767	327,113	657,653

Ambulatory Care Facility EEM 1.1 - Lighting Upgrades

					ВВ				DD	FF Operation	and Ma	intenance		нн				ມ	ш	NN
			Curr	ent Lar	mps		Propos	ed Lam	ıps	Lamp Savings	(Current	: Electro	onics	P	roposed	Electro	nics	Electronics Savings	Total Savings
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
1	APLV/SCONCE	1	\$10.00	15,000	\$187	1	\$38.00	50,000	\$213	-\$26	1	\$30.00	50,000	\$168	1	\$20.00	50,000	\$112	\$56	\$30
2	BBBT8TR	2	\$7.00	20,000	\$39	2	\$17.00	70,000	\$27	\$12	1	\$25.00	50,000	\$28	1	\$25.00	50,000	\$28	\$0	\$12
3	BRCAN6PLH	2	\$10.00	15,000	\$9,697	2	\$38.00	50,000	\$11,055	-\$1,358	1	\$30.00	50,000	\$4,364	1	\$20.00	50,000	\$2,909	\$1,455	\$97
4	вт8	2	\$7.00	20,000	\$541	2	\$17.00	70,000	\$376	\$166	1	\$25.00	50,000	\$387	1	\$25.00	50,000	\$387	\$0	\$166
5	BT8D/IND/WM	2	\$7.00	20,000	\$125	2	\$17.00	70,000	\$87	\$38	1	\$25.00	50,000	\$89	1	\$25.00	50,000	\$89	\$0	\$38
6	BT8TR1	2	\$7.00	20,000	\$226	2	\$17.00	70,000	\$157	\$69	1	\$25.00	50,000	\$162	1	\$25.00	50,000	\$162	\$0	\$69
7	BT8WM	2	\$7.00	20,000	\$466	2	\$17.00	70,000	\$323	\$143	1	\$25.00	50,000	\$333	1	\$25.00	50,000	\$333	\$0	\$143
8	COVE	2	\$7.00	20,000	\$82	2	\$17.00	70,000	\$57	\$25	1	\$25.00	50,000	\$59	1	\$25.00	50,000	\$59	\$0	\$25
9	CRCAN10/PLH	3	\$10.00	15,000	\$983	3	\$38.00	50,000	\$1,120	-\$138	2	\$60.00	50,000	\$1,179	2	\$20.00	50,000	\$393	\$786	\$649
10	CT8TR	3	\$7.00	20,000	\$3,012	3	\$17.00	70,000	\$2,090	\$922	1	\$25.00	50,000	\$1,434	1	\$25.00	50,000	\$1,434	\$0	\$922
11	CT8TR 2s	3	\$7.00	20,000	\$704	3	\$17.00	70,000	\$488	\$215	2	\$50.00	50,000	\$1,340	2	\$25.00	50,000	\$670	\$670	\$886
12	LED DEC	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
	SENSORS																			
	TOTAL:		•		\$16,062			r	\$15,993	\$69		1	1	\$9,543				\$6,576		\$3,036

MATERIAL & LABOR COST ESTIMATE

Project : Ambulatory Care Facility Estimated by: DB2

Project # : 402805 Checked by:

Measure : EEM 1.1 - Lighting Upgrades Approved by:

Date: 04/06/21 File: Cost Estimate

Item	Description	Otr.	l lmit	Mate	rial	Lab	or	Total Cost		
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total	Labor & Material		
1	(1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	52	EA	\$58.00	\$3,016	\$49.00	\$2,548	\$5,564.00		
2	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	541	EA	\$59.00	\$31,919	\$56.00	\$30,296	\$62,215.00		
3	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & (1) ICN-2P16-TLED-N	20	EA	\$59.00	\$1,180	\$52.50	\$1,050	\$2,230.00		
4	(2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	1,370	EA	\$96.00	\$131,520	\$49.00	\$67,130	\$198,650.00		
5	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,037	EA	\$76.00	\$78,812	\$59.50	\$61,702	\$140,513.50		
6	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (2) ICN-3P16-TLED-N	242	EA	\$101.00	\$24,442	\$85.00	\$20,570	\$45,012.00		
7	(3) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (2) ICF-2S13-H1-LD	66	EA	\$154.00	\$10,164	\$49.00	\$3,234	\$13,398.00		
8	LEAVE AS IS	35	EA	\$0.00	\$0	\$0.00	\$0	\$0.00		
9	LUTRON - MS-OPS6M2-DV-WH	50	EA	\$49.00	\$2,450	\$90.00	\$4,500	\$6,950.00		
10	LUTRON - LRF2-OCR2B-P-WH	19	EA	\$55.00	\$1,045	\$110.00	\$2,090	\$3,135.00		
	SUBTOTALS: Materials: \$284,548 Labor: \$193,120 \$477,667.									
	<u> </u>			•		· · · · · · · · · · · · · · · · · · ·				
							TOTAL:	\$477,667.50		

Wilder Hall

Lighting Upgrades

Measure Summary												
Electrical Energy	Savings											
Electrical Demand Savings	10.8	Avg. kW/Month										
Electrical Consumption Savings	16,732	kWh/Year										
Fossil Fuel Energy Savings												
Fossil Fuel Savings	(10.5)	mmBtu/Year										
Fuel Conversion	10.000	Therms/mmBtu										
Natural Gas Savings	(105)	Therms/Year										
Water Savi	ngs											
Water Consumption Savings	-	kGal/Year										
O&M Savir	ıgs											
Annual O&M Savings	-\$180	/Year										

Project: Wilder Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.200 HVACc: 0.027 HVACg: -0.014

Building Type: College Dormitory Nearest City: Buffalo

System Type: Fan coil with chiller and hot water boiler

% of Building Cooled: 90% % of Building Heated: 90%

Electric:

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

Fuel³

HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

10.1 kW Lighting Monthly kW Savings Total Annual Lighting Savings kWh 16,598 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	10.8
Electric Consumption Savings (kWh)	16,732
Fuel Savings (mmBtu)	(10.5)

Notes

(1) Based on NY Tech Manual Method: Version 7

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Wilder Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9 Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = Σ (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- E Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- L Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- P Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- O Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

Wilder Hall EEM 1.1 - Lighting Upgrades

					A	В	c Measu	D ire Deta	nils		E	F	G	н	L	Р	Q	R
				Lighting Description										En	ergy U	se		
Measure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual kWh	Total New Lighting Annual kWh	Total Annual Lighting Savings KWh
1	AT8	1-F32T8/1-MB	1-LED12T8/RL	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	8,760	90%	32	12	10	10	0.320	0.120	0.288	0.108	0.180	2,803	1,051	1,752
2	AT8S	1-F32T8/1-MB	1-LED26/NF	(1) PHILIPS: FSS440L-830-UNV-DIM- SWZDT	1,314	90%	32	26	4	4	0.128	0.104	0.115	0.094	0.022	168	137	32
3	вт8	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	1,596	90%	59	24	16	16	0.944	0.384	0.850	0.346	0.504	1,506	613	894
4	втявх	2-F32T8/1-EB	1-LED36/NF	(1) RAB: EZPAN2X4-30N/D10 & SMKEZPAN2X4	1,314	90%	59	36	8	8	0.472	0.288	0.425	0.259	0.166	620	378	242
5	BT8BX/P	2-F32T8/1-EB	1-LED20/NF	(1) PHILIPS SP532P LED29S/940 PSD PI5 SM2 L1410 WH	2,816	90%	59	20	8	8	0.472	0.160	0.425	0.144	0.281	1,329	451	879
6	BT8IND	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	6,388	90%	59	24	6	6	0.354	0.144	0.319	0.130	0.189	2,261	920	1,341
7	BT8WM	2-F32T8/1-EB	1-LED31/NF	(1) PHILIPS: FSS440L-835-UNV-DIM- SWZDT	1,112	90%	59	31	48	48	2.832	1.488	2.549	1.339	1.210	3,149	1,654	1,494
8	CFLSI	1-CFL13	1-LEDSI/R	(1) PHILLIPS: A19/LED/9W	1,314	90%	13	9	3	3	0.039	0.027	0.035	0.024	0.011	51	35	16
9	CT8IND	3-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	1,314	90%	90	24	1	1	0.090	0.024	0.081	0.022	0.059	118	32	87
10	HPS70WP	1-HPS70/1-CWA	1-LED20WP/NF	(1) RAB: WPLED18N/PC	3,690	0%	95	20	1	1	0.095	0.020	0.000	0.000	0.000	351	74	277
11	LED 2x2	LED	LEAVE AS IS	LEAVE AS IS	8,760	90%	24	24	25	25	0.600	0.600	0.540	0.540	0.000	5,256	5,256	0
12	LED BT8IND	LED	LEAVE AS IS	LEAVE AS IS	7,540	90%	30	30	7	7	0.210	0.210	0.189	0.189	0.000	1,583	1,583	0
13	LED SI	LED	LEAVE AS IS	LEAVE AS IS	1,314	90%	7	7	5	5	0.035	0.035	0.032	0.032	0.000	46	46	0
14	LEDBT8	LED	LEAVE AS IS	LEAVE AS IS	6,212	90%	15	15	21	21	0.315	0.315	0.284	0.284	0.000	1,957	1,957	0
15	LEDCAN	LED	LEAVE AS IS	LEAVE AS IS	1,314	90%	12	12	7	7	0.084	0.084	0.076	0.076	0.000	110	110	0
16	LEDCIR/WM	LED	LEAVE AS IS	LEAVE AS IS	8,760	90%	5	5	66	66	0.330	0.330	0.297	0.297	0.000	2,891	2,891	0
17	LEDSI	LED	LEAVE AS IS	LEAVE AS IS	5,913	90%	7	7	3	3	0.021	0.021	0.019	0.019	0.000	124	124	0
18	SQCPY	2-CFI23/1	1-LED9/NF	(1) RAB: SK9SYYW	1,136	89%	46	9	228	228	10.488	2.052	9.356	1.831	7.526	11,917	2,332	9,585
	TOTAL:								467	467	17.8	6.4	15.9	5.7	10.1	36,241	19,644	16,598

Wilder Hall EEM 1.1 - Lighting Upgrades

					ВВ				DD	FF Operation	and Ma	intenance		НН				ມ	ш	NN
			0				Dranas	ad Laur		Lamp		0	Floor	anlaa			Fleetve	, mlaa	Electronics	Saving
			Curr	ent Lar	nps		Propos	ed Lam	ips	Savings		Current	Electro			roposed	Electro	nics	Savings	S
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
1	AT8	1	\$7.00	20,000	\$31	1	\$17.00	70,000	\$21	\$9	1	\$25.00	50,000	\$44	1	\$25.00	50,000	\$44	\$0	\$9
2	AT8S	1	\$7.00	20,000	\$2	1	\$125.00	70,000	\$9	-\$8	1	\$25.00	50,000	\$3	0	\$0.00	0	\$0	\$3	-\$5
3	вт8	2	\$7.00	20,000	\$18	1	\$17.00	70,000	\$6	\$12	1	\$25.00	50,000	\$13	1	\$25.00	50,000	\$13	\$0	\$12
4	вт8вх	2	\$7.00	20,000	\$7	1	\$200.00	60,000	\$35	-\$28	1	\$25.00	50,000	\$5	0	\$0.00	0	\$0	\$5	-\$22
5	BT8BX/P	2	\$7.00	20,000	\$16	1	\$150.00	70,000	\$48	-\$33	1	1 \$25.00 50,000 \$11 0				\$0.00	0	\$0	\$11	-\$21
6	BT8IND	2	\$7.00	20,000	\$27	2	\$17.00	70,000	\$19	\$8	1	\$25.00	50,000	\$19	1	\$25.00	50,000	\$19	\$0	\$8
7	вт8WM	2	\$7.00	20,000	\$37	1	\$125.00	70,000	\$95	-\$58	1	\$25.00	50,000	\$27	0	\$0.00	0	\$0	\$27	-\$31
8	CFLSI	1	\$4.00	5,000	\$3	1	\$5.52	15,000	\$1	\$2	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$2
9	CT8IND	3	\$7.00	20,000	\$1	3	\$17.00	70,000	\$1	\$0	1	\$25.00	50,000	\$1	1	\$0.00	0	\$0	\$1	\$1
10	HPS70WP	1	\$15.00	24,000	\$2	1	\$290.00	100,000	\$11	-\$8	1	\$25.00	50,000	\$2	0	\$0.00	0	\$0	\$2	-\$7
11	LED 2x2	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
12	LED BTSIND	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
13	LED SI	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
14	LEDBT8	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
15	LEDCAN	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
16	LEDCIR/WM	1	\$0.00	20,000	\$0	1	\$0.00	20,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
17	LEDSI	1	\$0.00	50,000	\$0	1	\$0.00	20,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
18	SQCPY	1	\$4.00	15,000	\$69	1	\$75.00	100,000	\$194	-\$125	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	-\$125
	TOTAL:				\$214				\$441	-\$228				\$124				\$76		-\$180

MATERIAL & LABOR COST ESTIMATE

Project : Wilder Hall Estimated by: DB2

Project # : 402805 Checked by:

Measure : EEM 1.1 - Lighting Upgrades Approved by:

Date: 04/06/21 File: Cost Estimate

Item	Description	Otre	Unit	Mate	rial	Lat	oor	Total Cost					
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total	Labor & Material					
1	(1) PHILIPS SP532P LED29S/940 PSD PI5 SM2 L1410 WH	8	EA	\$150.00	\$1,200	\$84.00	\$672	\$1,872.00					
2	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	10	EA	\$42.00	\$420	\$49.00	\$490	\$910.00					
3	(1) PHILIPS: FSS440L-830-UNV-DIM- SWZDT	4	EA	\$125.00	\$500	\$84.00	\$336	\$836.00					
4	(1) PHILIPS: FSS440L-835-UNV-DIM- SWZDT	48	EA	\$125.00	\$6,000	\$84.00	\$4,032	\$10,032.00					
5	(1) PHILLIPS: A19/LED/9W	3	EA	\$11.05	\$33	\$17.50	\$53	\$85.65					
6	(1) RAB: EZPAN2X4-30N/D10 & SMKEZPAN2X4	8	EA	\$200.00	\$1,600	\$105.00	\$840	\$2,440.00					
7	(1) RAB: SK9SYYW	228	EA	\$75.00	\$17,100	\$84.00	\$19,152	\$36,252.00					
8	(1) RAB: WPLED18N/PC	1	EA	\$290.00	\$290	\$119.00	\$119	\$409.00					
9	(2) PHILIPS: 12T8/48-3500/IF/10-1 & ICN-3P16-TLED-N	23	EA	\$47.91	\$1,102	\$56.00	\$1,288	\$2,390.00					
10	LEAVE AS IS	134	EA	\$0.00	\$0	\$0.00	\$0	\$0.00					
SUBTOTALS: Materials: \$28,245 Labor: \$26,982													
							TOTAL:	\$55,226.65					

Fauver Stadium

Lighting Upgrades

Measure Summary												
Electrical Energy	Savings											
Electrical Demand Savings	5.3	Avg. kW/Month										
Electrical Consumption Savings	18,249	kWh/Year										
Fossil Fuel Energy Savings												
Fossil Fuel Savings	(9.6)	mmBtu/Year										
Fuel Conversion	10.000	Therms/mmBtu										
Natural Gas Savings	(96)	Therms/Year										
Water Savi	ngs											
Water Consumption Savings	-	kGal/Year										
O&M Savir	igs											
Annual O&M Savings	\$71	/Year										

Project: Fauver Stadium Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.200 HVACc: 0.104 HVACg: -0.012

Building Type: University (Univ) Nearest City: Buffalo System Type: VAV Econ % of Building Cooled: 90% % of Building Heated: 90%

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year Electric:

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

Fuel³ HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

5.0 kW Lighting Monthly kW Savings Total Annual Lighting Savings kWh 17,697 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	5.3
Electric Consumption Savings (kWh)	18,249
Fuel Savings (mmBtu)	(9.6)

Notes

(1) Based on NY Tech Manual Method: Version 7

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Fauver Stadium
Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9 Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = \sum (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- E Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- L Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors. L Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)

O Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

					A	B M	c leasure D	D etails			E	F	G	н	L	Р	Q	R
				Lighting Description										En	ergy U	se		
easure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model #	Fotal Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	of Existing Units	of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly KW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual KWh	Total Annual Lighting Savings KWh
1	A8T8BX/INDIRECT		2-LED12T8/R	(2) PHILIPS: 12T8/48-3500/IF/10-1 & 8' to 4' Retrofit Kit & (1) ICN-3P16-TLED-N	939	90%	<u>ш ></u> 58	24	1	1	0.058	0.024	0.052	0.022	0.031	54	23	32
2	A8T8BX/WM/INDI RECT	1-F96T8/1-EB	2-LED12T8/R	(2) PHILIPS: 12T8/48-3500/IF/10-1 & 8' to 4' Retrofit Kit & (1) ICN-3P16-TLED-N	1,877	90%	58	24	4	4	0.232	0.096	0.209	0.086	0.122	435	180	255
3	AAAT8TR1	1-F17T8/1-EB	1-LED7T8/RL	(1) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & (1) ICN-2P16-TLED-N	8,760	90%	20	7	3	3	0.060	0.021	0.054	0.019	0.035	526	184	342
4	AAT8TR1	1-F30T8/1-EB	1-LED8.5T8/RL	(1) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	1,877	90%	32	8.5	1	1	0.032	0.009	0.029	0.008	0.021	60	16	44
5	ALEDT8	1-LEDT8	LEAVE AS IS	LEAVE AS IS	1,314	90%	15	15	2	2	0.030	0.030	0.027	0.027	0.000	39	39	0
6	AT12BX/P	1-F34T12/1-MB	1-LED12T8/RL	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,095	90%	34	12	6	6	0.204	0.072	0.184	0.065	0.119	223	79	145
7	AT12BX/WM	1-F34T12/1-MB	1-LED12T8/RETRO	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	6,466	90%	34	12	3	3	0.102	0.036	0.092	0.032	0.059	660	233	427
8	AT12BX/WM/INDI RECT	1-F34T12/1-MB	1-LED12T8/RETRO	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,877	90%	34	12	1	1	0.034	0.012	0.031	0.011	0.020	64	23	41
9	AT12TR1	1-F34T12/1-MB	1-LED12T8/RETRO	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,877	90%	34	12	11	11	0.374	0.132	0.337	0.119	0.218	702	248	454
10	AT8S/WM	1-F32T8/1-MB	1-LED12T8/RETRO	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,877	90%	32	11	1	1	0.032	0.011	0.029	0.010	0.019	60	21	39
11	BBT8BX/P	2-F25T8/1-EB	2-LED10T8/RL	(2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	8,760	90%	46	30	2	2	0.092	0.060	0.083	0.054	0.029	806	526	280
12	BRCAN8PLH	2-CFQ26/1-SMB	2-LED PLH/RL	(2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	1,314	90%	66	18	4	4	0.264	0.072	0.238	0.065	0.173	347	95	252
13	BT12BX/P	2-34T12/1-MB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	3,598	90%	68	24	8	8	0.544	0.192	0.490	0.173	0.317	1,957	691	1,266
14	BT12BX/SM/INDI RECT	2-34T12/1-MB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,877	90%	68	24	7	7	0.476	0.168	0.428	0.151	0.277	894	315	578
15	BT12BX/WM/INDI RECT	2-34T12/1-MB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,877	90%	68	24	1	1	0.068	0.024	0.061	0.022	0.040	128	45	83
16	BT12IND	2-34T12/1-MB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,877	90%	68	24	3	3	0.204	0.072	0.184	0.065	0.119	383	135	248
17	вт8	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,314	90%	59	24	1	1	0.059	0.024	0.053	0.022	0.032	78	32	46
18	BT8BX/D/IND	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	8,760	90%	59	24	2	2	0.118	0.048	0.106	0.043	0.063	1,034	420	613
19	BT8BX/P	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	939	90%	59	24	10	10	0.590	0.240	0.531	0.216	0.315	554	225	329
20	BT8IND	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,877	90%	59	24	3	3	0.177	0.072	0.159	0.065	0.095	332	135	197
21	BT8SM/INDIRECT	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,860	90%	59	24	7	7	0.413	0.168	0.372	0.151	0.221	1,181	481	701
22	BT8TR1	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,628	90%	59	24	1	1	0.059	0.024	0.053	0.022	0.032	155	63	92
23	втви	2-F32T8U/1-EB	2-LED13UT8/RL	(2) PHILIPS: 13T8-6U/MAS/24-835/IF20/P 10/1 & (1) ICN-2P16-TLED-N	1,877	90%	59	26	1	1	0.059	0.026	0.053	0.023	0.030	111	49	62
24	BT8UTR	2-F32T8U/1-EB	2-LED13UT8/RL	(2) PHILIPS: 13T8-6U/MAS/24-835/IF20/P 10/1 & (1) ICN-2P16-TLED-N	1,877	90%	59	26	1	1	0.059	0.026	0.053	0.023	0.030	111	49	62
25	BT8W	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	3,254	90%	59	24	5	5	0.295	0.120	0.266	0.108	0.158	960	390	569

					A	B M	c leasure D	D etails			E	F	G	н	L	Р	Q	R
				Lighting Description										En	ergy U	se		
Measure#	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model #	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected KW	Total New Connected KW	Existing Peak kW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual kWh	Total Annual Lighting Savings KWh
26	CT8TR	3-F32T8/1-EB	3-LED12T8/RL	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,877	90%	90	36	45	45	4.050	1.620	3.645	1.458	2.187	7,602	3,041	4,561
27	D(B)T8TR	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,628	90%	59	24	5	5	0.295	0.120	0.266	0.108	0.158	775	315	460
28	HPS150WP	1-HPS150/1-CWA	1-LED42FL/NF	(1) RAB: (1) FFLED39TN/PCT	3,690	0%	190	42	1	1	0.190	0.042	0.000	0.000	0.000	701	155	546
29	HPS400FL	1-HPS400/1-CWA	1-LED164FL/NF	(1) RAB: (1) FXLED150TN/PCT	3,690	0%	465	164	4	4	1.860	0.656	0.000	0.000	0.000	6,863	2,421	4,443
30	HPS50PHONE	1-HPS50/1-CWA	LEAVE AS IS	LEAVE AS IS	3,690	0%	60	60	1	1	0.060	0.060	0.000	0.000	0.000	221	221	0
31	LED	LED	Leave As Is	LEAVE AS IS	1,904	90%	15	15	189	189	2.835	2.835	2.552	2.552	0.000	5,399	5,399	0
32	LED Vanity	LED	Leave As Is	LEAVE AS IS	1,117	90%	12	12	8	8	0.096	0.096	0.086	0.086	0.000	107	107	0
33	LED/1x4P	LED	Leave As Is	LEAVE AS IS	1,229	90%	12	12	45	45	0.540	0.540	0.486	0.486	0.000	663	663	0
34	LED/1x4S	LED	Leave As Is	LEAVE AS IS	909	90%	12	12	29	29	0.348	0.348	0.313	0.313	0.000	316	316	0
35	LED2x2BX	LED	Leave As Is	LEAVE AS IS	1,314	90%	24	24	1	1	0.024	0.024	0.022	0.022	0.000	32	32	0
36	LED8x8BX	LED	Leave As Is	LEAVE AS IS	1,314	90%	60	60	1	1	0.060	0.060	0.054	0.054	0.000	79	79	0
37	LEDBT8INC	LED	Leave As Is	LEAVE AS IS	8,760	90%	15	15	3	3	0.045	0.045	0.041	0.041	0.000	394	394	0
38	LEDCAN	LED	Leave As Is	LEAVE AS IS	5,913	90%	12	12	12	12	0.144	0.144	0.130	0.130	0.000	851	851	0
39	LEDCYL/P	LED	Leave As Is	LEAVE AS IS	1,314	90%	20	20	8	8	0.160	0.160	0.144	0.144	0.000	210	210	0
40	LEDFL	LED	Leave As Is	LEAVE AS IS	3,690	0%	20	20	1	1	0.020	0.020	0.000	0.000	0.000	74	74	0
41	LEDP	LED	Leave As Is	LEAVE AS IS	3,222	90%	20	20	3	3	0.060	0.060	0.054	0.054	0.000	193	193	0
42	LEDS	LED	Leave As Is	LEAVE AS IS	5,913	90%	15	15	1	1	0.015	0.015	0.014	0.014	0.000	89	89	0
43	LEDW	LED	Leave As Is	LEAVE AS IS	1,877	90%	15	15	2	2	0.030	0.030	0.027	0.027	0.000	56	56	0
44	LEDWP	LED	Leave As Is	LEAVE AS IS	3,690	0%	25	25	1	1	0.025	0.025	0.000	0.000	0.000	92	92	0
45	SENSORS	None	Occupancy Sensor	LUTRON - MS-OPS6M2-DV-WH						27					0.085		-529	529
	TOTAL:								449	476	15.5	8.7	12.0	7.1	5.0	36,574	18,877	17,697

	_				ВВ				DD	FF Operation a	and Ma	intenance		нн				ມ	ш	NN
			Curre	ent Lan	nps		Propos	ed Lamı	ps	Lamp Savings		Current	Electro	nics	P	roposed	Electro	nics	Electronics Savings	Total Saving
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
1	A8T8BX/INDIRECT	1	\$30.00	18,000	\$2	2	\$17.00	70,000	\$0	\$1	1	\$25.00	50,000	\$0	1	\$25.00	50,000	\$0	\$0	\$1
2	A8T8BX/WM/INDI RECT	1	\$30.00	18,000	\$13	2	\$17.00	70,000	\$4	\$9	1	\$25.00	50,000	\$4	1	\$25.00	50,000	\$4	\$0	\$9
3	AAAT8TR1	1	\$7.00	20,000	\$9	1	\$17.00	70,000	\$6	\$3	1	\$25.00	50,000	\$13	1	\$25.00	50,000	\$13	\$0	\$3
4	AAT8TR1	1	\$7.00	20,000	\$1	1	\$18.00	70,000	\$0	\$0	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$0
5	ALEDT8	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
6	AT12BX/P	1	\$7.00	20,000	\$2	1	\$17.00	70,000	\$2	\$1	1	\$25.00	50,000	\$3	1	\$25.00	50,000	\$3	\$0	\$1
7	AT12BX/WM	1	\$7.00	20,000	\$7	1	\$17.00	70,000	\$5	\$2	1	\$25.00	50,000	\$10	1	\$25.00	50,000	\$10	\$0	\$2
8	AT12BX/WM/INDI RECT	1	\$7.00	20,000	\$1	1	\$17.00	70,000	\$0	\$0	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$0
9	AT12TR1	1	\$7.00	20,000	\$7	1	\$17.00	70,000	\$5	\$2	1	\$25.00	50,000	\$10	1	\$25.00	50,000	\$10	\$0	\$2
10	AT8S/WM	1	\$7.00	20,000	\$1	1	\$17.00	70,000	\$0	\$0	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$0
11	BBT8BX/P	2	\$7.00	20,000	\$12	2	\$55.00	70,000	\$28	-\$15	1	\$25.00	50,000	\$9	1	\$25.00	50,000	\$9	\$0	-\$15
12	BRCAN8PLH	2	\$10.00	15,000	\$7	2	\$38.00	50,000	\$8	-\$1	1	\$30.00	50,000	\$3	1	\$20.00	50,000	\$2	\$1	\$0
13	BT12BX/P	2	\$7.00	20,000	\$20	2	\$17.00	70,000	\$14	\$6	1	\$25.00	50,000	\$14	1	\$25.00	50,000	\$14	\$0	\$6
14	BT12BX/SM/INDI RECT	2	\$7.00	20,000	\$9	2	\$17.00	70,000	\$6	\$3	1	\$25.00	50,000	\$7	1	\$25.00	50,000	\$7	\$0	\$3
15	BT12BX/WM/INDI RECT	2	\$7.00	20,000	\$1	2	\$17.00	70,000	\$1	\$0	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$0
16	BT12IND	2	\$7.00	20,000	\$4	2	\$17.00	70,000	\$3	\$1	1	\$25.00	50,000	\$3	1	\$25.00	50,000	\$3	\$0	\$1
17	вт8	2	\$7.00	20,000	\$1	2	\$17.00	70,000	\$1	\$0	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$0
18	BT8BX/D/IND	2	\$7.00	20,000	\$12	2	\$17.00	70,000	\$9	\$4	1	\$25.00	50,000	\$9	1	\$25.00	50,000	\$9	\$0	\$4
19	BT8BX/P	2	\$7.00	20,000	\$7	2	\$17.00	70,000	\$5	\$2	1	\$25.00	50,000	\$5	1	\$25.00	50,000	\$5	\$0	\$2
20	BT8IND	2	\$7.00	20,000	\$4	2	\$17.00	70,000	\$3	\$1	1	\$25.00	50,000	\$3	1	\$25.00	50,000	\$3	\$0	\$1
21	BT8SM/INDIRECT	2	\$7.00	20,000	\$14	2	\$17.00	70,000	\$10	\$4	1	\$25.00	50,000	\$10	1	\$25.00	50,000	\$10	\$0	\$4
22	BT8TR1	2	\$7.00	20,000	\$2	2	\$17.00	70,000	\$1	\$1	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$1
23	втви	2	\$15.00	20,000	\$3	2	\$25.00	70,000	\$1	\$1	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$1
24	BT8UTR	2	\$15.00	20,000	\$3	2	\$25.00	70,000	\$1	\$1	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$1
25	BT8W	2	\$7.00	20,000	\$11	2	\$17.00	70,000	\$8	\$3	1	\$25.00	50,000	\$8	1	\$25.00	50,000	\$8	\$0	\$3
L			1	1		1	l	I				1			1	l				

					BB				DD	FF Operation a	and Ma	intenance		нн				'n	ш	NN
			Curre	ent Lan	nps		Propos	ed Lam	ps	Lamp Savings		Current	Electro	nics	Pi	roposed	l Electro	nics	Electronics Savings	Total Saving
Messure#	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
26 CT8TR	?	3	\$7.00	20,000	\$89	3	\$17.00	70,000	\$62	\$27	1	\$25.00	50,000	\$42	1	\$25.00	50,000	\$42	\$0	\$27
27 D(B)T8	8TR	2	\$7.00	20,000	\$9	2	\$17.00	70,000	\$6	\$3	1	\$25.00	50,000	\$7	1	\$25.00	50,000	\$7	\$0	\$3
28 HPS15	50WP	1	\$30.00	24,000	\$5	1	\$400.00	100,000	\$15	-\$10	1	\$180.00	50,000	\$13	0	\$0.00	0	\$0	\$13	\$3
29 HPS40	00FL	1	\$30.00	24,000	\$18	1	\$445.00	100,000	\$66	-\$47	1	\$180.00	50,000	\$53	0	\$0.00	0	\$0	\$53	\$6
30 HPS50	OPHONE	1	\$0.00	0	\$0	1	\$0.00	0	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
31 LED		1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
32 LED V	anity	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
33 LED/1	Lx4P	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
34 LED/1	Lx4S	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
35 LED2x	x2BX	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
36 LED8x	x8BX	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
37 LEDBT	TBINC	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
38 LEDCA	AN	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
39 LEDCY	YL/P	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
40 LEDFL	-	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
41 LEDP		1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
42 LEDS		1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
43 LEDW	,	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
44 LEDW	/P	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
45 SENSO	ORS																			
	TOTAL:			•	\$273				\$269	\$4				\$234				\$166		\$71

MATERIAL & LABOR COST ESTIMATE

Project : Fauver Stadium Estimated by: DB2
Project # : 402805 Checked by:
Measure : EEM 1.1 - Lighting Upgrades Approved by:

Date: 04/06/21 File: Cost Estimate

Item	Description	Qty.	Unit	Mate	rial	Lab	or	Total Cost			
No.	Description	Qty.	Offic	Unit Price	Total	Unit Price	Total	Labor & Material			
1	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN- 3P16-TLED-N	22	EA	\$42.00	\$924	\$49.00	\$1,078	\$2,002.00			
2	(1) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & (1) ICN-2P16-TLED-N	3	EA	\$42.00	\$126	\$49.00	\$147	\$273.00			
3	(1) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	1	EA	\$43.00	\$43	\$49.00	\$49	\$92.00			
4	(1) RAB: (1) FFLED39TN/PCT	1	EA	\$400.00	\$400	\$119.00	\$119	\$519.00			
5	(1) RAB: (1) FXLED150TN/PCT	4	EA	\$445.00	\$1,780	\$119.00	\$476	\$2,256.00			
6	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN- 3P16-TLED-N	53	EA	\$59.00	\$3,127	\$56.00	\$2,968	\$6,095.00			
7	(2) PHILIPS: 12T8/48-3500/IF/10-1 & 8' to 4' Retrofit Kit & (1) ICN-3P16-TLED-N	5	EA	\$84.00	\$420	\$70.00	\$350	\$770.00			
8	(2) PHILIPS: 13T8-6U/MAS/24-835/IF20/P 10/1 & (1) ICN-2P16-TLED-N	2	EA	\$59.00	\$118	\$52.50	\$105	\$223.00			
9	(2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	4	EA	\$96.00	\$384	\$49.00	\$196	\$580.00			
10	(2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	2	EA	\$135.00	\$270	\$60.00	\$120	\$390.00			
11	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN- 3P16-TLED-N	45	EA	\$76.00	\$3,420	\$59.50	\$2,678	\$6,097.50			
12	LEAVE AS IS	307	EA	\$0.00	\$0	\$0.00	\$0	\$0.00			
14	LUTRON - MS-OPS6M2-DV-WH	27	EA	\$49.00	\$1,323	\$90.00	\$2,430	\$3,753.00			
		SUB	TOTALS:	Materials:	\$12,335	Labor:	\$10,716	\$23,050.50			
TOTAL:											

Schlegel Hall

Lighting Upgrades

Measure Summary								
Electrical Energy	Savings							
Electrical Demand Savings	40.0	Avg. kW/Month						
Electrical Consumption Savings	140,696	kWh/Year						
Fossil Fuel Energ	y Savings							
Fossil Fuel Savings	(73.7)	mmBtu/Year						
Fuel Conversion	10.000	Therms/mmBtu						
Natural Gas Savings	(737)	Therms/Year						
Water Savi	ngs							
Water Consumption Savings	-	kGal/Year						
0&M Savir	gs							
Annual O&M Savings	-\$176	/Year						

Project: Schlegel Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

Building Type: University (Univ) Nearest City: Buffalo System Type: VAV Econ % of Building Cooled: 90% % of Building Heated: 90%

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.200 HVACc: 0.104 HVACg: -0.012

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year Electric:

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

Fuel³ HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

Lighting Monthly kW Savings 37.7 kW Total Annual Lighting Savings kWh 136,439 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	40.0
Electric Consumption Savings (kWh)	140,696
Fuel Savings (mmBtu)	(73.7)

Notes

(1) Based on NY Tech Manual Method: Version 7

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Schlegel Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor Lighting = 0.9

Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = \sum (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- P Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- L Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- Q Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast + Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

Ε F G Р Q R Measure Details **Lighting Description Energy Use** (1) PHILIPS: 7T8/MAS/24-835/IF10/P 1 AAAT8 1-F17T8/1-EB 1-LED7T8/RL 2,346 90% 20 7 2 0.040 0.014 0.036 0.013 0.023 94 33 61 10/1 & (1) ICN-2P16-TLED-N (1) PHILIPS: 7T8/MAS/24-835/IF10/P 2 AAATSTR1 1-F17T8/1-FB 1-I FD7T8/RI 2 346 90% 7 0.006 0.012 20 1 0.020 0.007 0.018 47 16 31 1 10/1 & (1) ICN-2P16-TLED-N (1) PHILIPS: 8.5T8/MAS/36-835/IF13/P 3 AATSTR1 1-F30T8/1-EB 1-LED8.5T8/RL 2,346 90% 32 9 7 7 0.224 0.060 0.202 0.054 0.148 526 140 386 10/1 & (1) ICN-3P16-TLED-N (1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4 ACANSPLV 1-CFQ26/1-SMB 1-LED PLH/RL 5,913 90% 33 9 15 15 0.495 0.135 0.446 0.122 0.324 2,927 798 2,129 4P & (1) ICF-2S13-H1-LD (1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 1-CFQ26/1-SMB 5 ARCAN6PLH 1-LED PLH/RL 3,684 90% 33 9 16 16 0.528 0.144 0.475 0.130 0.346 1,945 530 1,415 4P & (1) ICF-2S13-H1-LD (1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 6 ARCAN6PLV 1-CFQ26/1-SMB 1-LED PLH/RL 2,346 90% 33 9 34 34 1.122 0.306 1.010 0.275 0.734 2,633 718 1,915 4P & (1) ICF-2S13-H1-LD (1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 7 ARCAN8PLH 1-CFQ26/1-SMB 1-LED PLH/RL 5,913 90% 33 9 0.264 0.072 0.238 0.065 0.173 1,561 426 1,135 4P & (1) ICF-2S13-H1-LD (1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 90% 8 ARCANSPLV 1-CFQ26/1-SMB 33 0.090 0.081 0.216 1,951 532 1-LED PLH/RL 5,913 9 10 10 0.330 0.297 1,419 4P & (1) ICF-2S13-H1-LD (1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 9 ARCAN8WW 1-CFQ26/1-SMB 1-LED PLH/RL 5,913 90% 33 9 4 4 0.132 0.036 0.119 0.032 0.086 781 213 568 4P & (1) ICF-2S13-H1-LD (1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 10 AT8/INDIRECT 1-F32T8/1-MB 90% 53 53 0.572 1-LED12T8/RL 2.346 32 12 1.696 0.636 1.526 0.954 3.980 1.492 2.487 ICN-3P16-TLED-N (1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 11 ATSTR1 90% 12 1-F32T8/1-MB 1-LED12T8/RL 2 229 32 176 176 5.632 2.112 5.069 1.901 3.168 12.554 4.708 7.846 ICN-3P16-TLED-N (2) PHILIPS: 7T8/MAS/24-835/IF10/P **12** BBBT8 2-F17T8/1-EB 2-LED7T8/RL 2,346 90% 31 14 56 56 0.784 1.562 0.706 0.857 4,073 1,840 2,234 1.736 10/1 & (1) ICN-2P16-TLED-N (2) PHILIPS: 7T8/MAS/24-835/IF10/P 13 BBBT8/WW 2-F17T8/1-EB 2-LED7T8/RL 2,346 90% 31 14 6 6 0.186 0.084 0.167 0.076 0.092 436 197 239 10/1 & (1) ICN-2P16-TLED-N (2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 14 BBT8W/D/IND 2-F25T8/1-EB 2-LED8.5T8/RL 2,346 90% 46 18 7 0.322 0.126 0.290 0.113 0.176 756 296 460 10/1 & (1) ICN-3P16-TLED-N (2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 15 BRCAN10PLH 2-CFQ26/1-SMB 2-LED PLH/RL 5,792 90% 1.231 21.129 66 18 76 76 5.016 1.368 4.514 3.283 29.053 7.923 4P & (1) ICF-2S13-H1-LD (2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 16 BRCAN6PLH 2-CFQ26/1-SMB 2-LED PLH/RL 3,484 90% 66 18 32 32 2.112 0.576 1.901 0.518 1.382 7,359 2,007 5,352 4P & (1) ICF-2S13-H1-LD (2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 17 BRCAN6PLV 2-CFQ26/1-SMB 2-LED PLH/RL 5,913 90% 66 18 5 5 0.330 0.090 0.297 0.081 0.216 1,951 532 1,419 4P & (1) ICF-2S13-H1-LD (2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 18 BRCAN8/WW 2-CFQ26/1-SMB 2-LED PLH/RL 5,913 90% 66 18 10 10 0.660 0.180 0.594 0.162 0.432 3,903 1,064 2,838 4P & (1) ICF-2S13-H1-LD (2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 90% 19 BRCAN8PLH 2-CFQ26/1-SMB 2-LED PLH/RL 2610 66 18 168 168 11.088 3.024 9.979 2.722 7.258 28.945 7.894 21.051 4P & (1) ICF-2S13-H1-LD

Ε F G Р Q R Measure Details **Lighting Description Energy Use** 70 (2) PHILIPS: 13T8-6U/MAS/24-20 BT12UTR 2-F34T12U/1-EB 2-LED13UT8/RL 1,877 90% 68 26 1 1 0.068 0.026 0.061 0.023 0.038 128 49 79 835/IF20/P 10/1 & (1) ICN-2P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 90% 21 BT12W/WM 2-34T12/1-MB 2-LED12T8/RL 7,337 68 24 26 26 1.768 0.624 1.591 0.562 1.030 12,971 4,578 8,393 ICN-3P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 22 BT8 2-F32T8/1-EB 2-LED12T8/RL 2,280 90% 59 24 156 156 9.204 3.744 8.284 3.370 4.914 20,987 8,537 12,450 ICN-3P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 90% **23 BT8IND** 2-F32T8/1-EB 2-LED12T8/RL 1,312 59 24 58 58 3.422 1.392 3.080 1.253 1.827 4,491 1,827 2,664 ICN-3P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 24 BT8TR 90% 0.086 0 126 2-F32T8/1-EB 2-LED12T8/RL 939 59 24 4 4 0.236 0.096 0 212 222 90 131 ICN-3P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 25 BT8TR1 2-F32T8/1-EB 2-LED12T8/RL 3,387 90% 59 24 22 22 1.298 0.528 1.168 0.475 0.693 4,397 1,789 2,608 ICN-3P16-TI FD-N (2) PHILIPS: 13T8-6U/MAS/24-26 BT8UTR 2-F32T8U/1-EB 2-LED13UT8/RL 2,145 90% 59 26 7 0.413 0.182 0.372 0.164 0.208 886 390 496 835/IF20/P 10/1 & (1) ICN-2P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 27 BT8W/D/IND 2-F32T8/1-EB 2,346 90% 0.221 575 2-LED12T8/RL 59 24 7 7 0.413 0.168 0.372 0.151 969 394 ICN-3P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 28 BT8W/P 2-F32T8/1-EB 2-LED12T8/RL 7 3 3 7 90% 59 24 2 2 0.118 0.048 0.043 0.063 866 352 514 0.106 ICN-3P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 2-F32T8/1-EB 29 BT8WM 2-LED12T8/RL 1.877 90% 59 24 8 8 0.472 0.192 0.425 0.173 0.252 886 360 526 ICN-3P16-TLED-N (3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 30 CT12TR 3-F34T12/1-MB 3-LED12T8/RL 1,652 90% 102 36 5 5 0.510 0.180 0.459 0.162 0.297 842 297 545 ICN-3P16-TLED-N (3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 31 CT8TR 3-F32T8/1-EB 3-LED12T8/RL 1,972 90% 90 36 107 107 9.630 3.852 8.667 3.467 5.200 18,989 7,596 11,394 ICN-3P16-TLED-N (3) PHILIPS: 12T8/48-3500/IF/10-1 & (2) 32 CT8TR 2s 90% 1.458 0.875 3-F32T8/2-EB 3-LED12T8/RL 1 554 90 36 18 18 1 620 0.648 0.583 2.517 1 007 1 510 ICN-3P16-TLED-N 33 FL00D 1-HPS150/1-CWA 1-LED42FL/NF (1) RAB: (1) FFLED39TN/PCT 3,690 0% 190 42 5 5 0.950 0.210 0.000 0.000 0.000 3,506 775 2,731 34 HPS70WP 1-HPS70/1-CWA 1-LED20WP/NF (1) RAB: (1) WPLED18N/PC 2,314 90% 95 20 8 8 0.760 0.160 0.684 0.144 0.540 1,759 370 1,389 35 LED LED Leave As Is I FAVE AS IS 4.108 90% 15 15 35 35 0.525 0.525 0.473 0.473 0.000 2.157 2 157 0 36 PENDANT 0 1-HPS70/1-CWA LEAVE AS IS LEAVE AS IS 3,690 0% 95 95 1 1 0.095 0.095 0.000 0.000 0.000 351 351 PHILIPS: 8.5PL-C/T LED/26V-3500 IF 4P 37 WALL SCONCE 2-CFQ26/1-SMB 2-LED PLH/RL 3,018 45% 66 18 12 12 0.792 0.216 0.356 0.097 0.259 2,390 652 1,739 & (1) ICF-2S13-H1-LD 38 WM SCONCE 1-HPS70/1-CWA 1-LED20WP/NF (1) RAB: (1) WPLED18N/PC 8,760 90% 95 20 21 1.995 0.420 1.796 0.378 17,476 3,679 13,797 21 1.418 39 SENSORS None Occupancy Sensor Lutron 37 -0.133 -786 786 TOTAL: 1,189 1,226 66.2 23.1 58.3 20.5 37.7 202,263 65,825 136,439

					ВВ				DD	FF Operation	tion and Maintenance							'n	щ	NN
			0	ont Lav			Dranas	ad Laus		Lamp		0	Flooring	wlee			Flactus	mlaa	Electronics	Total
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	rent Lar	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	red Lam	Maintenance Cost	Savings Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Ser Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Savings Savings	Maintenance Savings
1	AAAT8	1	\$7.00	20,000	\$2	1	\$17.00	70,000	\$1	\$1	1	\$25.00	50,000	\$2	1	\$25.00	50,000	\$2	\$0	\$1
2	AAAT8TR1	1	\$7.00	20,000	\$1	1	\$17.00	70,000	\$1	\$0	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$0
3	AAT8TR1	1	\$7.00	20,000	\$6	1	\$18.00	70,000	\$4	\$2	1	\$25.00	50,000	\$8	1	\$25.00	50,000	\$8	\$0	\$2
4	ACAN8PLV	1	\$10.00	15,000	\$59	1	\$38.00	50,000	\$67	-\$8	1	\$30.00	50,000	\$53	1	\$20.00	50,000	\$35	\$18	\$9
5	ARCAN6PLH	1	\$10.00	15,000	\$39	1	\$38.00	50,000	\$45	-\$6	1	\$30.00	50,000	\$35	1	\$20.00	50,000	\$24	\$12	\$6
6	ARCAN6PLV	1	\$10.00	15,000	\$53	1	\$38.00	50,000	\$61	-\$7	1	\$30.00	50,000	\$48	1	\$20.00	50,000	\$32	\$16	\$9
7	ARCAN8PLH	1	\$10.00	15,000	\$32	1	\$38.00	50,000	\$36	-\$4	1	\$30.00	50,000	\$28	1	\$20.00	50,000	\$19	\$9	\$5
8	ARCAN8PLV	1	\$10.00	15,000	\$39	1	\$38.00	50,000	\$45	-\$6	1	\$30.00	50,000	\$35	1	\$20.00	50,000	\$24	\$12	\$6
9	ARCAN8WW	1	\$12.00	15,000	\$19	1	\$38.00	20,000	\$45	-\$26	1	\$30.00	50,000	\$14	1	\$20.00	50,000	\$9	\$5	-\$21
10	AT8/INDIRECT	1	\$7.00	20,000	\$44	1	\$17.00	70,000	\$30	\$13	1	\$25.00	50,000	\$62	1	\$25.00	50,000	\$62	\$0	\$13
11	AT8TR1	1	\$7.00	20,000	\$137	1	\$17.00	70,000	\$95	\$42	1	\$25.00	50,000	\$196	1	\$25.00	50,000	\$196	\$0	\$42
12	вввт8	2	\$7.00	20,000	\$92	2	\$17.00	70,000	\$64	\$28	1	\$25.00	50,000	\$66	1	\$25.00	50,000	\$66	\$0	\$28
13	BBBT8/WW	2	\$7.00	20,000	\$10	2	\$17.00	70,000	\$7	\$3	1	\$25.00	50,000	\$7	1	\$25.00	50,000	\$7	\$0	\$3
14	BBT8W/D/IND	2	\$7.00	20,000	\$11	2	\$55.00	70,000	\$26	-\$14	1	\$25.00	50,000	\$8	1	\$25.00	50,000	\$8	\$0	-\$14
15	BRCAN10PLH	2	\$10.00	15,000	\$587	2	\$38.00	50,000	\$669	-\$82	1	\$30.00	50,000	\$264	1	\$20.00	50,000	\$176	\$88	\$6
16	BRCAN6PLH	2	\$10.00	15,000	\$149	2	\$38.00	50,000	\$169	-\$21	1	\$30.00	50,000	\$67	1	\$20.00	50,000	\$45	\$22	\$1
17	BRCAN6PLV	2	\$10.00	15,000	\$39	2	\$38.00	50,000	\$45	-\$6	1	\$30.00	50,000	\$18	1	\$20.00	50,000	\$12	\$6	\$0
18	BRCAN8/WW	2	\$10.00	15,000	\$79	2	\$38.00	20,000	\$225	-\$146	1	\$30.00	50,000	\$35	1	\$20.00	50,000	\$24	\$12	-\$134
19	BRCAN8PLH	2	\$10.00	15,000	\$585	2	\$38.00	50,000	\$667	-\$82	1	\$30.00	50,000	\$263	1	\$20.00	50,000	\$175	\$88	\$6

					ВВ				DD	FF Operation	and Ma	intenance		НН				ມ	щ	NN
			Curr	ent Laı	mps		Propos	ed Lam	ns	Lamp Savings		Current	t Electro	onics	P	roposed	l Electro	nics	Electronics Savings	Total Savings
Measure # Fixture code		Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
20 BT12UTR		2	\$15.00	20,000	\$3	2	\$25.00	70,000	\$1	\$1	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$1
21 BT12W/WM		2	\$7.00	20,000	\$134	2	\$17.00	70,000	\$93	\$41	1	\$25.00	50,000	\$95	1	\$25.00	50,000	\$95	\$0	\$41
22 BT8		2	\$7.00	20,000	\$249	2	\$17.00	70,000	\$173	\$76	1	\$25.00	50,000	\$178	1	\$25.00	50,000	\$178	\$0	\$76
23 BT8IND		2	\$7.00	20,000	\$53	2	\$17.00	70,000	\$37	\$16	1	\$25.00	50,000	\$38	1	\$25.00	50,000	\$38	\$0	\$16
24 BT8TR		2	\$7.00	20,000	\$3	2	\$17.00	70,000	\$2	\$1	1	\$25.00	50,000	\$2	1	\$25.00	50,000	\$2	\$0	\$1
25 BT8TR1		2	\$7.00	20,000	\$52	2	\$17.00	70,000	\$36	\$16	1	\$25.00	50,000	\$37	1	\$25.00	50,000	\$37	\$0	\$16
26 BT8UTR		2	\$15.00	20,000	\$23	2	\$25.00	70,000	\$11	\$12	1	\$25.00	50,000	\$8	1	\$25.00	50,000	\$8	\$0	\$12
27 BT8W/D/IND)	2	\$7.00	20,000	\$11	2	\$17.00	70,000	\$8	\$4	1	\$25.00	50,000	\$8	1	\$25.00	50,000	\$8	\$0	\$4
28 BT8W/P		2	\$7.00	20,000	\$10	2	\$17.00	70,000	\$7	\$3	1	\$25.00	50,000	\$7	1	\$25.00	50,000	\$7	\$0	\$3
29 BT8WM		2	\$7.00	20,000	\$11	2	\$17.00	70,000	\$7	\$3	1	\$25.00	50,000	\$8	1	\$25.00	50,000	\$8	\$0	\$3
30 CT12TR		3	\$7.00	20,000	\$9	3	\$17.00	70,000	\$6	\$3	2	\$50.00	50,000	\$17	2	\$50.00	50,000	\$17	\$0	\$3
31 CT8TR		3	\$7.00	20,000	\$222	3	\$17.00	70,000	\$154	\$68	1	\$25.00	50,000	\$105	1	\$25.00	50,000	\$105	\$0	\$68
32 CT8TR 2s		3	\$7.00	20,000	\$29	3	\$17.00	70,000	\$20	\$9	2	\$50.00	50,000	\$56	2	\$25.00	50,000	\$28	\$28	\$37
33 FLOOD		1	\$15.00	24,000	\$12	1	\$400.00	100,000	\$74	-\$62	1	\$25.00	50,000	\$9	0	\$0.00	0	\$0	\$9	-\$53
34 HPS70WP		1	\$30.00	24,000	\$23	1	\$290.00	100,000	\$54	-\$31	1	\$180.00	50,000	\$67	0	\$0.00	0	\$0	\$67	\$36
35 LED		1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
36 PENDANT		1	\$15.00	24,000	\$2	1	\$15.00	24,000	\$2	\$0	1	\$25.00	50,000	\$2	1	\$25.00	50,000	\$2	\$0	\$0
37 WALL SCONG	CE	2	\$10.00	15,000	\$48	2	\$38.00	20,000	\$138	-\$89	1	\$30.00	50,000	\$22	1	\$20.00	50,000	\$14	\$7	-\$82
38 WM SCONCE	:	1	\$15.00	24,000	\$115	1	\$290.00	100,000	\$533	-\$419	1	\$25.00	50,000	\$92	0	\$0.00	0	\$0	\$92	-\$327
39 SENSORS																				
то	OTAL:				\$2,991				\$3,657	-\$667				\$1,964				\$1,474		-\$176

MATERIAL & LABOR COST ESTIMATE

Project : Schlegel Hall

Project # : 402805

Measure : EEM 1.1 - Lighting Upgrades

Estimated by: DB2

Checked by:

Approved by:

Date: 04/06/21 File: Cost Estimate

Item	Description	Ot-	l let	Mate	rial	Lab	or	Total Cost
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total	Labor & Material
1	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN- 3P16-TLED-N	229	EA	\$42.00	\$9,618	\$49.00	\$11,221	\$20,839.00
2	(1) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & (1) ICN-2P16-TLED-N	3	EA	\$42.00	\$126	\$49.00	\$147	\$273.00
3	(1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	87	EA	\$58.00	\$5,046	\$49.00	\$4,263	\$9,309.00
4	(1) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	7	EA	\$43.00	\$301	\$49.00	\$343	\$644.00
5	(1) RAB: (1) FFLED39TN/PCT	5	EA	\$400.00	\$2,000	\$119.00	\$595	\$2,595.00
6	(1) RAB: (1) WPLED18N/PC	29	EA	\$290.00	\$8,410	\$119.00	\$3,451	\$11,861.00
7	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	283	EA	\$59.00	\$16,697	\$56.00	\$15,848	\$32,545.00
8	(2) PHILIPS: 13T8-6U/MAS/24-835/IF20/P 10/1 & (1) ICN-2P16-TLED-N	8	EA	\$59.00	\$472	\$52.50	\$420	\$892.00
9	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & (1) ICN-2P16-TLED-N	62	EA	\$59.00	\$3,658	\$52.50	\$3,255	\$6,913.00
10	(2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	291	EA	\$96.00	\$27,936	\$49.00	\$14,259	\$42,195.00
11	(2) PHILIPS: 8.5T8/MAS/36-835/IF13/P 10/1 & (1) ICN-3P16-TLED-N	7	EA	\$135.00	\$945	\$49.00	\$343	\$1,288.00
12	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	112	EA	\$79.35	\$8,887	\$59.50	\$6,664	\$15,551.00
13	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (2) ICN-3P16-TLED-N	18	EA	\$101.00	\$1,818	\$85.00	\$1,530	\$3,348.00
14	LEAVE AS IS	36	EA	\$0.00	\$0	\$3.31	\$119	\$119.00
15	PHILIPS: 8.5PL-C/T LED/26V-3500 IF 4P & (1) ICF-2S13-H1-LD	12	EA	\$96.00	\$1,152	\$49.00	\$588	\$1,740.00
16	LUTRON - MS-OPS6M2-DV-WH	17	EA	\$49.00	\$833	\$90.00	\$1,530	\$2,363.00
17	LUTRON - LRF2-OCR2B-P-WH	20	EA	\$55.00	\$1,100	\$120.00	\$2,400	\$3,500.00
		SUB	TOTALS:	Materials:	\$88,999	Labor:	\$66,976	\$155,975.00
								A488 AFT 11
							TOTAL:	\$155,975.00

Wallis Hall

Lighting Upgrades

Measure Summary									
Electrical Energy	Savings								
Electrical Demand Savings	27.6	Avg. kW/Month							
Electrical Consumption Savings	101,710	kWh/Year							
Fossil Fuel Energ	y Savings								
Fossil Fuel Savings	(53.3)	mmBtu/Year							
Fuel Conversion	10.000	Therms/mmBtu							
Natural Gas Savings	(533)	Therms/Year							
Water Savi	ngs								
Water Consumption Savings	-	kGal/Year							
O&M Savir	ngs								
Annual O&M Savings	\$1,251	/Year							

Building Type: University (Univ)

Nearest City: Buffalo

Project: Wallis Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

BUILDING ASSUMPTIONS

HVAC FACTORS (reference NY TRM ver. 7 Appendix D)

HVACd: 0.200 HVACc: 0.104

HVACg: -0.012

System Type: VAV Econ % of Building Cooled: 90% % of Building Heated: 90%

HVAC Electric Demand kW Savings = HVACd x Total Annual Demand Savings (kW) x % of Building Cooled x 4/12 Cooling Months/Year Electric:

 $HVAC\ Electric\ Consumption\ kWh\ Savings = HVACc\ x\ Total\ Annual\ Lighting\ Savings\ kWh\ x\ \%\ of\ Building\ Cooled\ x\ 4/12\ cooling\ months/year\ and\ support for\ the savings\ for\ th$

HVAC Gas Consumption mmBtu Savings = HVACg x Total Annual Lighting Savings kWh x % of Building Heated / 10 (therms per

mmBtu) x (6 /12 heating months per year)

Measure Savings (without HVAC interactive effects)

Lighting Monthly kW Savings 26.0 kW Total Annual Lighting Savings kWh 98,632 kWh

Total Savings with HVAC Interactive Effects

Total Savings	
Avg. Monthly Demand Savings (kW)	27.6
Electric Consumption Savings (kWh)	101,710
Fuel Savings (mmBtu)	(53.3)

Notes

Fuel³

(1) Based on NY Tech Manual Method: Version 7

(2) Total Annual kW Savings (incl. HVAC Correction) only accounts for demand savings associated with 4 summer months (3) HVACg assumes Natural Gas usage. Assume 10 therms = 1 mmBtu; Savings reported in mmBtu

Project: Wallis Hall Project #: 402805

Measure: EEM 1.1 - Lighting Upgrades

Date: 4/6/2021

Assumptions

Coincidence Factor

Lighting = 0.9 Per Energy Savings Calculation and Cost Analysis Handbook Ver. 2

Measure Savings

LIGHTING:

- A Average Annual Hours = \sum (Total Annual Hours per Fixture Code on FRCR) / # New Units
- B Coincidence Factor = See Above
- C Existing Luminaire Watts = Watts/Fixture per NYSERDA Wattage Table Fixture Code
- D New Luminaire Watts = Watts/Fixture per Cut Sheet
- E Total Existing Connected kW = Existing Luminaire Watts x # Existing Units / 1000W/kW
- F Total New Connected kW = Existing Luminaire Watts x # New Units / 1000W/kW
- G Existing Peak kW Demand = Coincidence Factor x Total Existing Connected kW
- H Proposed Peak kW Demand = Coincidence Factor x Total New Connected kW
- Lighting Monthly kW Savings = Existing Peak kW Demand Proposed Peak kW Demand
- P Total Existing Lighting Annual kWh = Total Annual Hours x Total Existing Connected kW
- Q Total New Lighting Annual kWh = Total Annual Hours x Total New Connected kW
- Total Annual Lighting Savings kWh = Total Existing Lighting Annual kWh Total New Lighting Annual kWh

SENSORS: Sensor savings based on 15% kWh reduction and 5% kW reduction in spaces that do not currently have occupancy sensors.

- L Sensor kW Savings = Σ(Total Proposed Connected KW x 5%)
- Q Sensor kWh Savings = Σ(Annual Hours per Fixture Code on FRCR x Total Proposed Connected KW x 15%)

MAINTENANCE:

- AA Maintenance Effort Required (Man-hours) = Old Lamp Unit Labor Hours Required x Lamps Per Fixture x # of Existing Units
- BB Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of Existing Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- CC Maintenance Effort Required (Man-hours) = New Lamp Unit Labor Hours Required x Lamps Per Fixture x # of New Units
- DD Maintenance Cost Per Year = Total Annual Hours x Lamps Per Fixture x # of New Units / Lamp Life (hours) x (Cost Per Lamp + Cost Per Lamp Disposal)
- EE Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- FF Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- GG Maintenance Effort Required (Man-hours) = Old Ballast Unit Labor Hours Required x Ballasts Per Fixture x # of Existing Units
- HH Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of Existing Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- II Maintenance Effort Required (Man-hours) = New Ballast Unit Labor Hours Required x Ballast Per Fixture x # of Existing Units
- JJ Maintenance Cost Per Year = Total Annual Hours x Ballasts Per Fixture x # of New Units / Ballast Life (hours) x (Cost Per Ballast + Cost Per Ballast Disposal)
- KK Maintenance Effort Saved (Man-hours) = Current Maintenance Effort Required (Man-hours) Proposed Maintenance Effort Required (Man-hours)
- LL Total Lamp Savings = Current Maintenance Cost Per Year Proposed Maintenance Cost Per Year
- MM Maintenance Effort Saved (Man-hours) = Lamp Maintenance Effort Saved (Man-hours) + Ballast Maintenance Effort Saved (Man-hours)
- NN Maintenance Savings = Lamp Total Lamp Savings + Ballast Total Lamp Savings

Ε F G Ρ Q R Measure Details **Lighting Description Energy Use** Units otal Existing (1) PHILLIPS: A19/LED/9W 67 1 60WINC 1-160 1-LEDSI/RL 1,314 90% 60 9 1 1 0.060 0.009 0.054 0.008 0.046 79 12 2 AAAAT5STRIP 1-F14T5/1-EB LEAVE AS IS LEAVE AS IS 1.877 90% 14 14 1 1 0.014 0.014 0.013 0.013 0.000 26 26 0 (1) PHILIPS: 8T5HE/22-835/IF10/G/DIM 3 AAT5 STRIP 1-F24T5/1-EB 1-LED8T5/RL 1,877 90% 24 8 1 1 0.024 0.008 0.022 0.007 0.014 45 15 30 10/1 & (1) ICN-2S28-T 4 AHAL PAR 30 6" CAN 1-PAR30 1-LED12/RL 90% 60 12 0.072 0.065 0.259 1,014 203 2,816 6 6 0.360 0.324 811 12PAR30L/EC/F25/940/DIM/120V 6/1 (1) PHILIPS: 5 ARCAN4PAR30 1-PAR30 1-LED12/RL 2,816 90% 60 12 12 12 0.720 0.144 0.648 0.130 0.518 2,027 405 1,622 12PAR30L/EC/F25/940/DIM/120V 6/1 (1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 6 ARCAN6PLV 1-CFQ26/1-SMB 1-LED PLH/RL 3,650 90% 33 9 26 26 0.858 0.234 0.772 0.211 0.562 3,131 854 2.277 4P & (1) ICF-2S13-H1-LD (1) PHILIPS: 14T5HE/46-835/IF20/G/DIM 7 AT5CAB 1-F54T5/1-EB 1-LED14T5/RL 1,877 90% 59 14 1 0.059 0.014 0.053 0.013 0.041 111 26 84 1 10/1 & (1) ICN-2S28-T (1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 8 ATSBX1 12 29 1-F32T8/1-MB 1-LED12T8/RL 5,913 90% 32 29 0.928 0.348 0.835 0.313 0.522 5,487 2,058 3,430 ICN-3P16-TLED-N (1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 9 ATSTR1 1-F32T8/1-MB 1-LED12T8/RL 5,913 90% 32 12 35 35 1.120 0.420 1.008 0.378 0.630 6,623 2,483 4,139 ICN-3P16-TLED-N (4) PHILIPS: 12T8/48-3500/IF/10-1 & 8' 10 B8T12S 2-F96T8/1-EB 4-LED12T8/R 2,102 90% 116 86 5 5 0.580 0.430 0.522 0.387 0.135 1,219 904 315 to 4' Retrofit Kit & (1) ICN-3P16-TLED-N (2) PHILIPS: 7T8/MAS/24-835/IF10/P **11** BBBT8 2-F17T8/1-EB 2-LED7T8/RL 2,319 90% 31 14 17 17 0.527 0.238 0.474 0.214 0.260 1,222 670 10/1 & (1) ICN-2P16-TLED-N (2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 12 BRCAN6PLH 2-CFQ26/1-SMB 2-LED PLH/RL 4,224 90% 66 18 53 53 3.498 0.954 3.148 0.859 2.290 14,774 4,029 10,745 4P & (1) ICF-2S13-H1-I D (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 13 BT8 2-F32T8/1-EB 2-LED12T8/RL 2,229 90% 59 24 4 4 0.236 0.096 0.212 0.086 0.126 526 214 312 ICN-3P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 14 BT8BX 2-F32T8/1-EB 2-LED12T8/RL 2,503 90% 59 24 0.130 0.189 886 360 526 6 6 0.354 0.144 0.319 ICN-3P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 15 BT8IND 2-F32T8/1-EB 2-LED12T8/RL 2,853 90% 59 24 25 25 1.475 0.600 1.328 0.540 0.788 4,209 1,712 2,497 ICN-3P16-TLED-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 16 BT8TR 2-F32T8/1-EB 2-LED12T8/RL 2,732 90% 59 24 29 29 1.711 0.696 1.540 0.626 0.914 4,674 1,901 2,773 ICN-3P16-TI FD-N (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 17 BT8TR1 2-F32T8/1-EB 2-LED12T8/RL 2,924 90% 59 24 71 71 1.534 2.237 4.189 1.704 3.770 12.249 4,983 7.266 ICN-3P16-TLED-N 18 BT8U 5 2-F31T8U/1-EB 1-LED/NF 90% 25 0.122 2.816 59 4 4 0.236 0.100 0.212 0.090 665 282 383 EVOKIT/2X2/P/32L/25W/835/2/G4 (2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) 19 BT8W 2-F32T8/1-EB 2-LED12T8/RL 2,747 90% 59 24 57 57 3.363 1.368 3.027 1.231 1.796 9,237 3,757 5,479 ICN-3P16-TLED-N

					A	В	c Measu	D ire Deta	ils		E	F	G	н	L	Р	Q	R
				Lighting Description										En	ergy U:	se		
Measure #	Fixture code	Existing Equipment	Replacement Equipment	Replacement Model #	Total Annual Hours	Coincidence Factor	Existing Luminaire Watts	New Luminaire Watts	# of Existing Units	# of New Units	Total Existing Connected kW	Total New Connected kW	Existing Peak KW Demand	Proposed Peak kW Demand	Lighting Monthly kW Savings	Total Existing Lighting Annual KWh	Total New Lighting Annual kWh	Total Annual Lighting Savings KWh
20	BT8W DEC	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,877	90%	59	24	13	13	0.767	0.312	0.690	0.281	0.410	1,440	586	854
21	CFLSI	1-CFL13	1-LEDSI/RL	(1) PHILLIPS: A19/LED/9W	2,346	90%	13	9	19	19	0.247	0.171	0.222	0.154	0.068	580	401	178
22	CT8TR	3-F32T8/1-EB	3-LED12T8/RL	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	3,374	90%	90	36	71	71	6.390	2.556	5.751	2.300	3.451	21,557	8,623	12,934
23	CT8TR 2s	3-F32T8/2-EB	3-LED12T8/RL	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (2) ICN-3P16-TLED-N	2,791	90%	90	36	121	121	10.890	4.356	9.801	3.920	5.881	30,393	12,157	18,236
24	D(B)T8BX	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	1,877	90%	59	24	2	2	0.118	0.048	0.106	0.043	0.063	222	90	131
25	D(B)T8TR	2-F32T8/1-EB	2-LED12T8/RL	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,816	90%	59	24	61	61	3.599	1.464	3.239	1.318	1.922	10,134	4,122	6,012
26	DT8TR	4-F32T8/1-EB	4-LED12T8/RL	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	2,816	90%	112	48	20	20	2.240	0.960	2.016	0.864	1.152	6,307	2,703	3,604
27	HPS150WP	1-HPS150/1-CWA	1-LED42FL/NF	(1) RAB: (1) FFLED39TN/PCT	3,690	0%	190	42	2	2	0.380	0.084	0.000	0.000	0.000	1,402	310	1,092
28	HPS250FL	1-HPS250/1-CWA	1-LED79FL/NF	(1) RAB: (1) FXLED78TN/PCT	3,690	0%	295	79	1	1	0.295	0.079	0.000	0.000	0.000	1,089	292	797
29	INCSI	1-160	1-LEDSI/RL	(1) PHILLIPS: A19/LED/9W	2,315	90%	60	9	3	3	0.180	0.027	0.162	0.024	0.138	417	63	354
30	LARGE PENDANT 4SI	4-1100	1-LEDSI/RL	(1) PHILLIPS: A19/LED/13W	5,913	90%	400	52	1	1	0.400	0.052	0.360	0.047	0.313	2,365	307	2,058
31	LED	LED	Leave As Is	LEAVE AS IS	2,738	90%	15	15	24	24	0.360	0.360	0.324	0.324	0.000	986	986	0
32	LED S	LED	Leave As Is	LEAVE AS IS	1,314	90%	15	15	2	2	0.030	0.030	0.027	0.027	0.000	39	39	0
33	LED80FL	LED	Leave As Is	LEAVE AS IS	3,690	0%	80	80	1	1	0.080	0.080	0.000	0.000	0.000	295	295	0
34	LEDBRCAN6	LED	Leave As Is	LEAVE AS IS	5,913	90%	12	12	7	7	0.084	0.084	0.076	0.076	0.000	497	497	0
35	MR16	1-MR16	1-LEDMR16/RL	(1) PHILIPS MR16/GU10/PAR16	4,468	90%	50	7	15	15	0.750	0.105	0.675	0.095	0.581	3,351	469	2,882
36	PAR20	1-PAR20	1-LED6.5/RL	(1) PHILIPS: LEDspot 50W PAR20 865 100-240V 25D ND S0	2,816	90%	50	6.5	3	3	0.150	0.020	0.135	0.018	0.117	422	55	367
37	PAR20 RCAN4	1-PAR20	1-LED6.5/RL	(1) PHILIPS: LEDspot 50W PAR20 865 100-240V 25D ND S0	2,816	90%	50	6.5	4	4	0.200	0.026	0.180	0.023	0.157	563	73	490
38	PAR30	1-PAR30	1-LED12/RL	(1) PHILIPS: 12PAR30L/EC/F25/940/DIM/120V 6/1	2,647	90%	60	12	15	15	0.900	0.180	0.810	0.162	0.648	2,382	476	1,906
39	PLH	1-CFQ26/1-SMB	1-LED PLH/RL	(1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	1,314	90%	33	9	2	2	0.066	0.018	0.059	0.016	0.043	87	24	63
40	SENSORS	None	Occupancy Sensor	Lutron	0					118					-0.398		-3,248	3,248
	TOTAL:								770	888	48.4	18.6	42.9	16.5	26.0	152,729	54,097	98,632

					ВВ				DD	FF Operation	and Ma	intenance		нн				וו	ш	NN
			0	ent Lan	222		Dropes	ed Lam		Lamp		Current	: Electro	mlaa		roposed	Electro	nlaa	Electronics Savings	Total Savings
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Savings Savings Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Sal	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost 8	Total Electronics Savings	Maintenance Savings
1	60WINC	1	\$4.00	1,000	\$5	1	\$5.52	15,000	\$0	\$5	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$5
2	AAAAT5STRIP	1	\$0.00	15,000	\$0	1	\$0.00	15,000	\$0	\$0	1	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
3	AAT5 STRIP	1	\$7.00	20,000	\$1	1	\$17.00	20,000	\$2	-\$1	1	\$25.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	-\$1
4	AHAL PAR 30 6" CAN	1	\$5.00	1,500	\$56	1	\$20.00	25,000	\$14	\$43	1	\$0.00	0	\$0	1	\$0.00	0	\$0	\$0	\$43
5	ARCAN4PAR30	1	\$5.00	1,500	\$113	1	\$20.00	25,000	\$27	\$86	1	\$0.00	0	\$0	1	\$0.00	0	\$0	\$0	\$86
6	ARCAN6PLV	1	\$10.00	15,000	\$63	1	\$38.00	50,000	\$72	-\$9	1	\$30.00	50,000	\$57	1	\$20.00	50,000	\$38	\$19	\$10
7	AT5CAB	1	\$4.00	20,000	\$0	1	\$25.00	70,000	\$1	\$0	1	\$20.00	50,000	\$1	1	\$25.00	50,000	\$1	\$0	\$0
8	AT8BX1	1	\$7.00	20,000	\$60	1	\$17.00	70,000	\$42	\$18	1	\$25.00	50,000	\$86	1	\$25.00	50,000	\$86	\$0	\$18
9	AT8TR1	1	\$7.00	20,000	\$72	1	\$17.00	70,000	\$50	\$22	1	\$25.00	50,000	\$103	1	\$25.00	50,000	\$103	\$0	\$22
10	B8T12S	2	\$30.00	18,000	\$35	4	\$17.00	70,000	\$10	\$25	1	\$25.00	50,000	\$5	1	\$25.00	50,000	\$5	\$0	\$25
11	вввт8	2	\$7.00	20,000	\$28	2	\$17.00	70,000	\$19	\$8	1	\$25.00	50,000	\$20	1	\$25.00	50,000	\$20	\$0	\$8
12	BRCAN6PLH	2	\$10.00	15,000	\$298	2	\$38.00	50,000	\$340	-\$42	1	\$30.00	50,000	\$134	1	\$20.00	50,000	\$90	\$45	\$3
13	вт8	2	\$7.00	20,000	\$6	2	\$17.00	70,000	\$4	\$2	1	\$25.00	50,000	\$4	1	\$25.00	50,000	\$4	\$0	\$2
14	вт8вх	2	\$7.00	20,000	\$11	2	\$17.00	70,000	\$7	\$3	1	\$25.00	50,000	\$8	1	\$25.00	50,000	\$8	\$0	\$3
15	BT8IND	2	\$7.00	20,000	\$50	2	\$17.00	70,000	\$35	\$15	1	\$25.00	50,000	\$36	1	\$25.00	50,000	\$36	\$0	\$15
16	BT8TR	2	\$7.00	20,000	\$55	2	\$17.00	70,000	\$38	\$17	1	\$25.00	50,000	\$40	1	\$25.00	50,000	\$40	\$0	\$17
17	BT8TR1	2	\$7.00	20,000	\$145	2	\$17.00	70,000	\$101	\$44	1	\$25.00	50,000	\$104	1	\$25.00	50,000	\$104	\$0	\$44
18	BT8U.5	2	\$15.00	24,000	\$14	2	\$75.00	70,000	\$24	-\$10	1	\$0.00	50,000	\$0	0	\$0.00	0	\$0	\$0	-\$10
19	BT8W	2	\$7.00	20,000	\$110	2	\$17.00	70,000	\$76	\$34	1	\$25.00	50,000	\$78	1	\$25.00	50,000	\$78	\$0	\$34

					ВВ				DD	FF Operation	and Ma	intenance		НН				'n	ш	NN
			Curi	ent Lan	nps		Propos	ed Lam	ps	Lamp Savings		Current	t Electro	onics	F	roposed	l Electro	nics	Electronics Savings	Total Savings
Measure #	Fixture code	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Lamps Per Fixture	Cost Per Lamp	Lamp Life (hours)	Maintenance Cost Per Year	Total Lamp Savings	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Ballasts Per Fixture	Cost Per Ballast	Ballast Life (hours)	Maintenance Cost Per Year	Total Electronics Savings	Maintenance Savings
20 BT8V	W DEC	2	\$7.00	20,000	\$17	2	\$17.00	70,000	\$12	\$5	1	\$25.00	50,000	\$12	1	\$25.00	50,000	\$12	\$0	\$5
21 CFLS	SI	1	\$4.00	15,000	\$12	1	\$5.52	15,000	\$16	-\$5	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	-\$5
22 CT8T	rr	3	\$7.00	20,000	\$251	3	\$17.00	70,000	\$175	\$77	1	\$25.00	50,000	\$120	1	\$25.00	50,000	\$120	\$0	\$77
23 СТ8Т	TR 2s	3	\$7.00	20,000	\$355	3	\$17.00	70,000	\$246	\$109	2	\$50.00	50,000	\$675	2	\$25.00	50,000	\$338	\$338	\$446
24 D(B)1	т8вх	2	\$7.00	20,000	\$3	2	\$17.00	70,000	\$2	\$1	1	\$25.00	50,000	\$2	1	\$25.00	50,000	\$2	\$0	\$1
25 D(B)1	T8TR	2	\$7.00	20,000	\$120	2	\$17.00	70,000	\$83	\$37	1	\$25.00	50,000	\$86	1	\$25.00	50,000	\$86	\$0	\$37
26 DT8T	TR	4	\$7.00	20,000	\$79	4	\$17.00	70,000	\$55	\$24	2	\$50.00	50,000	\$113	2	\$50.00	50,000	\$113	\$0	\$24
27 HPS1	150WP	1	\$30.00	24,000	\$9	1	\$400.00	100,000	\$30	-\$20	1	\$180.00	50,000	\$27	0	\$0.00	0	\$0	\$27	\$6
28 HPS2	250FL	1	\$30.00	24,000	\$5	1	\$400.00	100,000	\$15	-\$10	1	\$180.00	50,000	\$13	0	\$0.00	0	\$0	\$13	\$3
29 INCS	61	1	\$4.00	1,000	\$28	1	\$5.52	15,000	\$3	\$25	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$25
30 LARG	GE PENDANT	1	\$4.00	1,000	\$24	1	\$5.52	15,000	\$2	\$21	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$21
31 LED		1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
32 LED	s	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
33 LED8	80FL	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
34 LEDE	BRCAN6	1	\$0.00	50,000	\$0	1	\$0.00	50,000	\$0	\$0	0	\$0.00	0	\$0	0	\$0.00	0	\$0	\$0	\$0
35 MR1	.6	1	\$5.00	2,000	\$168	1	\$11.00	25,000	\$29	\$138	1	\$0.00	0	\$0	0	\$0.00	50,000	\$0	\$0	\$138
36 PAR	20	1	\$5.00	1,500	\$28	1	\$15.00	25,000	\$5	\$23	1	\$0.00	0	\$0	1	\$0.00	0	\$0	\$0	\$23
37 PAR2	20 RCAN4	1	\$5.00	2,000	\$28	1	\$11.00	25,000	\$5	\$23	1	\$0.00	0	\$0	0	\$0.00	50,000	\$0	\$0	\$23
38 PAR	30	1	\$5.00	1,500	\$132	1	\$20.00	25,000	\$32	\$101	1	\$0.00	0	\$0	1	\$0.00	0	\$0	\$0	\$101
39 PLH		1	\$10.00	15,000	\$2	1	\$38.00	50,000	\$2	\$0	1	\$30.00	50,000	\$2	1	\$20.00	50,000	\$1	\$1	\$0
40 SENS	SORS																			
	TOTAL:				\$2,383				\$1,574	\$809				\$1,726				\$1,284		\$1,251

MATERIAL & LABOR COST ESTIMATE

Project : Wallis Hall

Project # : 402805

Measure : EEM 1.1 - Lighting Upgrades

Estimated by: DB2

Checked by:

Approved by:

Date: 04/06/21 File: Cost Estimate

Item	Description	Qty.	Unit	Mate	rial	Lab	or	Total Cost
No.	Description	Qty.	Offic	Unit Price	Total	Unit Price	Total	Labor & Material
1	(1) PHILIPS MR16/GU10/PAR16	15	EA	\$11.00	\$165	\$17.50	\$263	\$427.50
2	(1) PHILIPS: 12PAR30L/EC/F25/940/DIM/120V 6/1	33	EA	\$45.00	\$1,485	\$14.00	\$462	\$1,947.00
3	(1) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN- 3P16-TLED-N	64	EA	\$42.00	\$2,688	\$49.00	\$3,136	\$5,824.00
4	(1) PHILIPS: 14T5HE/46-835/IF20/G/DIM 10/1 & (1) ICN-2S28-T	1	EA	\$50.00	\$50	\$30.10	\$30	\$80.10
5	(1) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	28	EA	\$58.00	\$1,624	\$49.00	\$1,372	\$2,996.00
6	(1) PHILIPS: 8T5HE/22-835/IF10/G/DIM 10/1 & (1) ICN-2S28-T	1	EA	\$42.00	\$42	\$30.10	\$30	\$72.10
7	(1) PHILIPS: EVOKIT/2X2/P/32L/25W/835/2/G4	4	EA	\$150.00	\$600	\$105.00	\$420	\$1,020.00
8	(1) PHILIPS: LEDspot 50W PAR20 865 100- 240V 25D ND S0	7	EA	\$23.43	\$164	\$14.00	\$98	\$262.00
9	(1) PHILLIPS: A19/LED/13W	1	EA	\$160.00	\$160	\$17.50	\$18	\$177.50
10	(1) PHILLIPS: A19/LED/9W	23	EA	\$11.05	\$254	\$17.50	\$403	\$656.65
11	(1) RAB: (1) FFLED39TN/PCT	2	EA	\$400.00	\$800	\$119.00	\$238	\$1,038.00
12	(1) RAB: (1) FXLED78TN/PCT	1	EA	\$400.00	\$400	\$119.00	\$119	\$519.00
13	(2) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN-3P16-TLED-N	268	EA	\$59.00	\$15,812	\$56.00	\$15,008	\$30,820.00
14	(2) PHILIPS: 7T8/MAS/24-835/IF10/P 10/1 & (1) ICN-2P16-TLED-N	17	EA	\$59.00	\$1,003	\$52.50	\$893	\$1,895.50
15	(2) PHILIPS: 8.5PL-C/T LED/26H-3500 IF 4P & (1) ICF-2S13-H1-LD	53	EA	\$96.00	\$5,088	\$49.00	\$2,597	\$7,685.00
16	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (1) ICN- 3P16-TLED-N	91	EA	\$96.22	\$8,756	\$60.27	\$5,485	\$14,240.50
17	(3) PHILIPS: 12T8/48-3500/IF/10-1 & (2) ICN- 3P16-TLED-N	121	EA	\$101.00	\$12,221	\$85.00	\$10,285	\$22,506.00
18	(4) PHILIPS: 12T8/48-3500/IF/10-1 & 8' to 4' Retrofit Kit & (1) ICN-3P16-TLED-N	5	EA	\$93.00	\$465	\$63.00	\$315	\$780.00
19	LEAVE AS IS	35	EA	\$0.00	\$0	\$0.00	\$0	\$0.00
15	LUTRON - MS-OPS6M2-DV-WH	114	EA	\$49.00	\$5,586	\$90.00	\$10,260	\$15,846.00
16	LUTRON - LRF2-OCR2B-P-WH	4	EA	\$55.00	\$220	\$120.00	\$480	\$700.00
		SUB	TOTALS:	Materials:	\$57,583	Labor:	\$51,910	\$109,492.85
							TOTAL	\$400.400.CT
							TOTAL:	\$109,492.85

Technical Appendix 1

Lighting ECM

Cut Sheets

TrueLine, suspended

SP532P LFD29S/940 PSD PI5 SM2 L1410 WH

TrueLine DIRECT/INDIRECT OC - LED Module, system flux 2900 Im - 940 neutral white - Power supply unit with DALI interface - Push-in connector 5-pole - Suspension set 2-wire - 1410 mm - White RAL 9003 - Signal white

Architects need a lighting solution that matches the interior architecture of the property they are working on. They want a light line with an elegant design and very high light levels. Specifiers need luminaires that enable them to save energy while at the same time providing the right level of light, in compliance with office lighting norms. TrueLine, suspended is able to meet both sets of requirements. TrueLine is also available in recessed and surface-mounted versions.

Warnings and Safety

- The product is IPXO & as such is not protected against water ingress & as such we strongly recommend that The environment in which The luminaire is to be installed is suitably checked
- If The above advice is not taken and The luminaires are subject to water ingress, Philips / Signify cannot guarantee safe failure & product warranty will become void

Product data

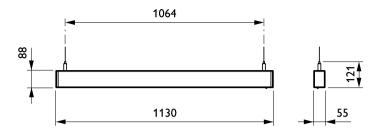
General Information	
Number of light sources	1 pc
Lamp family code	LED29S [LED Module, system ux 2900
	lm]
Beam angle of light source	- °
Light source color	940 neutral white
Light source replaceable	No
Number of gear units	1 unit
Gear	GRT [Gear tray (without gear)]

Driver/power unit/transformer	Power supply unit with DALI interface
Driver included	Yes
Optic type	-
Optical cover/lens type	Polymethyl methacrylate bowl/cover
Luminaire light beam spread	100°
Control interface	DALI
Connection	Push-in connector 5-pole
Cable	Cable 1.5 m with push-in connector 5-pole
Protection class IEC	Safety class I

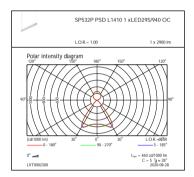
data subject to change

Datasheet, 2020, September 14 Page 212

TrueLine, suspended


Mounting	Suspension set 2-wire
Standard RAL color	Signal white
Glow-wire test	Temperature 650 °C, duration 5 s
Flammability mark	For mounting on normally ammable
	surfaces
CE mark	CE mark
ENEC mark	ENEC mark
UL mark	-
Warranty period	5 years
Constant light output	No
Number of products on MCB of 16 A type B	24
Photobiological risk	Photobiological risk group 1 @ 200mm to
	EN62471
EU RoHS compliant	Yes
Service tag	Yes
Product family code	SP532P [TrueLine DIRECT/INDIRECT OC]
Uni ed glare rating CEN	13
Light Technical	
Saturated Red (R9)	>50
Operating and Electrical	
Input Voltage	220 to 240 V
Input Frequency	50 to 60 Hz
Initial CLO power consumption	- W
Inrush current	19 A
Inrush time	0.28 ms
Power Factor (Min)	0.9
Controls and Dimming	
Dimmable	Yes
Mechanical and Housing	
Housing Material	Aluminum
Re ector material	-
Optic material	-
Optical cover/lens material	Polymethyl methacrylate
Gear tray material	Steel
Fixation material	Stainless steel
Optical cover/lens nish	Frosted
Overall length	1409 mm
Overall width	55 mm
Overall height	88 mm

Length	1410 mm
Color	White RAL 9003
Dimensions (Height x Width x Depth)	88 x 55 x 1409 mm (3.5 x 2.2 x 55.5 in)
Approval and Application	
Ingress protection code	IP20 [Finger-protected]
Mech. impact protection code	IKO2 [O.2 J standard]
Initial Performance (IEC Compliant)	
Initial luminous ux (system ux)	2900 lm
Luminous ux tolerance	+/-10%
Initial LED luminaire e cacy	149 lm/W
Init. Corr. Color Temperature	4000 K
Init. Color Rendering Index	>90
Initial chromaticity	(0.38, 0.38) SDCM <3
Initial input power	19.5 W
Power consumption tolerance	+/-10%
Over Time Performance (IEC Complia	nt)
Control gear failure rate at median useful	5 %
life 50000 h	
Lumen maintenance at median useful life*	L85
50000 h	
Application Conditions	
Ambient temperature range	+10 to +40 °C
Performance ambient temperature Tq	25 °C
Maximum dim level	1%
Suitable for random switching	No
Product Data	
Full product code	871869996347700
Order product name	SP532P LED29S/940 PSD PI5 SM2 L1410
	WH
EAN/UPC - Product	8718699963477
EAN/UPC - Product Order code	
	8718699963477
Order code	8718699963477 910505100140
Order code Numerator - Quantity Per Pack	8718699963477 910505100140 1


TrueLine, suspended

Dimensional drawing

TrueLine suspended SP530P-SP533P

Photometric data

SP532P PSD L1410 1 XLED29S/940 OC

1 x 2900 Im

Polar intensity day am

Country estimation days and secretary and

OFPC1_SP532PPSDL14101xLED29S940OC

IFGU1_SP532PPSDL14101xLED29S940OC

TrueLine, surface mounted

SM530C LFD19S/940 PSD PI5 L1410 WH

TrueLine OC - LED Module, system flux 1900 lm - 940 neutral white - Power supply unit with DALI interface - Push-in connector 5-pole - 1410 mm - White RAL 9003 - Signal white

Architects need a lighting solution that matches the interior architecture of the property they are working on. They want a light line with an elegant design and very high light levels. Specifiers need luminaires that enable them to save energy while at the same time providing the right level of light, in compliance with office lighting norms. And office workers want visually comfortable lighting conditions that help them perform better. TrueLine Recessed is able to meet all these different requirements. TrueLine is also available in recessed and suspended versions.

Warnings and Safety

- The product is IPXO & as such is not protected against water ingress & as such we strongly recommend that The environment in which The luminaire is to be installed is suitably checked
- If The above advice is not taken and The luminaires are subject to water ingress, Philips / Signify cannot guarantee safe failure & product warranty will become void

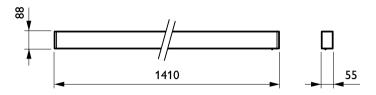
Product data

General Information	
Number of light sources	1 pc
Lamp family code	LED19S [LED Module, system ux 1900
	lm]
Beam angle of light source	- °
Light source color	940 neutral white
Light source replaceable	No

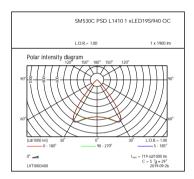
Number of gear units	1 unit
Driver/power unit/transformer	Power supply unit with DALI interface
Driver included	Yes
Optic type	-
Optical cover/lens type	Polymethyl methacrylate bowl/cover
Luminaire light beam spread	100°
Control interface	DALI

data subject to change Datasheet, 2020, September 10

TrueLine, surface mounted


Connection	Push-in connector 5-pole
Cable	-
Protection class IEC	Safety class I
Standard RAL color	Signal white
Glow-wire test	Temperature 650 °C, duration 5 s
Flammability mark	For mounting on normally ammable
	surfaces
CE mark	CE mark
ENEC mark	ENEC mark
UL mark	-
Warranty period	5 years
Constant light output	No
Number of products on MCB of 16 A type B	24
Photobiological risk	Photobiological risk group 1 @ 200mm to
	EN62471
EU RoHS compliant	Yes
Service tag	Yes
Product family code	SM530C [TrueLine OC]
Uni ed glare rating CEN	16
Light Technical	
Saturated Red (R9)	>50
Operating and Electrical	
Input Voltage	220 to 240 V
Input Frequency	50 to 60 Hz
Initial CLO power consumption	- W
Inrush current	19 A
Inrush time	0.28 ms
Power Factor (Min)	0.9
Controls and Dimming	
Dimmable	Yes
Mechanical and Housing	
Housing Material	Aluminum
Re ector material	-
Optic material	-
Optical cover/lens material	Polymethyl methacrylate
Fixation material	Steel
Optical cover/lens nish	Frosted
Overall length	1410 mm
Overall width	55 mm

Overall height	88 mm
Length	1410 mm
Color	White RAL 9003
Dimensions (Height x Width x Depth)	88 x 55 x 1410 mm (3.5 x 2.2 x 55.5 in)
Approval and Application	
Ingress protection code	IP20 [Finger-protected]
Mech. impact protection code	IKO2 [0.2 J standard]
Initial Performance (IEC Compliant)	
Initial luminous ux (system ux)	1900 lm
Luminous ux tolerance	+/-10%
Initial LED luminaire e cacy	144 lm/W
Init. Corr. Color Temperature	4000 K
Init. Color Rendering Index	>90
Initial chromaticity	(0.38, 0.38) SDCM <3
Initial input power	13 W
Power consumption tolerance	+/-10%
Over Time Performance (IEC Complia	
Control gear failure rate at median useful	5 %
life 50000 h	
Lumen maintenance at median useful life*	L85
50000 h	
Application Conditions	
Ambient temperature range	+10 to +40 °C
Performance ambient temperature Tq	25 ℃
Maximum dim level	1%
Suitable for random switching	No
Product Data	
Full product code	871869996333000
Order product name	SM530C LED19S/940 PSD PI5 L1410 WH
EAN/UPC - Product	8718699963330
Order code	910505100126
Numerator - Quantity Per Pack	1
Numerator - Packs per outer box	1
Material Nr. (12NC)	910505100126
Net Weight (Piece)	4.000 kg
<u> </u>	


TrueLine, surface mounted

Dimensional drawing

TrueLine surface-mounted SM530C-SM534C

Photometric data

SM530C PSD L1410 1 xLED19S/940 OC

1 x 1900 Im

Polar intensity dagram

Outsity estimation diagram

Outsity estima

OFPC1_SM530CPSDL14101xLED19S9400C

IFGU1_SM530CPSDL14101xLED19S940OC

Day-Brite LFI by (s) ignify

Linear

FluxStream strip

FSS 2', 3', 4', & 8'

Day-Brite / CFI FluxStream LED strip is a high performing luminaire delivering smooth diffuse light ideal for light industrial, commercial and residential applications with unparalleled energy efficiency.

Project:	
Location:	
Cat.No:	
Туре:	
Lumens:	Qty:
Notes:	

example: FSS440L840-UNV-DIM

Ordering guide - standard & wireless controls

Series	Length (nominal)	Lumens (nomina		Color	temp. (K)	Volta	ige	Driver		Options	
FSS					_		_		_		
FSS FluxStream strip	2 2' length		2000 lumens 3000 lumens		80 CRI, 3000K	UNV	Universal voltage 120-277V	DIM ¹² SDIM ^{6,7}	Dimming Step	EMLED ^{5,6,9} LSXR10	Factory wired Bodine BSL310LP integral emergency pack. Nominal 1100lm 120-347V motion sensor, factory installed on end cap
	3 3' length	30L	3000 lumens	835	80 CRI, 3500K	1204			dimming to 40%	LSXR10ADC ¹⁰	120-347V motion sensor with photocell and hi/lo trim dimming, factory installed on end cap
	4 4' length	40L 55L	3000 lumens 4000 lumens 5500 lumens 7000 lumens		80 CRI, 4000K 80 CRI, 5000K		277V 347V	XDIM ^{4,6,7}	input power MarkX phase dimming	GTD/E ¹³ GTD/SNSR ^{13,14} IAP ^{10,11} IAO ¹⁰	UL924 listed Bodine GTD factory installed on driver input UL924 listed Bodine GTD factory installed between driver & sensor Integral Interact Pro RF sensor, enables wireless connected lighting control Integral Interact Office daylighting and occupancy sensor, enables wireless connected lighting control
	8 ¹ 8' length	80L 110L	6000 lumens 8000 lumens 11000 lumens					DALI ⁸	DALI	IAI 15 SWZDT 10	Integral Interact Industry daylighting and occupancy sensor, enables wireless connected lighting control Integral sensor, daylighting and occupancy, advanced grouping, with dwell time
		140L	14000 lumens							PAF BK ST	Paint after fabrication for extra corrosion resistance (white) Matte black paint color Satin aluminum paint color

- 1 8' is tandem (2) 4' lenses with single piece 8' body.
- 2 Nominal delivered lumens at 25°C ambient.
- Not available in 3' model.
- 4 XDIM option must be speci ed with 120V or 277V option only.
- 5 347V with EMLED only available in 8' models.
- 6 Not available in 2' or 3' model.
- 7 Not available in 4' 70L model or 8' 140L model.
- 8 DALI available up to 80L models only, consult factory for other options.
- **9** EMLED on 8' models illuminates 4' section in emergency mode.
- 10 Available with DIM driver option only.
- 11 Not available in 8' 110L or 140L models.

- 12 Integral controls options dimmable to 5% via wireless wall switch (see p.2). Non-integral controls con gurations are 0-10V dimmable to 1%.
- 13 Must be installed in conjunction with a UL1008 device.
- 14 Must be ordered with an integral sensing option.
- 15 High bay motion detector. Motion sensing zone is extremely limited if used below 15' mounting height.

example: FSS440L840-LV-POE-IAO

Ordering guide - PoE controls

Series	Length (nominal)	Lumens ¹⁷ (nominal)	Color temp. (K)	Voltage	Driver	Options
FSS			_	LV –	POE -	
FSS FluxStream Strip	4 4' length	30L 3000 lumens 40L 4000 lumens 60L 6000 lumens	830 80 CRI, 3000K 835 80 CRI, 3500K 840 80 CRI, 4000K	LV Low voltage	POE Power over ethernet	IAO Integral Interact Office daylighting and occupancy sensor, enables wired connected lighting control EMPOE ¹⁸ 600lm integral emergency driver and battery pack.
	8 8' length ¹⁶	60L 6000 lumens	850 80 CRI, 5000K			PAF Paint after fabrication for extra corrosion resistance (white) BK Matte black paint color ST Satin aluminum paint color

- 16 8' is tandem (2) 4' lenses with single piece 8' body
- 17 Nominal delivered lumens at 25°C ambient.
- 18 EMLED on 8' models illuminates 4' section in emergency mode.

Accessories (order separately)

- FSSD2L 2' Di use replacement lens
- FSSD3L 3' Di use replacement lens
- FSSD4L 4' Di use replacement lens (order two for 8' models)
- FSSWG4 4' wire guard (order two for 8' models)
- FSTH Sliding hanger bracket (set of two)
- LSXR10 Low bay PIR motion sensor, 120-277V (not available with PoE)
- LSXR10ADC Low bay PIR motion sensor with photocell and hi/lo trim dimming, 120-277V (not available with PoE)
- FSSDEK Decorative plastic end cap (set of two)
 (See last page for details and more options)

General notes

Many luminaire components, such as re ectors, refractors, lenses, sockets, lampholders, and LEDs are made from various types of plastics which can be adversely a ected by airborne contaminants. If sulfur based chemicals, petroleum based products, cleaning solutions, or other contaminants are expected in the intended area of use, consult factory for compatibility.

PAF (Paint after fabrication) option is required for all products that will be used in a damp or humid location, such as under a canopy or covered parking area.

2', 3', 4' and 8'

Features

- · Compact design for installation in tight spaces.
- Frosted acrylic diffuser provides wide light distribution and superior glare control.
- Diffuser and LED plate snap into place allowing tool-free access to LED boards and driver.
- 2', 3', 4' and 8' tandem lengths available to accommodate many field applications.
- Up to 100,000 hour predicted L70 LED lumen maintenance provides long service life to reduce maintenance costs.
- Can be surface mounted on ceilings or walls, or suspended via chain, pendants or cables.
- · Wall mountable ADA compliant.
- · Ideal for cold applications (-20°C).
- Continuous row mounting using standard end caps. No extra parts needed.
- 7/8" knock out provided at each end and on base of luminaire. Note: Center knockout is covered and not useable in 4' version with EMLED option.
- Multiple driver options available with 0-10V as standard.
- Enclosed lens minimizes penetration of dust, insects, and other debris into the LED compartment.

- 8' tandem unit is two 4' optical assemblies with a center mullion on a single full length chassis.
- Integral controls options include sensor mounted in control module extension mounted on fixture end (see dimension drawing).
- Fluxstream luminaires are Designlights Consortium® qualifed. Please see the DLC QPL list for exact catalog numbers www.designlights.org/QPL.
- 5 year manufacturer's limited warranty.
 Visit signify.com/warranties for complete warranty information.

Finish

- Baked white acrylic matte high reflectance paint finish.
- PAF (Paint after fabrication) option, which is required for all products that will be used in damp or humid locations, such as a canopy or covered parking area, provides extra corrosion resistance.

Shielding

· Contoured frosted acrylic lens.

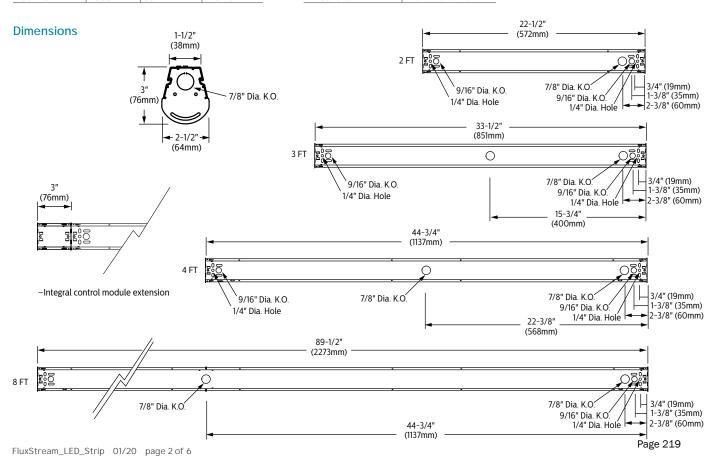
Flectrical

- LED boards and drivers are RoHS (Restriction of Hazardous Substances) compliant. Total system life rated at 50,000 hours. Predicted L70 lifetime based on LED manufacturer's supplied LM-80 data and in-situ laboratory testing.
- Integral emergency driver with EMLED option. To estimate lumen output in emergency mode, multiply emergency pack wattage by efficacy, then by 1.10.
- The GTD/E option is used to bypass wall switches and allow luminaire operation on auxiliary power.
 Generator transfer requires installation in conjunction with a UL1008 listed device.
- •The GTD/SNSR option is used to bypass integrated sensor control in the event of utility power loss. Generator transfer requires installation in conjunction with a UL1008 listed device.

Materials

 Heavy gauge cold rolled steel housing, LED plate, and end caps.

Labels


- cETLus listed
- · Suitable for damp locations.

Performance data

Fixture	Lumens	Wattage	Efficacy
FSS220L	2000lm	17W	123lm/w
FSS330L	3000lm	26W	119lm/w
FSS440L	4000lm	31W	133lm/w
FSS455L	5500lm	45W	129lm/w
FSS470L	7000lm	58W	126lm/w

Ambient temperature data

Configuration	Ambient
FSS470L	-20°C to 30°C
FSS8110L	-20°C to 35°C
FSS8140L	-20°C to 25°C
EMLED option	Minimum 0°C
All others	-20°C to 40°C

2', 3', 4' and 8'

Wireless Controls Options

SpaceWise DT (SWZDT)

- Standalone daylight and occupancy sensing with advanced grouping and dwell time
- Commissioning via compatible Android phone and Philips Field App
- Dimming via compatible Zigbee wireless wall switch only (see link below for details)
- Register for the commissioning app at http:// registration.componentcloud.philips.com/ appregistration/
- · Integral sensing options may not be combined
- For more information including recommended switches, refer to the following: –

SWZDT – www.usa.lighting.philips.com/systems/lighting-systems/spacewise

FluxStream strip shown with integral sensor

Interact Pro (IAP)

- Interact Pro brings the power of connected lighting to small and medium businesses without the complexity usually associated with connected lighting.
- Interact Pro includes an app, a portal and a broad portfolio of wireless Luminaires, lamps and retrofit kits all working on the same system.
- Commissioning via Interact Pro App (Android or iPhone)
- Prepare commissioning remotely via Interact Pro portal
- Requires compatible Interact Pro Gateway and internet connectivity for commissioning
- Compatible with UID8451/10 ZigBee Greenpower wireless dimmer switch
- Compatible with wireless Occ sensor (OCC SENSOR IA CM IP42 WH 10/1) or wireless Day/Occ sensor (OCC MULTI SENSOR IA CM WH 10/1)
- For more information on Interact Pro visit: www.interact-lighting.com/pro
- For more information on Interact Ready visit: www.philips.com/interact-ready

Interact Office (IAO)

- A wireless IoT connected lighting solution for large enterprises that span across multiple floors, buildings and require multiple gateways.
- View all your projects under one dashboard and easily compare insights from multiple projects in one view
- Compatible Zigbee Green Power wall dimmer and wireless Occupancy or Daylight & Occupancy sensors available
- Use Interact Office software and insights to increase building efficiency, achieve building wide integration and optimize space through occupancy analytics.
- Supports advanced IoT Apps on wayfinding, room/desk reservation and offers open APIs
- Requires compatible Interact Office Gateway and internet connectivity for commissioning.
- For more information on Interact Office Wireless, visit: www.interact-lighting.com/office or www.usa.lighting.philips.com/systems/system-areas/offices

Interact Industry (IAI)

- A wireless IoT connected lighting solution for large warehouses, gymnasiums and industrial facilities that require multiple gateways.
- View all your projects under one dashboard and easily compare insights from multiple projects in one view.
- Combine Interact Office and Interact Industry sensors on a single project and for a common dashboard view.
- Compatible Zigbee Green Power wall dimmer.
- Maximize energy savings with integrated sensors and integration with BMS.
- Use Interact Industry software and insights to reduce maintenance cost by remotely configuring and managing the system, creating flexible lighting zones, insights on lamp burn hours etc. Optimize warehouse operations with real time occupancy analytics and minimize potential bottlenecks.
- Requires compatible Interact Gateway and internet connectivity for commissioning.
- For more information on Interact Industry Wireless, visit: www.interact-lighting.com/enus/what-is-possible/interact-industry

Wired Controls Options

Interact Office Wired (PoE)

- PoE based IoT connected lighting solution for large enterprises that span across multiple floors, buildings and require multiple gateways.
- Use Interact Office software and insights to increase building efficiency, achieve building wide integration and optimize space through occupancy analytics.
- Supports advanced IoT Apps on Personal Control, Space Management, wayfinding, room/desk reservation and offers open APIs for light control and data exchange.
- PoE lighting controller is accessible from below.
- Integral sensor option for occupancy sensing (PIR) and/or daylight harvesting available for additional energy savings.

- Optional integral emergency controller and battery pack provides 600lm nominal output.
 Test switch and indicator light mounted on side of chassis on one end.
- Emergency battery has a 3 month pre-installed shelf life, and must be stored and installed in environments of 20C to 30C (-4F to 86F) ambient, and 45-85% relative humidity.
- For more information on Interact Office Wired, visit: www.interact-lighting.com/office or www.usa.lighting.philips.com/systems/systemareas/offices

2', 3', 4' and 8'

Photometry

2' FluxStream LED strip, 2000 nominal delivered lumens

LER - 123

Catalog No. FSS220L840-UNV-DIM Test No. 37164

 S/MH
 1.2

 Lamp Type
 LED

 Lumens
 2034

 Input Watts
 17

Comparative yearly lighting energy cost per 1000 lumens — \$1.95 based on 3000 hrs. and \$.08 pwr KWH.

The photometric results were obtained in the Day-Brite laboratory which is NVLAP accredited by the National Institute of Standards and Technology.

Photometric values based on test performed in compliance with LM-79.

Ca	nd	le	p	O	W	e	r
			•				

Angle	End	45	Cross	Back-45
0	644	644	644	644
5	635	641	646	641
15	610	618	626	618
25	520	567	585	567
35	451	474	495	474
45	371	403	432	403
55	284	324	362	324
65	191	243	288	243
75	96	167	218	167
85	18	105	155	105

Light Distribution Mean % Luminaire 0-30 493 24.2 0-40 790 38.9 0-60 1391 68.4 0-90 1910 93.9 90-180 124 6.1 0-180 2034 100

Average Luminance Zone End 45° C

Zone	End	45°	Cross
15	15155	12916	12955
55	14048	11583	11859
55	12449	10173	10781
'5	9646	8758	9839
35	4206	7611	9181

Coefficients of Utilization

EFFECT	TIVE FLO	OR CAVIT	Y REFLEC	CTANCE 2	0 PER (p	fc=0.20)		
pfc =	20							
Ceil		80			70		5	0
Wall	70	50	30	70	50	30	50	30
RCR								
0	118	118	118	114	114	114	108	108
1	106	100	94	102	96	93	92	88
2	95	86	79	92	83	77	80	73
3	86	76	67	83	73	66	69	63
4	79	67	57	77	65	56	61	55
5	72	59	50	69	57	50	55	47
6	67	54	45	65	52	44	50	41
7	61	48	40	59	47	39	45	38
8	57	44	35	56	42	34	41	34
9	54	40	32	53	40	32	38	30
10	51	38	30	49	37	29	35	29

3' FluxStream LED strip, 3000 nominal delivered lumens

Catalog No. FSS330L840-UNV-DIM

 Test No.
 37132

 S/MH
 1.3

 Lamp Type
 LED

 Lumens
 3045

 Input Watts
 26

Comparative yearly lighting energy cost per 1000 lumens – \$2.02 based on 3000 hrs. and \$.08 pwr KWH.

The photometric results were obtained in the Day-Brite laboratory which is NVLAP accredited by the National Institute of Standards and Technology.

Photometric values based on test performed in compliance with LM-79.

Candlepower

Angle	Ena	45	CIOSS	Back-45
0	982	982	982	982
5	966	978	980	978
15	927	943	948	943
25	849	869	884	869
35	738	772	795	772
45	609	655	690	655
55	435	505	554	505
65	293	356	414	356
75	148	232	301	232
85	28	129	201	129

Light Distribution

Degrees	Lumens	% Luminaire
0-30	759	24.9
0-40	1241	40.8
0-60	2187	71.8
0-90	2918	95.8
90-180	127	4.2
0-180	3045	100

Average Luminance

LER - 119

Zone	End	45°	Cross
45	16859	14162	13823
55	14686	12197	12138
65	13174	10098	10376
75	10412	8269	9110
85	4882	6455	7980

Coefficients of Utilization

EFFECT	EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)							
pfc =	20							
Ceil		80			70		5	0
Wall	70	50	30	70	50	30	50	30
RCR								
0	118	118	118	115	115	115	109	109
1	107	101	96	103	98	93	93	90
2	96	88	81	93	85	79	81	76
3	88	77	68	84	75	67	70	65
5	80	68	58	78	66	57	63	56
5	73	60	51	70	58	51	56	48
6	68	55	45	66	53	45	51	44
7	63	48	40	60	47	40	46	39
8	58	45	36	56	44	35	42	34
9	55	40	33	53	40	33	39	32
10	51	38	30	50	38	30	36	29

Page 221

2', 3', 4' and 8'

Photometry

Catalog No.

4' FluxStream LED strip, 4000 nominal delivered lumens

FSS440L840-UNV-DIM

 Test No.
 37259

 S/MH
 1.3

 Lamp Type
 LED

 Lumens
 4130

 Input Watts
 31

Comparative yearly lighting energy cost per 1000 lumens – \$1.80 based on 3000 hrs. and \$.08 pwr KWH.

The photometric results were obtained in the Day-Brite laboratory which is NVLAP accredited by the National Institute of Standards and Technology.

Photometric values based on test performed in compliance with LM-79.

Candlepower

Angle	End	45	Cross	Back-45
0	1272	1272	1272	1272
5	1250	1265	1277	1265
15	1199	1221	1237	1221
25	1098	1130	1157	1130
35	957	1005	1044	1005
45	791	860	910	860
55	606	690	758	690
65	382	481	598	481
75	194	326	416	326
85	36	196	289	196

Light Distribution

Degrees	Lumens	% Luminaire
0-30	986	23.9
0-40	1614	39.1
0-60	2886	69.9
0-90	3905	94.6
90-180	225	5.4
0-180	4130	100

Average Luminance

LER - 133

	3		
Zone	End	45°	Cross
45	16754	14171	13847
55	15678	12712	12618
65	13207	10415	11375
75	10615	8873	9550
85	5052	7511	8720

Coefficients of Utilization

EFFECT	EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)							
pfc =	20							
Ceil		80			70		5	0
Wall	70	50	30	70	50	30	50	30
RCR								
0	118	118	118	114	114	114	108	108
1	106	101	95	103	97	93	92	89
2	95	86	80	93	84	78	80	75
3	86	76	67	83	73	66	69	64
4	80	67	57	77	65	56	61	55
5	72	59	51	70	57	50	56	47
6	68	54	45	65	53	44	50	42
7	63	48	40	59	47	39	46	38
8	57	44	35	56	44	34	41	34
9	54	40	32	53	40	32	38	30
10	51	38	30	49	37	29	35	28

4' FluxStream LED strip, 5500 nominal delivered lumens

Catalog No. FSS455L840-UNV-DIM

 Test No.
 37262

 S/MH
 1.3

 Lamp Type
 LED

 Lumens
 5759

 Input Watts
 45

Comparative yearly lighting energy cost per 1000 lumens — \$1.86 based on 3000 hrs. and \$.08 pwr

The photometric results were obtained in the Day-Brite laboratory which is NVLAP accredited by the National Institute of Standards and Technology.

Photometric values based on test performed in compliance with LM-79.

Candlepower

Angle	End	45	Cross	Back-45
0	1788	1788	1788	1788
5	1757	1777	1792	1777
15	1685	1715	1736	1715
25	1544	1585	1623	1585
35	1346	1408	1462	1408
45	1113	1202	1271	1202
55	852	960	1055	960
65	575	712	828	712
75	272	443	610	443
85	50	259	389	259

Light Distribution

3		
Degrees	Lumens	% Luminaire
0-30	1384	24
0-40	2264	39.3
0-60	4043	70.2
0-90	5478	95.1
90-180	281	4.9
0-180	5759	100

LER - 129

Average Luminance

Zone	End	45°	Cross		
45	23558	19796	19347		
55	22047	17697	17574		
65	19887	15425	15749		
75	14898	12084	14023		
85	7023	9926	11749		

Coefficients of Utilization

EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)								
pfc =	20							
Ceil		80			70		5	0
Wall	70	50	30	70	50	30	50	30
RCR								
0	118	118	118	115	115	115	108	108
1	106	101	95	103	97	93	93	89
2	95	86	80	93	84	78	80	75
3	86	76	68	83	73	66	69	64
4	80	67	57	77	66	56	61	55
5	72	59	51	70	58	50	56	47
6	68	54	45	65	53	44	50	42
7	63	48	40	60	47	39	46	38
8	57	44	35	56	44	34	41	34
9	54	40	32	53	40	32	38	30
10	51	38	30	49	37	29	36	29

4' FluxStream LED strip, 7000 nominal delivered lumens

Catalog No. FSS470L840-UNV-DIM

 Test No.
 37265

 S/MH
 1.3

 Lamp Type
 LED

 Lumens
 7275

 Input Watts
 58

Comparative yearly lighting energy cost per 1000 lumens – \$1.90 based on 3000 hrs. and \$.08 pwr KWH.

The photometric results were obtained in the Day-Brite laboratory which is NVLAP accredited by the National Institute of Standards and Technology.

Photometric values based on test performed in compliance with LM-79.

Candlepower

Angle	End	45	Cross	Back-45
0	2211	2211	2211	2211
5	2176	2199	2217	2199
15	2088	2124	2148	2124
25	1914	1966	2010	1966
35	1672	1750	1813	1750
45	1379	1502	1580	1502
55	1058	1204	1317	1204
65	714	898	1041	898
75	339	592	776	592
85	63	344	524	344

Light Distribution

Degrees	Lumens	% Luminaire
0-30	1714	23.6
0-40	2809	38.6
0-60	5028	69.1
0-90	6879	94.6
90-180	396	5.4
0-180	7275	100

LER - 126 Average Luminance

Zone	End	45°	Cross
45	29203	24745	24050
55	27371	22192	21938
65	24688	19451	19793
75	18540	16135	17825
85	8824	13174	15831

Coefficients of Utilization

EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)									
pfc =	20								
Ceil	80				70			50	
Wall	70	50	30	70	50	30	50	30	
RCR									
0	118	118	118	114	114	114	108	108	
1	106	100	95	103	97	93	92	89	
2	95	86	79	92	83	78	80	73	
3	86	76	67	83	73	66	69	63	
4	79	67	57	77	65	56	61	55	
5	72	59	50	69	57	48	55	47	
6	67	54	44	65	52	44	50	41	
7	61	47	40	59	46	39	45	38	
8	57	44	35	56	42	34	40	34	
9	54	40	32	52	40	32	38	30	
10	51	37	29	49	37	29	35	28	

2', 3', 4' and 8'

Accessories

Accessory	Description						
Catalog Code							
FSTH	Sliding hanger bracket (pair)						
SV5F12	12" Stem and canopy kit						
SV5F18	18" Stem and canopy kit	White stem and canony kit 1/4" trade size (1/2" O.D.) locknyts included Works					
SV5F24	24" Stem and canopy kit	White stem and canopy kit, 1/4" trade size (1/2" O.D.) locknuts included. Works with 9/16" k.O. on base of housing.					
SV5F36	36" Stem and canopy kit	With 47 to K.O. off base of flousing.					
SV5F48	48" Stem and canopy kit						
FKR-126	Chain hanger set (pair)	Includes two 5' heavy duty link chains with "V" hooks. Attaches to base of housing.					
DACHxx	Adjustable cable hanger kit (single)						
DACHxx-1-SC	Adjustable cable hanger kit with white straight 18/3 cord (single)						
DACHxx-1-CC	Adjustable cable hanger kit with white coiled 18/3 cord (single)	Works with 1/4" hole on base of housing or FSTH hanger bracket.					
DACHxx-2-SC	Adjustable cable hanger kit with white straight 18/4 cord (single)	- -					
DACHxx-2-CC	Adjustable cable hanger kit with white coiled 18/4 cord (single)	xx=cable length in inches, enter 48" to 180" lengths in 12" increments					
DACHxx-1D-SC	Adjustable cable hanger kit with white straight 18/5 cord with						
	dimming leads (single)						
LSXR10	Low bay pir motion sensor (120-277v)	(
LSXR10ADC	Low bay pir motion sensor with photocell and hi/lo trim dimming (120-277v)						
FSSWG4	4' Wire guard (order two for 8' models)						
FSSD2L	2' Di use replacement lens						
FSSD3L	3' Di use replacement lens						
FSSD4L	4' Di use replacement lens (order two for 8' models)						
FSSDEK	Decorative plastic end cap (set of two)						

The information presented in this document is not intended as any commercial offer and does not form part of any quotation or contract.

Pacific LED gen4

WT470C | FD23S/840 PSU WB | 1300

PACIFIC LED WATERPROOF - 840 neutral white - Power supply unit - Wide beam - Screw connection with pug and socket

PacificLED gen4 is a highly efficient and reliable LED waterproof luminaire that offers an excellent quality of light, with a uniform light distribution without visible striping or color artefacts. The range offers modular construction to enable ease of upgrade and maintenance.;The new optical system provides distortion-free lighting with improved visual guidance, which makes it ideally suited to general industry, warehouses and parking areas. The range also offers the option of multiple optics to ensure an optimized lighting scheme for a wide range of applications.;For industrial applications, PacificLED gen4 offers an open product architecture with toolless access to the gear tray and an innovative end-cap design with built-in connector for fast and easy installation. The single-piece mounting clamp ensures no small, loose components which could affect the primary production process.

Product data

General Information	
Beam angle of light source	120 °
Light source color	840 neutral white
Light source replaceable	Yes
Number of gear units	1 unit
Driver/power unit/transformer	Power supply unit
Driver included	Yes
Optic type	Wide beam
Luminaire light beam spread	110° x 110°
Connection	Screw connection with pug and socket
Cable	-
Protection class IEC	Safety class I

Temperature 850 °C, duration 5 s		
For mounting on easily ammable surfaces		
CE mark		
ENEC mark		
5 years		
*-Per Lighting Europe guidance paper		
"Evaluating performance of LED based		
luminaires - January 2018": statistically there		
is no relevant di erence in lumen		
maintenance between B50 and for example		
B10. Therefore, the median useful life (B50)		
value also represents the B10 value.		
No		

Datasheet, 2020, June 4 Page 224

Pacific LED gen4

Number of products on MCB of 16 A type	32
В	
EU RoHS compliant	Yes
Product family code	WT470C [PACIFIC LED WATERPROOF]
Uni ed glare rating CEN	19
Operating and Electrical	
Input Voltage	220-240 V
Input Frequency	50 to 60 Hz
Inrush current	15.1 A
Inrush time	0.23 ms
Power Factor (Min)	0.96
Controls and Dimming	
Dimmable	No
Mechanical and Housing	
Housing Material	Polycarbonate
Re ector material	-
Optic material	Polycarbonate
Optical cover/lens material	Polycarbonate
Fixation material	Steel
Optical cover/lens nish	Clear
Overall length	1321 mm
Overall width	96 mm
Overall height	108 mm
Color	White
Dimensions (Height x Width x Depth)	108 x 96 x 1321 mm (4.3 x 3.8 x 52 in)
Approval and Application	
Ingress protection code	IP66 [Dust penetration-protected, jet-proof
Mech. impact protection code	IKO8 [5 J vandal-protected]
Initial Performance (IEC Compliant)	

Luminous ux tolerance	+/-7%		
Initial LED luminaire e cacy	140 lm/W		
Init. Corr. Color Temperature	4000 K		
Init. Color Rendering Index	>80		
Initial chromaticity	(0.38, 0.38) SDCM <3		
Initial input power	16.4 W		
Power consumption tolerance	+/-11%		

Over Time Performance (IEC Compliant)

Control gear failure rate at median useful 5 % life 50000 h

Control gear failure rate at median useful 10 % life 100000 h

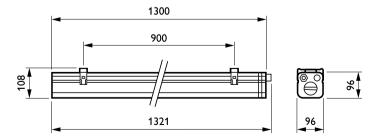
Lumen maintenance at median useful life* L80 50000 h

Application Conditions

Ambient temperature range	-25 to +45 °C
Performance ambient temperature Tq	25 °C
Suitable for random switching	Not applicable

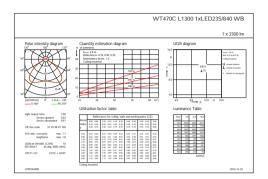
Product Data

Product Data	
Full product code	871869637914100
Order product name	WT470C LED23S/840 PSU WB L1300
EAN/UPC - Product	8718696379141
Order code	910925863791
Numerator - Quantity Per Pack	1
Numerator - Packs per outer box	1
Material Nr. (12NC)	910925863791
Net Weight (Piece)	2.610 kg

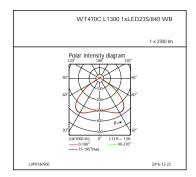


Dimensional drawing

Initial luminous ux (system ux)



2300 lm


Paci c LED WT470C-WT482C

Pacific LED gen4

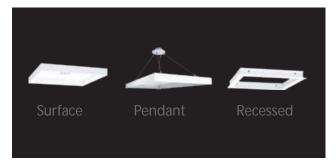
Photometric data

IFGU1_WT470CL13001xLED23S840WB

IFPC1_WT470CL13001xLED23S840WB

EDGE-LIT PANELS

- Ultra e cient, up to 117 lm/W, reducing energy costs by up to 73%
- Perfect for shallow plenums
- Even and di use ambient illumination, ideal for spaces where glare-free lighting is required
- O ered in three sizes and five wattages: 1x4 (17W,30W and 40W), 2x2 (17W, 30W and 40W) and 2x4 (30W, 40W and 50W)
- 0-10V dimmable driver, standard
- Emergency battery backup option available
- Available with factory-installed Lightcloud lighting control system Controller
- Microwave occupancy sensor available
- Available with integrated SmartShift™ circadian control


SmartShift-enabled EZPANs will adjust light levels and color temperature to match the natural pattern of the sun...a soft glow in the morning, energizing light during the day, and a warm hue in the evening.

An NEC-compliant junction box with flying leads makes wiring as simple as twisting a few wire nuts, and integral T-bar clips secure EZPAN to standard T-bar systems.

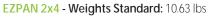
With a height just under 2", the EZPAN is an ideal solution for shallow plenums.

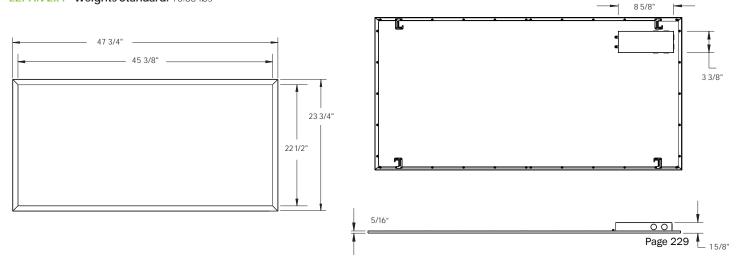
The EZPAN is available in three standard sizes (1x4, 2x2 and 2x4) for use in T-bar grids. We also o er three mounting kits for surface, pendant and recessed applications.

Performance - EZPAN

1 x 4 Input Watts Lumens E cacy (Im/W) Color Accuracy (40W 5000K 40 4,539 115 CRI) 81	4000K 40 4,402 109 82	3500K 40 4,481 112 83	3000K 40 4,332 109 81	30W 5000K 31 3,576 115 81	4000K 32 3,468 109 82	3500K 32 3,530 112 83	3000K 31 3,413 109 81	17W 5000K 20 2,294 116 81	4000K 20 2,224 111 82	3500K 20 2,264 114 83	3000K 20 2,189 111 81
	40W				30W				17W			
2 x 2	5000K	4000K	3500K	3000K	5000K	4000K	3500K	3000K	5000K	4000K	3500K	3000K
Input Watts	40	41	41	40	32	32	32	31	20	20	20	20
Lumens	4,708	4,542	4,571	4,518	3,643	3,515	3,537	3,496	2,181	2,104	2,118	2,093
E cacy (Im/W)	117	112	112	114	114	110	109	111	108	104	104	106
Color Accuracy (CRI) 82	82	83	80	82	82	83	81	82	82	83	81
2 x 4	50W 5000K	4000K	3500K	3000K	40W 5000K	4000K	3500K	3000K	30W 5000K	4000K	3500K	3000K
Input Watts	50	51	51	50	40	41	41	41	32	32	33	32
Lumens	5,500	5,539	5,260	5,245	4,703	4,736	4,498	4,485	3,722	3,748	3,559	3,549
E cacy (Im/W)	110	110	104	105	116	116	109	111	117	116	110	111
Color Accuracy (CRI) 82	81	83	81	82	81	83	81	82	81	83	81
Performance data is based on test performed at 120V.												

Performance - EZPAN with SmartShift

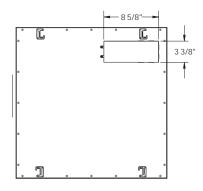

Note: SmartShift is the most advanced—yet easiest to use—circadian lighting system, which syncs white color tuning with the local sunrise and sunset. SmartShift is configurable down to the individual fixture for precision control and customization.


1 x 4	2700K - 6000K
Input Watts	45.8 - 46.5
Lumens	5,123 - 5,335
E cacy (Im/W)	111.6 - 114.9
Color Accuracy (CRI)	83- 87

2 x 2	2700K - 6000K
Input Watts	45.5 - 46.6
Lumens	5,265 - 5,747
E cacy (Im/W)	115.3 - 123.7
Color Accuracy (CRI)	82-86

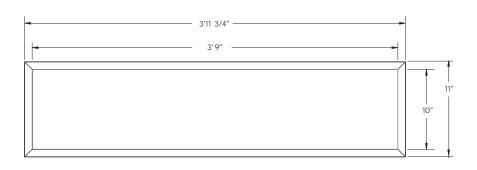
2 x 4	2700K - 6000K
Input Watts	46 - 47.6
Lumens	5,517 - 5,929
E cacy (Im/W)	119.8 - 125.1
Color Accuracy (CRI)	82- 86

Dimensions and weights



EZPAN 2x2 Weights

Standard: 6.22 lbs


23 3/4" 21 3/8" 23 3/4" 21 3/8"

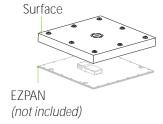
5/16"

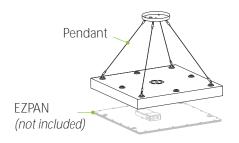
EZPAN 1x4

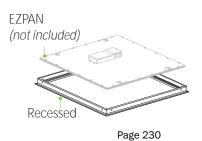
Weights Standard: 6.24 lbs

Mounting Accessory Kits

Surface Mounting Kits

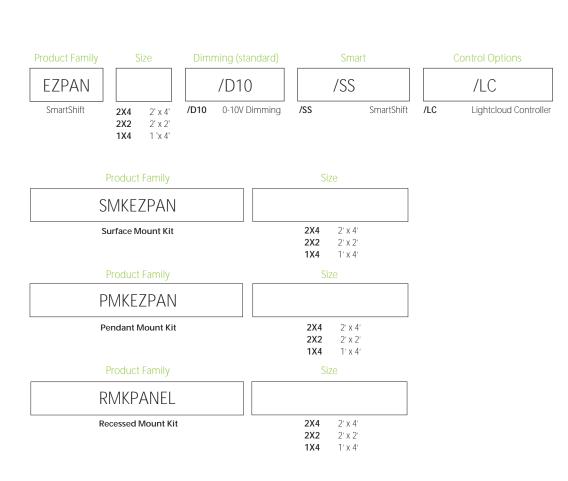

SMKEZPAN - 1X4 Surface Mounting Kit SMEKZPAN - 2X2 Surface Mounting Kit SMKEZPAN - 2X4 Surface Mounting Kit


Pendant Mounting Kits


PMKEZPAN - 1X4 Pendant Mounting Kit PMKEZPAN - 2X2 Pendant Mounting Kit PMKEZPAN - 2X4 Pendant Mounting Kit

Recessed Drywall Mounting Kits

RMKPANEL - 1X4 Recessed Mounting Kit RMKPANEL - 2X2 Recessed Mounting Kit RMKPANEL - 2X4 Recessed Mounting Kit



Ordering information

Project:	Туре:
Prepared By:	Date:

Driver Info		LED Info	
Туре	Constant Current	Watts	105.00W
120V	0.89A	Color Temp	4000K (Neutral)
208V	0.58A	Color Accuracy	74 CRI
240V	0.50A	L70 Lifespan	100,000
277V	0.44A	Lumens	15,099
Input Watts	109.80W	Efficacy	137.5 LPW
Efficiency	96%		

Technical Specifications

Listings

UL Listing:

Suitable for wet locations. Suitable for ground mounting.

IESNA LM-79 & LM-80 Testing:

RAB LED luminaires and LED components have been tested by an independent laboratory in accordance with IESNA LM-79 and LM-80.

DLC Listed:

This product is listed by Design Lights Consortium (DLC) as an ultra-efficient premium product that qualifies for the highest tier of rebates from DLC Member Utilities.DLC Product Code: P0000175Z

LED Characteristics

Lifespan:

100,000-hour LED lifespan based on IES LM-80 results and TM-21 calculations

LEDs:

Multip-chip, high-output, long-life LEDs

Color Consistency:

3-step MacAdam Ellipse binning to achieve consistent fixture-to-fixture color

Color Stability:

LED color temperature is warrantied to shift no more than 200K in CCT over a 5-year period

Color Uniformity:

RAB's range of CCT (Correlated Color Temperature) follows the guidelines of the American National Standard for Specifications for the Chromaticity of Solid State Lighting (SSL) Products, ANSI C78.377-2017.

Construction

IP Rating:

Ingress Protection rating of IP66 for dust and water

EPA:

2

Maximum Ambient Temperature:

Suitable for use in 40°C (104°F)

Effective Projected Area:

EPA = 2

Cold Weather Starting:

Minimum starting temperature is -40°C (-40°F)

Thermal Management:

Superior thermal management with external "Air-Flow" fins

Lens:

Tempered glass lens

Housing:

Die-cast aluminum housing and door frame

Mounting:

Heavy-duty Trunnion mount with stainless steel hardware

Reflector:

Specular, vacuum-metalized polycarbonate

Gaskets:

High-temperature silicone gaskets

Page 1 of 3

Technical Specifications (continued)

Construction

Finish:

Formulated for high durability and long-lasting color

Green Technology:

Mercury and UV free. RoHS-compliant components.

Electrical

Drivers:

Two Drivers, Constant Current, Class 2, 1400mA, 100-277V, 50/60Hz, 0.8A, Power Factor 99%

THD:

6.72% at 120V, 7.8% at 277V

Power Factor:

99.5% at 120V, 92.6% at 277V

Note:

All values are typical (tolerance +/- 10%)

Photocell:

120-277V twistlock photocell included. Photocell is compatible with 120V - 277V.

Optical

NEMA Type:

NEMA Beam Spread of 6H x 6V

Sensor Characteristics

Field & Beam Angles:

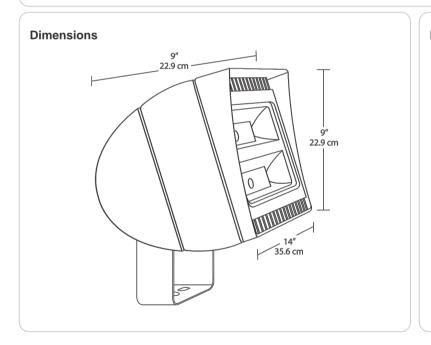
Horizontal Beam Angle (50%): 91.8°, Vertical Beam Angle (50%): 73.5° Horizontal Field Angle (10%): 121.0°, Vertical Field Angle (10%): 108.0°

Other

Warranty:

RAB warrants that our LED products will be free from defects in materials and workmanship for a period of five (5) years from the date of delivery to the end user, including coverage of light output, color stability, driver performance and fixture finish. RAB's warranty is subject to all terms and conditions found at <u>rablighting.com/warranty</u>.

Patents:


The design of FXLED105 is protected by patents pending in US, Canada, China, Taiwan and Mexico

Equivalency:

Equivalent to 750W Pulse Start Metal Halide

Buy American Act Compliance:

RAB values USA manufacturing! Upon request, RAB may be able to manufacture this product to be compliant with the Buy American Act (BAA). Please contact customer service to request a quote for the product to be made BAA compliant.

Features

66% energy cost savings vs. HID

NEMA Type - 6H x 6V

"Air-Flow" technology heat dissipation

100.000-hour LED lifespan

5-Year, No-Compromise Warranty

Page 2 of 3

FXLED105TN/PCT

rdering N	latrix						
Family	Wattage	Mounting	Color Temp	Finish	Driver	Options	Other Option
FXLED	105	Т	N			/PCT	
	78 = 78W 105 = 105W 125 = 125W 150 = 150W	SF = Slipfitter T = Trunnion	Blank = 5000K (Cool) N = 4000K (Neutral) Y = 3000K (Warm)	Blank = Bronze W = White	Blank = Standard /D10 = 0-10V Dimming /BL = Bi-Level /480 = 480V	Blank = No Option /LC = Lightcloud® Control /PCT = 100-277V Twistlock /PCT4 = 480V Twistlock	Blank = Standard USA = BAA Complian

FXLED78T

Project:	Туре:
Prepared By:	Date:

Driver Inf	·o	LED Info			
Туре	Constant Current	Watts	78W		
120V	0.78A	Color Temp	5100K (Cool)		
208V	0.45A	Color Accuracy	75 CRI		
240V	0.39A	L70 Lifespan	100,000 Hours		
277V	0.34A	Lumens	9,989		
Input Watts	78.5W	Efficacy	127.2 lm/W		

Technical Specifications

Listings

UL Listed:

Suitable for wet locations. Suitable for mounting within 1.2m (4ft) of the ground.

IESNA LM-79 & IESNA LM-80 Testing:

RAB LED luminaires and LED components have been tested by an independent laboratory in accordance with IESNA LM-79 and LM-80.

DLC Listed:

This product is listed by Design Lights Consortium (DLC) as an ultra-efficient premium product that qualifies for the highest tier of rebates from DLC Member Utilities. DLC Product Code: P0000170A

Performance

Lifespan:

100,000-Hour LED lifespan based on IES LM-80 results and TM-21 calculations

Electrical

Driver:

Constant Current, Class 2, 120-277V, 50/60 Hz, 120V: 0.66A, 208V: 0.38A, 240V: 0.33A, 277V: 0.29A

THD:

6.12% at 120V, 7.79% at 277V

Power Factor:

99.8% at 120V, 94.9% at 277V

Note:

All values are typical (tolerance +/- 10%)

LED Characteristics

LEDs:

Long-life, high-efficacy, surface-mount LEDs

Color Stability:

LED color temperature is warrantied to shift no more than 200K in color temperature over a 5year period

Color Uniformity:

RAB's range of Correlated Color Temperature follows the guidelines of the American National Standard for Specifications for the Chromaticity of Solid State Lighting (SSL) Products, ANSI C78.377-2017.

Construction

IP Rating:

Ingress Protection rating of IP66 for dust and water

EPA:

2

Ambient Temperature:

Suitable for use in up to -40°C (-40°F) to 40° C (104°F)

Page 1 of 2

Technical Specifications (continued)

Construction

Lens:

Tempered glass lens included

Housing:

Die-cast aluminum housing and door frame

Mounting:

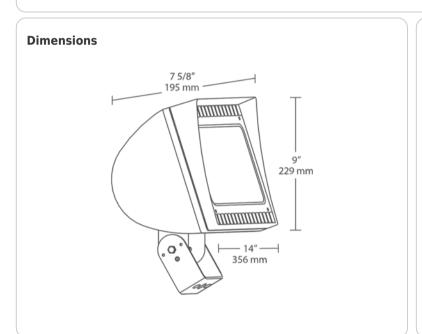
Heavy-duty Trunnion mount with stainless steel hardware

Finish:

Formulated for high durability and long-lasting color

Other

Equivalency:


Equivalent to 250W Metal Halide

Warranty:

RAB warrants that our LED products will be free from defects in materials and workmanship for a period of five (5) years from the date of delivery to the end user, including coverage of light output, color stability, driver performance and fixture finish. RAB's warranty is subject to all terms and conditions found at rablighting.com/warranty.

Buy American Act Compliance:

RAB values USA manufacturing! Upon request, RAB may be able to manufacture this product to be compliant with the Buy American Act (BAA). Please contact customer service to request a quote for the product to be made BAA compliant.

Features

66% energy cost savings vs. HID

NEMA Type - 6H x 6V

"Air-Flow" technology heat dissipation

100,000-hour LED lifespan

5-Year, No-Compromise Warranty

Ordering	Matrix						
Family	Wattage	Mounting	Color Temp	Finish	Driver	Options	Other Option
FXLED	78	Т					
	78 = 78W 105 = 105W 125 = 125W 150 = 150W	SF = Slipfitter T = Trunnion	Blank = 5000K (Cool) N = 4000K (Neutral) Y = 3000K (Warm)	Blank = Bronze W = White	Blank = Standard /D10 = 0-10V Dimming /BL = Bi-Level /480 = 480V	Blank = No Option /LC = Lightcloud® Control /PCT = 100-277V Twistlock /PCT4 = 480V Twistlock	Blank = Standard USA = BAA Compliant
							Page 2 of

Rectangular shaped LED floodlight designed to replace 150W Metal Halide. patent-pending "Air-Flow" technology ensures long LED and driver lifespan. Use for building façades lighting, sign lighting, LED landscape lighting and instant-on security lighting.

Color: Bronze Weight: 12.8 lbs

Project:	Туре:
Prepared By:	Date:

Driver Info		LED Info			
Type	Constant Current	Watts	39.00W		
120V	N/A	Color Temp	4000K (Neutral)		
208V	0.23A	Color Accuracy	75 CRI		
240V	0.20A	L70 Lifespan	100,000		
277V	0.16A	Lumens	5,641		
Input Watts	42.00W	Efficacy	134.3 LPW		
Efficiency	93%				

Technical Specifications

Listings

UL Listing:

Suitable for wet locations. Suitable for mounting within 1.2m (4ft) of the ground.

Title 24 Compliant:

An FFLED flood light can be used with a motion sensor or photocell control option to comply with 2016 Title 24 Part 6 Section 130.2 (a.b.c)

DLC Listed:

This product is listed by Design Lights Consortium (DLC) as an ultra-efficient premium product that qualifies for the highest tier of rebates from DLC Member Utilities.DLC Product Code: P0000173J

LED Characteristics

Lifespan:

100,000-hour LED lifespan based on IES LM-80 results and TM-21 calculations

LEDs:

Long-life, high-efficacy surface-mount LEDs

Color Consistency:

3-step MacAdam Ellipse binning to achieve consistent fixture-to-fixture color

Color Stability:

LED color temperature is warrantied to shift no more than 200K in CCT over a 5-year period

Color Uniformity:

RAB's range of CCT (Correlated Color Temperature) follows the guidelines of the American National Standard for (SSL) Products, ANSI C78.377-2017.

Electrical

Driver:

Constant Current, Class 2, 120-277V, 50-60Hz, 120V: 0.35A, 208V: 0.23A, 240V: 0.13A, 277V: 0.11A

THD:

8.94% at 120V, 16.82% at 277V

Power Factor:

99.1% at 120V, 92% at 277V

Note:

All values are typical (tolerance +/- 10%)

Photocell:

277V Swivel Photocell Included. Photocell is compatible with 208V-277V.

Construction

Lens:

Soda lime silica clear glass

Housing:

Die-cast aluminum housing, lens frame and mounting arm

Mounting:

Heavy-duty mounting arm with "O" ring seal & stainless steel screw

IP Rating:

Ingress Protection rating of IP66 for dust and water

Maximum Ambient Temperature:

Suitable for use in 40°C (104°F)

Cold Weather Starting:

Minimum starting temperature is -40°C (-40°F)

Page 1 of 3

Technical Specifications (continued)

Construction

Effective Projected Area:

EPA = 0.65

Green Technology:

Mercury and UV free. RoHS-compliant components.

Finish:

Formulated for high durability and long-lasting color

Other

Equivalency:

Equivalent to 250W Metal Halide

Warranty:

RAB warrants that our LED products will be free from defects in materials and workmanship for a period of five (5) years from the date of delivery to the end user, including coverage of light output, color stability, driver performance and fixture finish. RAB's warranty is subject to all terms and conditions found at rablighting.com/warranty.

Patents:

The FFLED design is protected by U.S. Pat. D643,147, Canada Pat. 140798, China Pat. ZL201130171304.1, Mexico Pat. 36757 and pending patent in Taiwan.

Buy American Act Compliance:

RAB values USA manufacturing! Upon request, RAB may be able to manufacture this product to be compliant with the Buy American Act (BAA). Please contact customer service to request a quote for the product to be made BAA compliant.

Features

Ultra-efficient LED and optical design

Replaces 150W MH floodlights

100,000-hour life based on LM-80 results and TM-21 calculations

"Air-Flow" technology heatsink

5-Year, No-Compromise Warranty

Page 2 of 3

Ordering N	/latrix							
Family	Wattage	Mounting	Color Temp	NEMA Type	Finish	Driver	Options	Other Options
FFLED	39		N				/PCS2	
	18 = 18W 26 = 26W 39 = 39W 52 = 52W 80 = 80W	Blank = Swivel Arm SF = Slipfitter T = Trunnion	Blank = 5000K (Cool) N = 4000K (Neutral) Y = 3000K (Warm)	Blank = 7H x 6V B55 = 5H x 5V B44 = 4H x 4V	Blank = Bronze W = White	Blank = On/Off ¹ /D10 = 0-10V Dimming /480 = 480V On/Off ² /E = 120-277V Battery Backup /EC = Cold Start Battery Backup	Blank = No Option /PC = 120V Photocell /PC2 = 277V Photocell /PCS = 120V Swivel Photocell /PCS2 = 277V Swivel Photocell /PCS4 = 480V Swivel Photocell /PCU = 120-277V Button Photocell /MS = Mini Sensor /STL3 = Stealth Sensor	Blank = Standard USA = BAA Compliant
	¹ Dimming Driver for 18W, 26W & 39W models only ² Not available for 80W models							

WPLED18N

Ultra-high efficiency LED 18 Watt wall pack. patent-pending thermal management system. 100,000 hour L70 lifespan. 5-year, no-compromise warranty.

Color: Bronze Weight: 7.5 lbs

Project:	Туре:
Prepared By:	Date:

Driver Info		LED Info			
Type	Constant Current	Watts	18W		
120V	0.17A	Color Temp	4000K (Neutral)		
208V	0.11A	Color Accuracy	71 CRI		
240V	0.09A	L70 Lifespan	100,000 Hours		
277V	A80.0	Lumens	2,659		
Input Watts	20.5W	Efficacy	129.7 lm/W		

Technical Specifications

Listings

UL Listed:

Suitable for wet locations. Suitable for mounting within 1.2m (4ft) of the ground.

DLC Listed:

This product is on the Design Lights Consortium (DLC) Qualified Products List and is eligible for rebates from DLC Member Utilities. DLC Product Code: P00001769

IESNA LM-79 & LM-80 Testing:

RAB LED luminaires and LED components have been tested by an independent laboratory in accordance with IESNA LM-79 and LM-80.

Performance

Lifespan:

100,000-Hour LED lifespan based on IES LM-80 results and TM-21 calculations

LED Characteristics

LED:

Multi-chip, high-output, long-life LED

Color Consistency:

3-step MacAdam Ellipse binning to achieve consistent fixture-to-fixture color

Color Stability:

LED color temperature is warrantied to shift no more than 200K in color temperature over a 5year period

Color Uniformity:

RAB's range of Correlated Color Temperature follows the guidelines of the American National Standard for Specifications for the Chromaticity of Solid State Lighting (SSL) Products, ANSI C78.377-2017.

Construction

Maximum Ambient Temperature:

Suitable for use in up to 40°C (104°F)

Cold Weather Starting:

Minimum starting temperature is -40°C (-40°F)

Thermal Management:

Superior heat sinking with external Air-Flow fins

Finish:

Our environmentally friendly polyester powder coatings are formulated for high-durability and long-lasting color

Reflector:

Semi-specular, vacuum-metalized polycarbonate

Gaskets:

High-temperature silicone gaskets

Page 1 of 3

WPLED18N

Technical Specifications (continued)

Construction

Housing:

Die-cast aluminum housing, lens frame and mounting arm

Mounting:

Heavy-duty mounting arm with "O" ring seal & stainless steel screws

Green Technology:

Mercury and UV free. RoHS-compliant components.

Other

Equivalency:

Equivalent to 100W Metal Halide

Patents

The design of WPLED18 is protected by US patent D608,040, Canada patent 138280, and China patent CN301649064S

Warranty:

RAB warrants that our LED products will be free from defects in materials and workmanship for a period of five (5) years from the date of delivery to the end user, including coverage of light output, color stability, driver performance and fixture finish. RAB's warranty is subject to all terms and conditions found at rablighting.com/warranty.

Replacement:

Replaces 150W Metal Halide

Buy American Act Compliance:

RAB values USA manufacturing! Upon request, RAB may be able to manufacture this product to be compliant with the Buy American Act (BAA). Please contact customer service to request a quote for the product to be made BAA compliant.

Optical

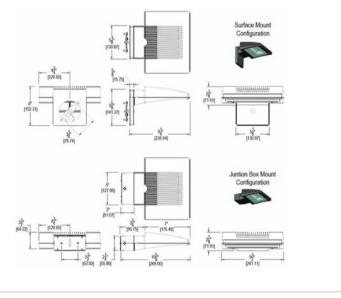
BUG Rating:

B1 U0 G0

Electrical

Driver:

Constant Current, Class 2, 100-277V, 50/60 Hz, 4 kV surge protection, 500mA, 100-240VAC: 0.3-0.15A, 277VAC: 0.15A, Power Factor: 99%


THD:

9.77% at 120V, 18.41% at 277V

Power Factor:

99.2% at 120V, 91.5% at 277V

Dimensions

Features

Ultra-high efficiency LED 18 Watt wall pack Replaces 150W Metal Halide Wall packs 100,00-Hour LED Lifespan 5-Year, No-Compromise Warranty

Page 2 of 3

WPLED18N

Ordering I	Matrix					
Family	Wattage	Color Temp	Finish	Emergency Battery Backup	Options	Other Options
WPLED	18	N				
	18 = 18W	Blank = 5000K (Cool) N = 4000K (Neutral) Y = 3000K (Warm)	Blank = Bronze W = White	Blank = No Battery Backup /E = Standard Battery Backup /EC = Battery Backup with Cold Start	Blank = No Option /PCS = 120V Swivel Photocell /PC = 120V Button Photocell /PC2 = 277V Button Photocell	USA = BAA Compliant Blank = Standard

W34-55L

Ultra-economy wall pack with traditional look.

Color: Bronze

Weight: 9.4 lbs

Project:	Туре:
Prepared By:	Date:

Driver Inf	o	LED Info					
Туре	Constant Current	Watts	50W				
120V	0.43A	Color Temp	5000K (Cool)				
208V	0.26A	Color Accuracy	83 CRI				
240V	0.22A	L70 Lifespan	50,000 Hours				
277V	0.19A	Lumens	5,375				
Input Watts	51.1W	Efficacy	105.2 lm/W				

Technical Specifications

Listings

UL Listed:

Suitable for wet locations. Suitable for mounting within 4 feet of the ground.

DLC Listed:

This product is on the Design Lights Consortium (DLC) Qualified Products List and is eligible for rebates from DLC Member Utilities. DLC Product Code: P57TGKTN

Performance

Lifespan:

50,000-Hour LED lifespan based on IES LM-80 results and TM-21 calculations

Electrical

Driver:

Constant Current, Class 2, 120-277V, 50/60Hz, 120V: 0.43A, 208V: 0.26A, 240V: 0.22A, 277V: 0.19A

THD:

6.1% at 120V, 7% at 277V

Power Factor:

99.7% at 120V. 96.7% at 277V

Note:

All values are typical (tolerance +/- 10%)

LED Characteristics

LEDs:

Long-life, high-efficacy, surface-mount LEDs

Color Uniformity:

RAB's range of Correlated Color Temperature follows the guidelines of the American National Standard for Specifications for the Chromaticity of Solid State Lighting (SSL) Products, ANSI C78.377-2017.

Construction

Housing:

Die-cast aluminum

Lens:

Glass

Reflector:

Specular aluminum

Cold Weather Starting:

Minimum starting temperature is -40°C (-40°F)

Maximum Ambient Temperature:

Suitable for use in up to 40°C (104°F)

Page 1 of 2

Technical Specifications (continued)

Construction

Mounting:

Die-cast backbox with four (4) conduit entry points and knockout pattern for junction box or direct wall mounting. Hinged door for easy reassembly.

Green Technology:

Mercury and UV free. RoHS-compliant components.

Finish:

Formulated for high durability and long-lasting color

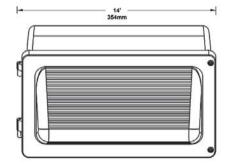
Other

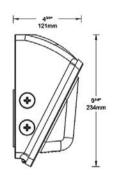
Replacement:

Replaces up to 175W Metal Halide

Equivalency:

Equivalent to 150W Metal Halide


5 Yr Limited Warranty:


The RAB 5-year, limited warranty covers light output, driver performance and paint finish. RAB's warranty is subject to all terms and conditions found at <u>rablighting.com/warranty</u>.

Buy American Act Compliance:

RAB values USA manufacturing! Upon request, RAB may be able to manufacture this product to be compliant with the Buy American Act (BAA). Please contact customer service to request a quote for the product to be made BAA compliant.

Dimensions

Features

Economy-grade wall pack with traditional look Covers footprint of medium-sized HID wall packs Available in various lumen packages Integrated 0-10V dimming 50,000-Hour LED lifespan

Ordering Matrix

Family	Lumen Package	CRI/Color Temp	Voltage	Options	
W34 -	55L	-			
	55L = 5400lm, 51W 70L = 7200lm, 69W 90L = 9100lm, 87W	Blank = 80 CRI / 5000K 830 = 80 CRI / 3000K	Blank = 120-277V, 0-10V Dimming /480 = 480V, 0-10V Dimming	Blank = No Option /PCU = 120-277V Button Photocell /MVS = 120-277V Microwave Sensor /LC = 120-277V Lightcloud® Control	

Metalux

DESCRIPTION

The Encounter™ redefines ambient lighting by being the first fixture to blend modern contemporary styling with the innovative WaveStream™ technology to deliver exceptional performance and superior energy savings. Encounter's highly efficient LED system with advance optical design delivers an unparalleled combination of optimal light uniformity for enhanced visual comfort and superior efficiency for greater energy savinas.

Encounter is compatible with all of today's popular ceiling systems and available in a variety of configurations for application versatility. Its perfect balance of form and function make it an ideal choice for commercial office spaces, schools, hospitals, retail and other indoor ambient applications.

Catalog #	Туре
Project	
Comments	Date
Prepared by	

SPECIFICATION FEATURES

Construction

Shallow 3-1/16" deep housing is extruded aluminum frame and injected molded composite end plates. End plates are securely attached with screws for strength and rigidity and the elimination of gaps. End plates have accessory grid-lock feature for safety and convenience. Four auxiliary fixture end suspension points are provided. Large access plate for supply connection.

Controls

Metalux LED luminaires come standard with 0-10V dimming drivers (1% standard).

Options compatible with Eaton's Connected Lighting Systems:

- WaveLinx sensor
- · LumaWatt Pro sensor
- SVPD sensor
- DLVP sensor and driver
- · Fifth Light DALI driver

Other options include stepdimming and 3rd party drivers. Refer to the Connected Lighting options page and ordering information for more details.

Electrical

Long-life LED system coupled with electrical driver to deliver optimal performance. LED's available in 3000K, 3500K, 4000K or 5000K with a minimum CRI of 80. Projected life is 100,000 hours at 92% lumen output. Electronic drivers are available for 120-277V applications.

Emergency Battery Pack Option Optional 120V-277V integral emergency battery pack is available in 7-watts to meet critical life-safety lighting requirements. The 90-minute batteries provide constant power to the LED system, ensuring code-compliance. A test switch/indicator button can be tested safely from the ground using a laser pointer, while the patented EZ Key prevents accidental discharge of the battery during construction. Emergency/generator transfer options available - see ordering information for details.

Driver Access

Drivers can be accessed via plenum.

Finish

Durable frame has high reflectance baked matte white enamel finish for luminous uniformity.

Optics

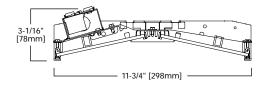
Precision formed optical assembly with positively retained high optical grade acrylic lenses provide a directed optical distribution using WaveStream technology.

Compliance

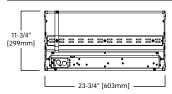
Components are UL recognized. Indoor luminaires are cULus listed for 25° C ambient environments, RoHS compliant, and comply with IESNA LM-79. LEDs comply with LM-80 standards.

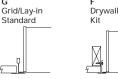
Warranty

Five-year warranty.



1' X 2' TROFFER LED MODULE


Specification Grade Troffer



MOUNTING DATA

CEILING COMPATIBILITY

:	Ceiling
Orywall Frame	Type
Kit	Exposed Grid Concealed T Slot Grid Flange

Trim

Type

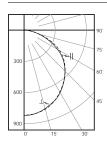
G or T

CERTIFICATION DATA

cULus - 1598 and 2043** Damp Location Listed IC Rated LM79/LM80 Compliant **ROHS Compliant** NOM Compliant

*See Drywall Frame Kit Accessory in Ordering Information section.

**Fixture construction is suitable for use in Air-handling and plenum rated spaces in accordance with Section 300.22 (C) of the National Electrical Code, Section 4.3.11.2.6.5 of NFPA 90A and Section 602.2.1.4 of ICC.



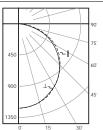
Safe and convenient means of disconnecting power

PS519066FN

PHOTOMETRICS

12EN-LD2-23-UNV- Candlepower L835-CD1-U

Electronic Driver Linear LED 3500K Spacing criterion: (II) 1.3 x mounting height, (⊥) 1.3 x mounting height Lumens: 2395 Input Watts: 20.5W Efficacy: 116.8 lm/W Test Report: 12EN-LD2-23-UNV-L835-CD1-U.IES


Angle	Along II	45°	Across \bot
0	822	822	822
5	814	820	823
10	802	808	811
15	785	789	792
20	761	764	767
25	731	733	736
30	698	697	698
35	656	655	657
40	613	608	608
45	565	556	554
50	512	498	497
55	452	438	435
60	389	370	371
65	319	299	300
70	247	232	212
75	173	158	141
80	104	94	110
85	42	47	47
90	0	0	0

Coefficients of Utilization

	Effe	ective	e flo	or cav	ity ref	ecta	nce	20)%									
rc		8	0%			7	0%			509	%		30%	6		10%	6	0%
rw	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	0
RCR																		
0	119	119	119	119	116	116	116	116	111	111	111	106	106	106	102	102	102	100
1	109	104	99	95	106	101	97	94	97	94	91	93	90	88	90	87	85	83
2	99	90	83	77	96	88	82	76	85	79	75	81	77	73	78	75	71	69
3	90	79	71	64	87	77	70	63	74	68	62	72	66	61	69	64	60	58
4	82	70	61	54	80	69	60	54	66	59	53	64	57	52	61	56	52	49
5	75	62	53	46	73	61	53	46	59	52	46	57	50	45	55	49	45	43
6	70	56	47	40	68	55	47	40	53	46	40	52	45	40	50	44	39	37
7	64	51	42	36	63	50	42	36	48	41	35	47	40	35	46	39	35	33
- 8	60	46	38	32	58	46	37	32	44	37	31	43	36	31	42	36	31	29
0 1 2 3 4 5 6 7 8	56	42	34	29	55	42	34	28	41	33	28	40	33	28	39	32	28	26
10	52	39	31	26	51	39	31	26	38	31	26	37	30	26	36	30	25	24

Zonal Lumen Summary

Zone	Lumens	% Fixture	
0-30	638	26.7	
0-40	1049	43.8	
0-60	1872	78.2	
0-90	2395	100.0	
0-180	2395	100.0	

12EN-LD2-35-UNV-L835-CD1-U **Electronic Driver**

Linear LED 3500K Spacing criterion: (II) 1.3 x mounting height, (⊥) 1.3 x mounting height Lumens: 3560 Input Watts: 31.5W Efficacy: 113.0 lm/W Test Report: 12EN-LD2-35-UNV-

L835-CD1-U.IES

Cand	lepower		
Angle	Along II	45°	Across 1
0	1223	1223	1223
5	1210	1219	1224
10	1193	1201	1206
15	1167	1173	1178
20	1131	1135	1139
25	1088	1090	1094
30	1037	1036	1037
35	977	974	974
40	913	904	904
45	840	826	824
50	762	741	737
55	673	648	644
60	576	549	550
65	476	446	445
70	366	346	312
75	259	232	209
80	153	141	166
85	63	71	71
90	0	0	0

Coefficients of Utilization

	Effective floor cavity reflectance 20%																	
rc		8	0%			7	0%			509	%		30%	ó		10%	6	0%
rw	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	0
RCR																		
0	119	119	119	119	116	116	116	116	111	111	111	106	106	106	102	102	102	100
1	109	104	99	95	106	101	97	94	97	94	91	93	90	88	90	87	85	83
0 1 2 3 4	99	90	83	77	96	88	82	76	85	79	75	81	77	73	78	75	71	69
3	90	79	71	64	87	77	70	63	74	68	62	72	66	61	69	64	60	58
4	82	70	61	54	80	69	60	54	66	59	53	64	57	52	61	56	52	49
- 5	75	62	53	46	73	61	53	46	59	52	46	57	50	45	55	49	45	43
6	70	56	47	40	68	55	47	40	53	46	40	52	45	40	50	44	39	37
-6 -7 -8	64	51	42	36	63	50	42	36	48	41	35	47	40	35	46	39	35	33
8	60	46	38	32	58	46	37	32	44	37	31	43	36	31	42	36	31	29
9	56	42	34	29	55	42	34	28	41	33	28	40	33	28	39	32	28	26
10	52	39	31	26	51	39	31	26	38	31	26	37	30	26	36	30	25	24

Zonal Lumen Summary

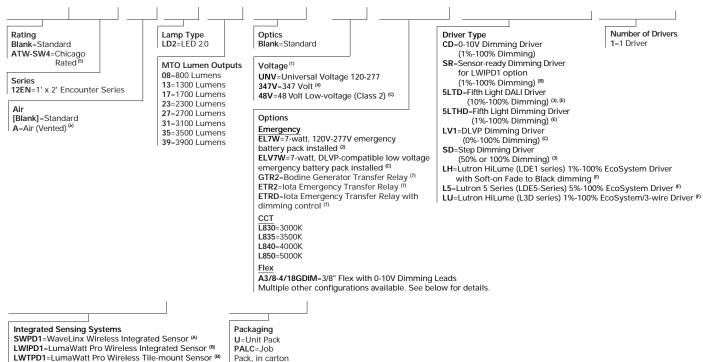
Zone	Lumens	% Fixture	
0-30	949	26.7	
0-40	1559	43.8	
0-60	2783	78.2	
0-90	3560	100.0	
0-180	3560	100.0	

LUMEN MAINTENANCE

Ambient Temperature Too. 100,0000 hours Too. 125°C Too. 100,0000 hours Too. 100,000 h

Non-IC data

ENERGY AND PERFORMANCE DATA BY CATALOG NUMBER


Stock or MTO*	Catalog Logic (Curved)	Delivered Lumens	Watts	Efficacy (LPW)
MTO	12EN-LD2-08-UNV-L830-CD1-U	807	9.9	82
МТО	12EN-LD2-08-UNV-L835-CD1-U	832	9.9	84
MTO	12EN-LD2-08-UNV-L840-CD1-U	849	9.9	86
MTO	12EN-LD2-08-UNV-L850-CD1-U	924	9.9	93
MTO	12EN-LD2-13-UNV-L830-CD1-U	1305	12.2	107
MTO	12EN-LD2-13-UNV-L835-CD1-U	1345	12.2	110
MTO	12EN-LD2-13-UNV-L840-CD1-U	1372	12.2	112
МТО	12EN-LD2-13-UNV-L850-CD1-U	1493	12.2	122
MTO	12EN-LD2-17-UNV-L830-CD1-U	1719	15.7	109
MTO	12EN-LD2-17-UNV-L835-CD1-U	1772	15.7	113
МТО	12EN-LD2-17-UNV-L840-CD1-U	1807	15.7	115
МТО	12EN-LD2-17-UNV-L850-CD1-U	1967	15.7	125
МТО	12EN-LD2-23-UNV-L830-CD1-U	2323	20.5	113
МТО	12EN-LD2-23-UNV-L835-CD1-U	2395	20.5	117
МТО	12EN-LD2-23-UNV-L840-CD1-U	2443	20.5	119
MTO	12EN-LD2-23-UNV-L850-CD1-U	2658	20.5	130
МТО	12EN-LD2-27-UNV-L830-CD1-U	2706	24.0	113
МТО	12EN-LD2-27-UNV-L835-CD1-U	2790	24.0	116
MTO	12EN-LD2-27-UNV-L840-CD1-U	2846	24.0	119
MTO	12EN-LD2-27-UNV-L850-CD1-U	3097	24.0	129
MTO	12EN-LD2-31-UNV-L830-CD1-U	3084	27.7	111
MTO	12EN-LD2-31-UNV-L835-CD1-U	3179	27.7	115
MTO	12EN-LD2-31-UNV-L840-CD1-U	3243	27.7	117
MTO	12EN-LD2-31-UNV-L850-CD1-U	3529	27.7	127
MTO	12EN-LD2-35-UNV-L830-CD1-U	3453	31.4	110
MTO	12EN-LD2-35-UNV-L835-CD1-U	3560	31.4	113
MTO	12EN-LD2-35-UNV-L840-CD1-U	3631	31.4	116
MTO	12EN-LD2-35-UNV-L850-CD1-U	3952	31.4	126
MTO	12EN-LD2-39-UNV-L830-CD1-U	3856	35.4	109
MTO	12EN-LD2-39-UNV-L835-CD1-U	3975	35.4	112
MTO	12EN-LD2-39-UNV-L840-CD1-U	4055	35.4	115
MTO	12EN-LD2-39-UNV-L850-CD1-U	4412	35.4	125

^{*}Made to order (MTO) requires a typical two week lead time.

ORDERING INFORMATION

SAMPLE NUMBER: 12EN-LD2-13-UNV-L835-CD1-SVPD1-U

SVPD1=0-10V Stand-alone Integrated Sensor (D) **Connected Systems** CLICK HERE

ACCESSORIES

T3A END E.Q. BRACKET PARTS BAG(Standard with fixture)

DF-12-W=1' x 2' Drywall Frame Kit DF10P-C_=Decorator Dimmer, 0-10V

SF10P-_=Decorator Slide Dimmer, 0-10V

ISHH-01=Programming Remote for Integrated Sensor (D) ISHH-02=Personal Control Remote for Integrated Sensor (D)

NOTES: ⁽¹⁾ Products also available in non-US voltages and frequencies for international markets. ⁽²⁾ With integral test switch/indicator/laser test. For approximate delivered lumens multiply the lumens per watt of the desired fixture by the wattage of the emergency battery pack (100 Im/W x 7=700 lumens). IES-format photometry for luminaire under emergency operation available. ⁽³⁾ 800, 1300, 1700, 2300, 2700 and 3100 lumen packages not available with Step-dim or SLTD option. ⁽⁶⁾ 347V emergency option not available. ⁽⁵⁾ Chicago rated version does not allow for row mounting. ⁽⁶⁾ Air version is vented but does not meet air handling requirements; a 6% reduction in delivered lumens is experienced with this option. ⁽⁶⁾ Used to Jayass local control during outage. Must be used in conjunction with UL 1008 device (provided by others). GTR2 and ETR2 options include 2 relays on fixtures with dimming drivers. ETRD option only requires one relay when used on a dimming fixture. Must specify voltage as 120V or 277V when ordering these devices. ⁽⁶⁾ HCD driver not available in 800 lumen package

Integrated Sensing and Control System Options

SLVPD1=DLVP Low-voltage Integrated Sensor (C)

NOTES: Integrated options must be used in conjunction with the associated system and may not be compatible with other options or accessories. Please refer to the following: (A) Consult WaveLinx system pages for additional details and compatibility. (B) Consult LumaWatt Pro system pages for additional details and compatibility. (B) Consult DLVP system pages for additional details and compatibility. (B) Consult SVPD series system pages for additional details and compatibility. (B) Consult SVPD series system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for additional details and compatibility. (C) Consult Marketplace pitons - Lutron system pages for addit

Flexible Metal Conduit Options

Flex options available for 0-10V dimming control, DALI dimming control, emergency and night light functions. 72-inch factory-installed and pre-wired to driver, fitted to luminaire housing access plate with 90° enclosed FMC

connector. Not all options may be combined and installation ratings vary by type.

A3/8-4/18GDIM series notes: Factory installed dimming option 3/8" flexible metal conduit with 2-#18 power and ground wires and 2-#18 UL-listed jacketed 0-10V +/- control wires. Meets UL 66, 83, 1479, 1569, 1581, 2556.

NEC® \$50.118, 300.22(C), 392, 396, 330, 501, 502, 503, 530, 504, 505, 518, 520, 530, 645, 72; Federal Specification A-A-59544 (formerly J-C-30B); all applicable OSHA and HUD Requirements. UL Classified 1, 2-, and 3-hour through penetration with applicable fire stop product (not included). May be surface mounted, fished and/or embedded in plaster. Cable tray and approved raceway rated, install per NEC®; Environmental Air-Handling Space Installation per NEC® 300.22(C)

Specifications & dimensions subject to change without notice. Consult your Eaton Representative for availability and ordering information

SHIPPING DATA

Catalog No. Wt 12EN-LD2-13 8 lbs

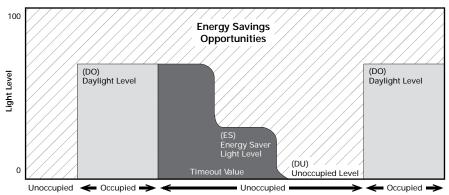
dimensions subject to

change without notice.

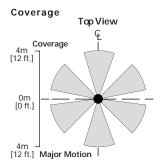
The Encounter and Encounter HP with Integrated Sensor technology provides automatic energy savings without sacrificing performance. Traditionally, these types of energy savings required coordination between the luminaire and a lighting control system. The Encounter delivers superior lighting with integrated occupancy and daylighting controls.

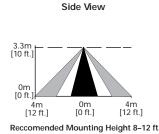
Capture the benefits of traditional lighting controls, without complicated coverage planning or special wiring. Ideal for new construction or retrofit, the Encounter delivers automatic ON to an energy saving light level, while ensuring lighting is turned OFF when the space is unoccupied.

The integral daylight sensor reduces the need for special daylight zone planning. Each luminaire will automatically adjust the light level based on reflected light beneath the sensor in a closed loop method.


Occupied daylight light levels and unoccupied light levels can be adjusted using the integrated sensor programming remote (Catalog Number: ISHH-01). The integrated sensor personal remote (Catalog Number: ISHH-02) provides code compliant manual raise, lower, ON, OFF control.

The Encounter with Integrated Sensor is easy to install with no special wiring and ensures energy savings out-of-the-box with default control settings.


criticing


How it works:

- · As the user enters the space controlled by the integral sensor, the lighting turns ON to the default daylight level.
- · Lighting will remain at that the daylight level until the space is unoccupied. This will start the occupancy timeout period (default 20 minutes).
- If the space remains unoccupied for half of the timeout period, the lighting will automatically reduce to the Energy Saver light level. This adjustable light level is typically half of the occupied daylight level.
- · At the end of the timeout period the lighting will go to the unoccupied light level. This adjustable light level uses the OFF default setting.

Target light level default: 500 lux at 8 ft.

Project:	
Location:	
Cat.No:	
Туре:	
Lamps:	Qty:
Notes:	

Example: 1EVK432L840UNV

EvoKit 1x4 is Engineered to Order (ETO) only. Please submit Custom ETO request form at the bottom of this page to your local Philips Representative.

Ordering guide

Family	Air function	Length	Lumens ¹	Color temp.	Voltage	Options
		(nominal)	(nominal)	(K)		
1EVK		4			UNV	
1EVK 1 ft. wide Evokit	Blank Static H Air return	4 4' length	23L 2300 lumens 32L 3200 lumens 40L 4000 lumens	835 80 CRI, 3500K 840 80 CRI, 4000K	UNV Universal voltage 120-277	SNS200 ² Philips EasySense SNS200 advanced grouping daylight and occupancy sensor SWZDT ² SpaceWise DT

¹⁾ Nominal delivered lumens.

Application

- Acrylic di user available in ribbed and con gurations provides even illumination with comfortable appeal
- Standard and base con gurations available in multiple lumen packages to suit the needs of various applications
- Lambertian distribution creates uniform horizontal and vertical illuminance on the work plane and reduces scalloping on the walls
- CRI 80 minimum color rendering with balanced spectrum
- LEDs coupled with standard dimming provide prolonged lumen maintenance.
 Optional integral sensors contribute further to LED lumen maintenance
- Designed to retro t most 1'x4' NEMA GRID uorescent xtures. Due to the variability of existing xture types in the eld it is recommended to install a sample prior to installation to ensure proper t

Enclosure

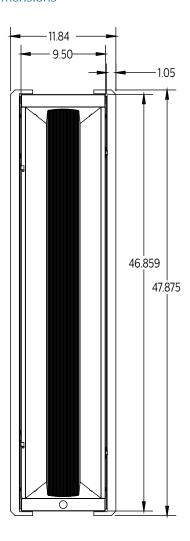
- Opal acrylic di user provides visually comfortable lumenance without compromise to luminaire e cacy
- Di user requires no frames or fasteners and can be easily removed from below without the use of tools

Construction/Finish

- Luminaire nish is matte white polyester powder coat for high quality, durable nish
- · Earthquake cable provided
- Integral control options include sensors mounted in one endcap

General notes

- · All accessories are eld installed
- Many luminaire components, such as re ectors, refractors, lenses, sockets, lampholders, and LEDs are made from various types of plastics which can be adversely a ected by airborne contaminants. If sulfur based chemicals, pertroleum based products, cleaning solutions, or other contaminants are expected in the intended area of use, consult factory for compatibility

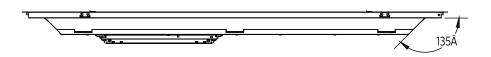

Electrical

- Integral sensor options for occupancy sensing and/or daylight harvesting are available for additional energy savings with no reduction of life or increase in installation labor
- Standard con gurations provide up to 126 LPW, and are available in 3500 or 4000K color temperatures
- LED boards are accessible from below by removal of the lens. Lens removal is tool-free by compressing the sides and pushing to
- LED driver is accessible from below by unhinging the doorframe and lowering enclosure
- Five year limited luminaire warranty includes LED boards and driver. Visit www.philips.com/warranties for complete warranty information
- TM-21 predicted L70 lumen maintenance greater than 70,000 hours
- cETLus listed to UL and CSA standards, suitable for damp locations

²⁾ Integral sensing options (SNS200, SWZDT) may not be combined.

EvoKit LED retro t kit

Dimensions



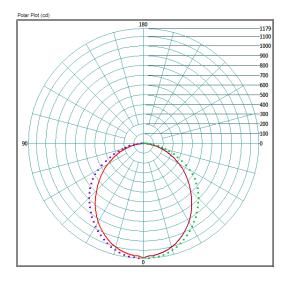
All measurements shown are in Inches. Sketches are intended to show approximate dimensions for use in determining if existing xture will be compatible. It is recommended the verify the xture to be retro tted will accommodate these dimensions. Philips also recommends a trial installation prior to ordering project quantities to ensure proper t. There is a wide variability of 1x4 tro ers in the marketplace. The depicted sketches may not tall products. The ETO speci cation form below should be utilized to inform factory of any variations to the product that need to be made.

SpaceWise DT (SWZDT)

- Commissioning via compatible Android phone and Philips Field App
- Dimming via compatible wireless wall switch only (see below)
- Register for the commissioning app at http:// registration.componentcloud.philips.com/ appregistration/
- Integral sensing options (SNS200, SWZDT) may not be combined
- For more information including recommended switches, refer to the following –
- $SWZDT-www.lightingproducts.philips.com\\ documents/webdb2/DayBrite/pdf/SWZDT_\\ sensor.pdf$

EvoKit LED retro t kit

Photometry


1'x4' EvoKit

Photometric Measurements

Total Luminous Flux (Im)	Electrical Power (W)	Luminous E cacy (Im/W)	Test Distance (m)
3275.7	25.90	126.47	6.82

Zonal lumen summary

	Summary Zonal Lumens	Zonal Lumens - % Lamp	Zonal Lumens - % Fixture		
0 to 30	900.11	27.48	27.48		
0 to 40	1460.79	44.60	44.60		
0 to 60	2565.91	78.33	78.33		
0 to 90	3275.04	99.98	99.98		
40 to 90	1814.25	55.39	55.39		
90 to 180	0.63	0.02	0.02		
O to 180	3275.67	100.00	100.00		

© 2017 Philips Lighting Holding B.V. All rights reserved. Philips reserves the right to make changes in speci cations and/or to discontinue any product at any time without notice or obligation and will not be liable for any consequences resulting from the use of this publication.

Philips Lighting North America Corporation 200 Franklin Square Drive, Somerset, NJ 08873 Tel. 855-486-2216

Philips Lighting Canada Ltd. 281 Hillmount Rd, Markham, ON, Canada L6C 2S3 Tel. 800-668-9008

Philips EvoKit LED REQUEST FOR VARIANT / ETO

Note: The intent of the feasibility assessment is to give a quick yes/no based on degree of complexity and the size of the opportunity. In order for an ETO request to proceed beyond feasibility assessment management approval is required. No Engineering work will commence until a project has received formal management approval.

equest Date
equestor Name
ustomer Name
ob Name
ob Location
hilips Contact (CPM or Inside Sales)
hone Number
-mail Address
re there other EvoKit Fixtures included on this order? Yes 🔲 No 🔲
uote # (If Started)
stimated Size of Job Units/Footage
roduct Family
Nodification Required (Enter Description to the Best of Your Ability)
stimated On-Site Requirement Date
hip To Address
ame
ddress Line 1
ddress Line 2
ity
tate/Province Zip Code/Postal
ull Description of Custom Requirements: (Use as Much Detail as Possible Including Lumen Package, CCT, CRI, fficacy Target, Ceiling Details, em/bp Requirements, etc.)

Is DLC required? Yes No
If Yes - List All Product Types Required
Skus:
Note: Lead time from 'release date' to 'date required to ship' must be verified by Engineering prior to factory release.

© 2018 Philips Lighting Holding B.V. All rights reserved. Philips reserves the right to make changes in speci cations and/or to discontinue any product at any time without notice or obligation and will not be liable for any consequences resulting from the use of this publication.

Philips Lighting North America Corporation 200 Franklin Square Drive, Somerset, NJ 08873 Tel. 855-486-2216

Philips Lighting Canada Ltd. 281 Hillmount Rd, Markham, ON, Canada L6C 2S3 Tel. 800-668-9008

Project:	
Location:	
Cat.No:	
Туре:	
Lamps:	Qty:
Notes:	

Philips EvoKit LED retro t kit gen 4 is an energy e cient LED alternative to traditional linear uorescent tro ers. Not only does it o er energy savings¹, it also helps reduce maintenance costs due to its long lifetime. Simple construction helps decrease the installation time meaning you can have an LED solution in your ceiling in just minutes.

Ordering guide (continued on next page)

Product Number	12NC	Description	Watts ³	Volts	Lumen Maintenance (Hrs.) ²	Approx. Lumens ³	Color Temp. (K)	E cacy	Di usor
Dimming:	: O-10V								
515692	929000781813	EvoKit 2x2 P 23L 17W 835 2 O-10 7 G4	17	120-277	70,000	2300	3500	134	Ribbed
515759	929000782213	EvoKit 2x2 P 23L 17W 840 2 O-10 7 G4	17	120-277	70,000	2300	4000	137	Ribbed
516005	929000783313	EvoKit 2x2 P 32L 24W 835 2 O-10 7 G4	24	120-277	70,000	3200	3500	132	Ribbed
515940	929000782713	EvoKit 2x2 P 32L 24W 84O 2 O-10 7 G4	24	120-277	70,000	3200	4000	135	Ribbed
516237	929000785513	EvoKit 2x4 P 30L 22W 835 2 0-10 7 G4	22	120-277	70,000	3000	3500	135	Ribbed
516039	929000783613	EvoKit 2x4 P 30L 22W 840 2 0-10 7 G4	22	120-277	70,000	3000	4000	137	Ribbed
516286	929000786013	EvoKit 2x4 P 36L 27W 835 2 O-10 7 G4	27	120-277	70,000	3600	3500	135	Ribbed
516328	929000786413	EvoKit 2x4 P 36L 26W 840 2 0-10 7 G4	26	120-277	70,000	3600	4000	137	Ribbed
516427	929000787413	EvoKit 2x4 P 42L 32W 835 2 O-10 7 G4	32	120-277	70,000	4200	3500	134	Ribbed
516369	929000786813	EvoKit 2x4 P 42L 31W 840 2 O-10 7 G4	31	120-277	70,000	4200	4000	136	Ribbed
516534	929000788513	EvoKit 2x4 P 47L 36W 835 2 O-10 7 G4	36	120-277	70,000	4700	3500	132	Ribbed
516476	929000787913	EvoKit 2x4 P 47L 35W 84O 2 O-10 7 G4	35	120-277	70,000	4700	4000	135	Ribbed
517482	929000798813	EvoKit 2x2 P 32L 24W 835 2 O-10 7 G4 SM	24	120-277	70,000	3200	3500	132	Smooth
517466	929000798613	EvoKit 2x2 P 32L 24W 840 2 0-10 7 G4 SM	24	120-277	70,000	3200	4000	135	Smooth
517508	929000799013	EvoKit 2x4 P 36L 27W 835 2 O-10 7 G4 SM	27	120-277	70,000	3600	3500	135	Smooth
517516	929000799113	EvoKit 2x4 P 36L 26W 840 2 O-10 7 G4 SM	26	120-277	70,000	3600	4000	137	Smooth
517540	929000799413	EvoKit 2x4 P 42L 32W 835 2 O-10 7 G4 SM	32	120-277	70,000	4200	3500	134	Smooth
517524	929000799213	EvoKit 2x4 P 42L 31W 840 2 O-10 7 G4 SM	31	120-277	70,000	4200	4000	136	Smooth

See footnotes on the last page.

Ordering guide (continued from previous page)

Product Number	12NC	Description	Watts	Volts	Lumen Maintenance (Hrs.) ²	Approx. Lumens ³	Color Temp. (K)	E cacy	Di usor
Driver: 0-	10V dimming						1		
515643	929000781613	EvoKit 2x2 P 23L 17W 850 2 O-10 7 G4	17	120-277	70,000	2300	5000	138	Ribbed
515981	929000783113	EvoKit 2x2 P 32L 24W 850 2 0-10 7 G4	24	120-277	70,000	3200	5000	135	Ribbed
516260	929000785813	EvoKit 2x4 P 36L 26W 850 2 O-10 7 G4	26	120-277	70,000	3600	5000	139	Ribbed
516401	929000787213	EvoKit 2x4 P 42L 31W 850 2 0-10 7 G4	31	120-277	70,000	4200	5000	138	Ribbed
516518	929000788313	EvoKit 2x4 P 47L 34W 85O 2 O-10 7 G4	34	120-277	70,000	4700	5000	136	Ribbed
Driver: 120	OV Mark 10 dimming	9		•			•		
515650	929000781713	EvoKit 2x2 P 23L 19W 835 1 MK10 7 G4	19	120	70,000	2478	3500	130	Ribbed
515742	929000782113	EvoKit 2x2 P 23L 19W 840 1 MK10 7 G4	19	120	70,000	2526	4000	132	Ribbed
515999	929000783213	EvoKit 2x2 P 32L 25W 835 1 MK10 7 G4	25	120	70,000	3224	3500	130	Ribbed
515932	929000782613	EvoKit 2x2 P 32L 25W 840 1 MK10 7 G4	25	120	70,000	3295	4000	133	Ribbed
516229	929000785413	EvoKit 2x4 P 30L 26W 835 1 MK10 7 G4	26	120	70,000	3304	3500	127	Ribbed
516187	929000785013	EvoKit 2x4 P 30L 23W 840 1 MK10 7 G4	23	120	70,000	2928	4000	130	Ribbed
516278	929000785913	EvoKit 2x4 P 36L 29W 835 1 MK10 7 G4	29	120	70,000	3686	3500	128	Ribbed
516310	929000786313	EvoKit 2x4 P 36L 29W 840 1 MK10 7 G4	29	120	70,000	3769	4000	131	Ribbed
516419	929000787313	EvoKit 2x4 P 42L 34W 835 1 MK10 7 G4	34	120	70,000	4303	3500	128	Ribbed
516351	929000786713	EvoKit 2x4 P 42L 34W 840 1 MK10 7 G4	34	120	70,000	4399	4000	131	Ribbed
516526	929000788413	EvoKit 2x4 P 47L 38W 835 1 MK10 7 G4	38	120	70,000	4831	3500	128	Ribbed
516468	929000787813	EvoKit 2x4 P 47L 38W 840 1 MK10 7 G4	38	120	70,000	4934	4000	130	Ribbed
Driver: 27	7V Mark 10 dimming]					'		
515700	929000781913	EvoKit 2x2 P 23L 19W 835 5 MK10 7 G4	19	277	70,000	2300	3500	121	Ribbed
515767	929000782313	EvoKit 2x2 P 23L 21W 840 5 MK10 7 G4	21	277	70,000	2526	4000	123	Ribbed
516021	929000783513	EvoKit 2x2 P 32L 26W 835 5 MK10 7 G4	26	277	70,000	3200	3500	124	Ribbed
515965	929000782913	EvoKit 2x2 P 32L 25W 840 5 MK10 7 G4	26	277	70,000	3200	4000	127	Ribbed
516252	929000785713	EvoKit 2x4 P 30L 25W 835 5 MK10 7 G4	25	277	70,000	3000	3500	120	Ribbed
516211	929000785313	EvoKit 2x4 P 30L 25W 840 5 MK10 7 G4	25	277	70,000	3000	4000	122	Ribbed
516294	929000786113	EvoKit 2x4 P 36L 30W 835 5 MK10 7 G4	30	277	70,000	3687	3500	123	Ribbed
516336	929000786513	EvoKit 2x4 P 36L 29W 840 5 MK10 7 G4	28	277	70,000	3600	4000	126	Ribbed
516443	929000787613	EvoKit 2x4 P 42L 35W 835 5 MK10 7 G4	35	277	70,000	4303	3500	124	Ribbed
516385	929000787013	EvoKit 2x4 P 42L 33W 840 5 MK10 7 G4	33	277	70,000	4200	4000	127	Ribbed
516559	929000788713	EvoKit 2x4 P 47L 38W 835 5 MK10 7 G4	38	277	70,000	4700	3500	125	Ribbed
516492	929000788113	EvoKit 2x4 P 47L 37W 840 5 MK10 7 G4	37	277	70,000	4700	4000	127	Ribbed
Dimming:	O-10V at 347V								
515718	929000782013	EvoKit 2x2 P 23L 18W 835 6 0-10 7 G4	18	347	70,000	2300	3500	128	Ribbed
515866	929000782413	EvoKit 2x2 P 23L 18W 840 6 0-10 7 G4	18	347	70,000	2300	4000	130	Ribbed
515973	929000783013	EvoKit 2x2 P 32L 24W 835 6 0-10 7 G4	24	347	70,000	3200	3500	135	Ribbed
515890	929000782513	EvoKit 2x2 P 32L 24W 840 6 0-10 7 G4	24	347	70,000	3200	4000	135	Ribbed
516302	929000786213	EvoKit 2x4 P 36L 27W 835 6 0-10 7 G4	27	347	70,000	3600	3500	133	Ribbed
516344	929000786613	EvoKit 2x4 P 36L 26W 840 6 0-10 7 G4	26	347	70,000	3600	4000	136	Ribbed
516450	929000787713	EvoKit 2x4 P 42L 31W 835 6 O-10 7 G4	31	347	70,000	4200	3500	138	Ribbed
516393	929000787113	EvoKit 2x4 P 42L 31W 840 6 0-10 7 G4	31	347	70,000	4200	4000	136	Ribbed
516567	929000788813	EvoKit 2x4 P 47L 36W 835 6 0-10 7 G4	36	347	70,000	4700	3500	132	Ribbed
516500	929000788213	EvoKit 2x4 P 47L 35W 840 6 0-10 7 G4	35	347	70,000	4700	4000	135	Ribbed
See footnot	1	1		1	1			1	

See footnotes on the last page.

Ordering guide (continued from previous page)

Product Number	12NC	Description	Watts	Volts	Lumen Maintenance (Hrs.) ²	Approx. Lumens ³	Color Temp. (K)	E cacy	Di usor
Dimming:	-	Bossi, pilot	Watts	10.13	(1.1.3.)	Lamons	(1.7)	12 5459	D. 4501
516013	929000783413	EvoKit 2x2 P 32L 25W 835 2 SR 7 G4	25	120-277	70,000	3200	3500	129	Ribbed
515957	929000782813	EvoKit 2x2 P 32L 24W 84O 2 SR 7 G4	24	120-277	70,000	3200	4000	132	Ribbed
516245	929000785613	EvoKit 2x4 P 30L 23W 835 2 SR 7 G4	23	120-277	70,000	3000	3500	131	Ribbed
516203	929000785213	EvoKit 2x4 P 30L 23W 840 2 SR 7 G4	23	120-277	70,000	3000	4000	133	Ribbed
516435	929000787513	EvoKit 2x4 P 42L 32W 835 2 SR 7 G4	32	120-277	70,000	4200	3500	132	Ribbed
516377	929000786913	EvoKit 2x4 P 42L 32W 840 2 SR 7 G4	32	120-277	70,000	4200	4000	134	Ribbed
516542	929000788613	EvoKit 2x4 P 47L 36W 835 2 SR 7 G4	36	120-277	70,000	4700	3500	130	Ribbed
516484	929000788013	EvoKit 2x4 P 47L 36W 84O 2 SR 7 G4	36	120-277	70,000	4700	4000	132	Ribbed
517557	929000799513	EvoKit 2x4 P 42L 32W 835 2 SR 7 G4 SM	32	120-277	70,000	4200	3500	132	Smooth
517532	929000799313	EvoKit 2x4 P 42L 32W 840 2 SR 7 G4 SM	32	120-277	70,000	4200	4000	134	Smooth
517490	929000798913	EvoKit 2x2 P 32L 25W 835 2 SR 7 G4 SM	25	120-277	70,000	3200	3500	129	Smooth
517474	929000798713	EvoKit 2x2 P 32L 24W 840 2 SR 7 G4 SM	24	120-277	70,000	3200	4000	132	Smooth
EvoKit wi	th Air Return		•						
515494	929000781013	EvoKit 2x2 A 23L 17W 835 2 O -10 7 G4	17	120-277	70,000	2300	3500	134	Ribbec
515544	929000781113	EvoKit 2x2 A 23L 17W 840 2 O-10 7 G4	17	120-277	70,000	2300	4000	136	Ribbec
515551	929000781213	EvoKit 2x2 A 32L 24W 835 2 O-10 7 G4	24	120-277	70,000	3200	3500	135	Ribbec
515585	929000781513	EvoKit 2x2 A 32L 25W 835 2 SR 7 G4	24	120-277	70,000	3200	3500	130	Ribbec
515569	929000781313	EvoKit 2x2 A 32L 24W 840 2 O-10 7 G4	24	120-277	70,000	3200	4000	135	Ribbed
515577	929000781413	EvoKit 2x2 A 32L 24W 840 2 SR 7 G4	24	120-277	70,000	3200	4000	133	Ribbec
516054	929000783813	EvoKit 2x4 A 30L 22W 835 2 0-10 7 G4	22	120-277	70,000	3000	3500	135	Ribbec
516062	929000783913	EvoKit 2x4 A 30L 23W 835 2 SR 7 G4	23	120-277	70,000	3000	3500	132	Ribbec
516195	929000785113	EvoKit 2x4 A 30L 22W 840 2 O-10 7 G4	22	120-277	70,000	3000	4000	138	Ribbec
516047	929000783713	EvoKit 2x4 A 30L 22W 840 2 SR 7 G4	22	120-277	70,000	3000	4000	136	Ribbec
516088	929000784013	EvoKit 2x4 A 36L 27W 835 2 O-10 7 G4	27	120-277	70,000	3600	3500	135	Ribbec
516096	929000784113	EvoKit 2x4 A 36L 26W 840 2 O-10 7 G4	26	120-277	70,000	3600	4000	137	Ribbec
516120	929000784413	EvoKit 2x4 A 42L 31W 835 2 O-10 7 G4	32	120-277	70,000	4200	3500	134	Ribbed
516138	929000784513	EvoKit 2x4 A 42L 32W 835 2 SR 7 G4	32	120-277	70,000	4200	3500	132	Ribbed
516104	929000784213	EvoKit 2x4 A 42L 31W 84O 2 O-10 7 G4	31	120-277	70,000	4200	4000	136	Ribbed
516112	929000784313	EvoKit 2x4 A 42L 31W 84O 2 SR 7 G4	36	120-277	70,000	4200	4000	135	Ribbed
516161	929000784813	EvoKit 2x4 A 47L 36W 835 2 O-10 7 G4	36	120-277	70,000	4700	3500	132	Ribbed
516179	929000784913	EvoKit 2x4 A 47L 36W 835 2 SR 7 G4	36	120-277	70,000	4700	3500	131	Ribbed
516146	929000784613	EvoKit 2x4 A 47L 35W 84O 2 O-10 7 G4	35	120-277	70,000	4700	4000	135	Ribbed
516153	929000784713	EvoKit 2x4 A 47L 35W 84O 2 SR 7 G4	35	120-277	70,000	4700	4000	134	Ribbed

See footnotes on the last page.

EvoKit with SpaceWise DT technology

Product Number	12NC	Description	Watts	Volts	Lumen Maint. (Hrs.) ²	Approx. Lumens³	Color Temp. (K)	E cacy	Di usor
518332	929001709313	EvoKit 2x2 P 32L 25W 835 2 SWZDT 7 G4	25	120-277	70,000	3200	3500	129	Ribbed
518324	929001709213	EvoKit 2x2 P 32L 24W 840 2 SWZDT 7 G4	24	120-277	70,000	3200	4000	132	Ribbed
518407	929001710013	EvoKit 2x4 P 30L 23W 835 2 SWZDT 7 G4	23	120-277	70,000	3000	3500	131	Ribbed
518415	929001710113	EvoKit 2x4 P 30L 23W 840 2 SWZDT 7 G4	23	120-277	70,000	3000	4000	133	Ribbed
518423	929001710213	EvoKit 2x4 P 42L 32W 835 2 SWZDT 7 G4	32	120-277	70,000	4200	3500	132	Ribbed
518431	929001710313	EvoKit 2x4 P 42L 32W 840 2 SWZDT 7 G4	32	120-277	70,000	4200	4000	134	Ribbed
518449	929001710413	EvoKit 2x4 P 47L 36W 835 2 SWZDT 7 G4	36	120-277	70,000	4700	3500	130	Ribbed
518456	929001710513	EvoKit 2x4 P 47L 36W 84O 2 SWZDT 7 G4	36	120-277	70,000	4700	4000	132	Ribbed
518316	929001709113	EvoKit 2x2 A 32L 25W 835 2 SWZDT 7 G4	25	120-277	70,000	3200	3500	130	Ribbed
518308	929001709013	EvoKit 2x2 A 32L 24W 840 2 SWZDT 7 G4	24	120-277	70,000	3200	4000	133	Ribbed
518357	929001709513	EvoKit 2x4 A 30L 23W 835 2 SWZDT 7 G4	23	120-277	70,000	3000	3500	132	Ribbed
518340	929001709413	EvoKit 2x4 A 30L 22W 840 2 SWZDT 7 G4	22	120-277	70,000	3000	4000	136	Ribbed
518373	929001709713	EvoKit 2x4 A 42L 32W 835 2 SWZDT 7 G4	32	120-277	70,000	4200	3500	132	Ribbed
518365	929001709613	EvoKit 2x4 A 42L 31W 84O 2 SWZDT 7 G4	31	120-277	70,000	4200	4000	135	Ribbed
518399	929001709913	EvoKit 2x4 A 47L 36W 835 2 SWZDT 7 G4	36	120-277	70,000	4700	3500	131	Ribbed
518381	929001709813	EvoKit 2x4 A 47L 35W 84O 2 SWZDT 7 G4	35	120-277	70,000	4700	4000	134	Ribbed

See footnotes on page 9. Please refer to Philips.com/Spacewise for more detailed speci cation sheets as well as a list of compatible wireless dimming switches.

Features

- Occupancy sensing, daylight harvesting and task tuning in one device
- Granular dimming (occupancy sharing)
- Dwell time
- · Scene setting
- Configuration of sensor parameters if desired — using NFC or IR via intuitive Android-based Philips field apps
- Quick task tuning in the field to optimize light and power levels
- Enables auto-off/manual-on and auto-off/ partial-on application
- DLC qualified: Listed on the QPL for Networked Lighting Controls

Bene ts

- Installation savings integral wireless controls factory installed. No need to order separate components.
- Minimal startup and configuration expertise savings on labor time & effort
- Deep energy savings & code compliance strategies
- Faster ROI with attractive payback periods (varies depending on luminiare choices)

Applications

- Conference rooms
- Individual o ces
- · Open o ces
- Classrooms
- Storage and break areas
- Restrooms
- Lobbies

New con guration tool

Sensor parameters can be congured via Philips eld apps. Two versions are available:

- NFC This app allows con guring sensor parameters only when you can physically access the sensor with a smartphone.
- IR This app allows con guring sensor parameters plus enables grouping to a wireless switch, which can be done with the IR feature of applicable phones from

You must rst register for the app to receive a username and password, then download Philips eld apps from the Google Play Store.

Refer to the website for registration details:

www.usa.lighting.philips.com/support/support/tools/

Application

- A highly e cient, visually comfortable, architecturally styled LED retro t kit designed to replace recessed linear uorescent tro ers.
- Unique modular design o ers refreshing new look in the ceiling when compared to traditional uorescent luminaires.
- Single light bar combined with slanted tro er helps re ect light to reduce glare and provide uniform light distribution making it ideal for applications such as o ces, schools, healthcare and retail.
- · Excellent color rendering with a CRI above 80.
- Extremely high e cacies up to 138 lumens per watt.
- LEDs are an excellent source for use with controls since dimming or frequent switching does not degrade the performance or life of the source.
- Designed for use with standard grid (NEMA "G") or Narrow Grid (NEMA "NFG") ceiling T-Grids.
- High e ciency source and luminaire design help signi cantly reduce energy consumption and more easily comply with known energy codes.
- Helps meet regulation requirements such as ASHRAE 90.1 and Title 24 when matched with suitable controls.

Construction/Finish

 Simple design allows for quick installation in existing luminaire without the need to break the ceiling plenum.

- Constructed using galvanized steel which helps ght rust and makes for more durable product.
- Integrated ceiling tabs for securement within the ceiling for areas prone to extreme conditions
- Minimum depth of only 3" necessary to allow proper clearance and installation of the EvoKit
- Retro t kit is powder coated after fabrication with high quality, durable nish to ensure no un nished edges and avoid future potential of corrosion.
- Components t together easily without the need for tools during installation.

Electrical

- Multiple driver options available
- Philips Advance Xitanium SR driver allows exibility to integrate a range of control options.
- 0-10V dimming satis es universal voltage requirements
- 5-year limited warranty includes all components of the retro t kit, including driver, LED board and nonelectrical components."
- Listed with UL and Design Lights Consortium¹ to ensure quality performance and safety standards are met.
- High e ciency LEDs have a minimum 70,000 hour rated life (L_{70}) .

Enclosure

 Di user requires no frames or fasteners and can be easily removed from below without tools if needed.

Accessories

- Suitable for use with Philips 503441 emergency backup.
- Suitable for use with a wide range of control systems.
- Appropriate for new construction when used with standard listed lensed or parabolic tro ers.

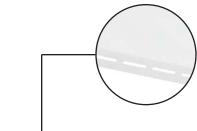
Prod. No.	Description
517987	EvoKit 2x4 replacement lens ribbed
517748	EvoKit 2x4 replacement lens smooth
517979	EvoKit 2x2 replacement lens ribbed
517755	EvoKit 2x2 replacement lens smooth
503441	EvoKit eld installed emergency battery backup (requires the use of bracket)
517730	EvoKit emergency battery backup bracket (brackets come in packs of 4)

EvoKit with new SimpleSet technology for wireless lumen level programming

EvoKit with new SimpleSet technology allows the maximum lumen level to be set prior to installation using a smartphone-based app without requiring power to the luminaire. Available in the 0-10V and SR versions only. The app can be downloaded at Google Play. Please contact your Philips representative for the current list of approved Android smartphones. Distributors can set lumen levels prior to shipping, and contractors can set lumen levels prior to installation. Lumen level is quickly and easily set in two steps:

Step 1: Place the smartphone next to the NFC antenna on the driver.

Step 2: Follow the on-screen instructions.


EvoKit with air return

The air return versions of EvoKit are suitable for retro tting listed air return tro ers.

2x2 air return data

Return Air Volume, SCFM.	61	69	80	97	112	131
Negative Static Pressure, in. H ₂ 0	0.11	0.15	0.20	0.30	0.40	0.55
**Noise Criteria (NC)	17	21	25	31	34	38

Note: 24 total air slots, each 30mm x 6mm.

2x4 air return data

Return Air Volume, SCFM.	105	119	128	162	259	272
Negative Static Pressure, in. H ₂ O	0.05	0.08	0.10	0.20	0.45	0.55
**Noise Criteria (NC)	<15	32	32	36	38	40

Note: 50 total air slots, each 30mm x 6mm.

EvoKit Sensor Ready (SR) with Philips Advance Xitanium SR for connected lighting solutions

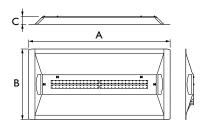
EvoKit SR is a new platform that allows users to choose different control platforms to suit their needs and budget; from simple occupancy and daylight sensing to cloud-connected data-reporting sensing. This empowers users to ne-tune their energy use for reduced energy costs. Various Philips EasySense, SpaceWise and other SR certified controls are available. Please refer to Philips.com/Evokit for details. Contact your Philips representative for a current list of additional approved sensors. Sensors are connected in the field with just a few simple steps:

Step 1: Evokit SR is shipped with a plate covering the sensor hole. There are two wires secured to the back of the plate.

Step 2: The plate can be removed before or after you install EvoKit SR. Just gently slide the plate to one end and remove.

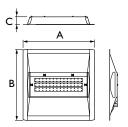
Step 3. Remove the two wires that were secured to the back of the plate.

Step 4: Take these two wires and insert them into the sensor. They are not polarity sensitive.



Step 5: Insert the sensor back into the hole. The sensor may or may not require a socket.

Commercial Product Name	Order Code
EasySense EVO102	514877
EasySense EVO200	516575
EasySense EVO300	517763


Dimensions 2x4

A Face Plate Length	B Face Plate Width	C Height
47.83"	23.9"	2.95"

Dimensions 2x2

A Face Plate Length	B Face Plate Width	C Height
23.9"	23.9"	2.95"

2'x2' EvoKit, P 23L 17W 835 2 O-10 7 G4, 2,202 delivered lumens

 Catalog No.
 515692

 Test No.
 x223L

 S/MH
 1.2

 Lamp Type
 LED

 Lumens/Watt
 131

 Input Watts
 17

Comparative yearly lighting energy cost per 1000 lumens - \$1.83 based on 3000 hours and \$0.08/kWh

The photmetric results were obtained in the Design Lights Consortium Test Lab which is NVLAP accredited by the National Institute of Standards and Technology

Photometric values based on tests performed in compliance with LM-79

(Candle	oower		
1	Angle	End	Cross	Back-4
	0	800	800	0
	5	799	796	0
	10	785	784	0
	15	763	765	0
	20	733	738	0
	25	695	704	0
	30	650	663	0
	35	600	617	0
	40	545	569	0
	45	486	519	0
	50	427	468	0
	55	365	418	0
	60	304	367	0
	65	243	313	0
	70	182	255	0
	75	124	192	0
	80	71	126	0
	85	26	60	0

Coe cients of Utilization EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)

рсс	_	80			70		. 5	0
pw	70	50	30	70	50	30	50	30
RCR								
0	118	118	118	115	115	115	111	111
1	108	104	98	106	101	96	96	93
2	97	90	82	95	88	81	84	79
3	90	79	70	86	77	69	73	68
4	81	69	60	80	68	59	66	58
5	76	63	53	72	60	53	58	52
6	69	56	46	68	55	46	54	46
7	65	51	41	63	50	41	48	40
8	59	46	38	58	46	38	45	36
9	56	42	34	55	41	34	40	34
10	53	40	32	52	39	30	38	30

Light Distribution Degrees 0-30 Average Luminance Lumens % Luminaire Angle 609 27.7 6110 5913 6297 6259 0-40 984 44.7 5897 55 5463 0-60 1709 77.6 0-90 4936 5867 6356 2202 100 75 4122 5880 6369 5953 2597 5689

2'x2' EvoKit, P 32L 24W 835 2 O-10 7 G4, 3,062 delivered lumens

 Catalog No.
 516005

 Test No.
 x232L

 S/MH
 1.2

 Lamp Type
 LED

 Lumens/Watt
 129

 Input Watts
 24

Comparative yearly lighting energy cost per 1000 lumens - \$1.86 based on 3000 hours and \$0.08/kWh

The photmetric results were obtained in the Design Lights Consortium Test Lab which is NVLAP accredited by the National Institute of Standards and Technology

Photometric values based on tests performed in compliance with LM-79

Candlep Angle	ower End	Cross	Back-45
0	1112	1112	0
5	1109	1102	0
10	1090	1082	0
15	1060	1052	0
20	1018	1010	0
25	966	959	0
30	903	901	0
35	832	836	0
40	756	768	0
45	674	699	0
50	591	630	0
55	506	559	0
60	421	486	0
65	338	410	0
70	254	328	0
75	173	238	0
80	99	148	0
85	37	51	0

Coe cients of Utilization EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)

рсс		80				70		. 5	0	
pw	70	50	30	Ι	70	50	30	50	30	
RCR										
0	118	118	118	1	115	115	115	111	111	
1	108	104	98	١	106	101	96	96	93	
2	97	90	82	١	95	88	81	84	79	
3	90	79	70	١	86	77	69	73	67	
4	81	69	60	١	80	68	59	66	58	
5	76	63	53	١	72	60	53	58	52	
6	69	56	46	١	68	55	46	54	46	
7	65	51	41	١	63	50	41	48	40	
8	59	46	38	١	58	46	38	45	36	
9	56	42	34	١	55	41	34	40	34	
10	53	40	32	ı	52	39	30	38	30	

Light Distrib	oution						
Degrees	Lumens	% Luminaire	Averag	Average Luminance			
0-30	846	27.6	Angle	End	45°	Cross	
0-40	1369	44.7	45	8183	8270	8488	
0-60	2377	77.6	55	7572	7953	8358	
0-90	3062	100	65	6858	7768	8336	
			75	5744	7440	7901	
			85	3651	5398	4985	

2'x4' EvoKit, P 30L 22W 835 2 0-10 7 G4, 2,758 delivered lumens

 Catalog No.
 516237

 Test No.
 x430L

 S/MH
 1.2

 Lamp Type
 LED

 Lumens/Watt
 133

 Input Watts
 21

Comparative yearly lighting energy cost per 1000 lumens - \$1.80 based on 3000 hours and \$0.08/kWh

The photmetric results were obtained in the Design Lights Consortium Test Lab which is NVLAP accredited by the National Institute of Standards and Technology

Photometric values based on tests performed in compliance with LM-79

Candl	epower			
Angle	End	45	Cross	Back-4
0	952	952	952	952
5	937	948	962	946
15	899	911	927	907
25	824	838	855	832
35	585	613	642	604
45	445	488	531	480
55	648	700	762	686
65	299	369	413	362
75	156	239	263	232
85	35	79	78	67

Coe cients of Utilization 45 EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)

pcc		80			70		. 5	0
pw	70	50	30	70	50	30	50	30
RCR								
0	118	118	118	115	115	115	111	111
1	108	103	97	105	101	96	95	93
2	97	89	81	94	86	81	83	78
3	89	78	69	86	76	68	72	67
4	81	68	59	79	68	58	65	57
5	75	61	52	72	59	52	57	51
6	68	55	46	67	54	46	53	45
7	64	50	40	61	48	40	47	40
8	59	46	36	57	45	36	44	35
9	56	41	34	54	40	34	40	33
10	E 2	20	20	E1	20	20	24	20

Light Distrib	oution		Average Luminance					
Degrees	Lumens	% Luminaire	Angle	End	45°	Cross		
0-30	731	26.5	45	4125	4319	4526		
0-40	1189	43.1	55	3864	4239	4613		
0-60	2092	75.9	65	3524	4350	4864		
0-90	2758	100	75	3004	4607	5066		
			85	2007	4500	4471		

2'x4' EvoKit, P 36L 27W 835 2 O-10 7 G4, 3,368 delivered lumens

 Catalog No.
 516286

 Test No.
 x436L

 S/MH
 1.3

 Lamp Type
 LED

 Lumens/Watt
 132

 Input Watts
 26

Comparative yearly lighting energy cost per 1000 lumens - \$1.82 based on 3000 hours and \$0.08/kWh

The photmetric results were obtained in the Design Lights Consortium Test Lab which is NVLAP accredited by the National Institute of Standards and Technology

Photometric values based on tests performed in compliance with LM-79

Candle	oower			
Angle	End	45	Cross	Back-4
0	1167	1167	1167	1167
5	1149	1161	1180	1159
15	1103	1117	1136	1111
25	1012	1027	1048	1019
35	883	901	925	890
45	718	749	783	738
55	548	596	645	586
65	370	450	502	441
75	195	290	320	282
85	45	87	93	82

Coe cients of Utilization

EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)

рсс		80			70		5	0	
pw	70	50	30	70	50	30	50	30	
RCR									Ξ
0	118	118	118	115	115	115	111	111	
1	108	103	97	105	101	96	95	93	
2	97	89	81	94	86	81	83	78	
3	89	78	69	86	77	68	73	67	
4	81	68	59	79	68	58	65	57	
5	75	61	52	72	60	52	57	51	
6	68	56	46	67	55	46	53	45	
7	64	50	40	61	50	40	47	40	
8	59	46	36	57	45	36	44	35	
9	56	41	34	54	41	34	40	33	
10	52	39	30	51	38	30	36	29	

Light Distrik	oution		Average	e Lumin	ance	
Degrees	Lumens	% Luminaire	Angle	End	45°	Cross
0-30	896	26.6	45	5063	5281	5517
0-40	1456	43.2	55	4758	5181	5606
0-60	2559	76.0	65	4363	5306	5915
0-90	3368	100	75	3758	5574	6159
			85	2550	4992	5340

2'x4' EvoKit, P 42L 32W 835 2 O-10 7 G4, 4,134 delivered lumens

Catalog No. Test No.	516427 x442I
S/MH_	1.3
Lamp Type	LED
Lumens/Watt	131
Input Watts	32

Comparative yearly lighting energy cost per 1000 lumens - \$1.83 based on 3000 hours and \$0.08/kWh

The photmetric results were obtained in the Design Lights Consortium Test Lab which is NVLAP accredited by the National Institute of Standards and Technology

Photometric values based on tests performed in compliance with LM-79

(Candler	ower			
1	Angle [·]	End	45	Cross	Back-4
	0	1435	1435	1435	1435
	5	1414	1428	1451	1424
	15	1359	1375	1396	1364
	25	1247	1264	1288	1249
	35	1087	1109	1135	1089
	45	888	924	961	902
	55	676	734	791	714
	65	457	552	614	535
	75	242	358	392	341
	85	56	122	117	104

Coe cients of Utilization

EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)

рсс		80			70		. 5	0
pw	70	50	30	70	50	30	50	30
RCR								
0	118	118	118	115	115	115	111	111
1	108	103	97	105	101	96	95	93
2	97	89	81	94	86	81	83	78
3	89	78	69	86	77	68	73	67
4	81	68	59	79	68	58	65	57
5	75	61	53	72	60	52	57	51
6	68	56	46	67	55	46	53	45
7	64	50	40	61	50	40	47	40
8	59	46	36	57	45	36	44	35
9	56	41	34	54	41	34	40	33
10	52	30	30	51	38	30	36	20

Light Distrik	oution		Averag	e Lumin	ance	
Degrees	Lumens	% Luminaire	Angle	End	45°	Cross
0-30	1102	26.7	45	4688	4877	5077
0-40	1790	43.3	55	4403	4775	5147
0-60	3143	76.0	65	4033	4881	5427
0-90	4134	100	75	3484	5171	5655
			85	2412	5244	5021

2'x4' EvoKit, P 47L 36W 835 2 O-10 7 G4, 4,662 delivered lumens

Catalog No.	516534
Test No.	x447L
S/MH	1.3
Lamp Type	LED
Lumens/Watt	131
Input Watts	36

Comparative yearly lighting energy cost per 1000 lumens - \$1.83 based on 3000 hours and \$0.08/kWh

The photmetric results were obtained in the Design Lights Consortium Test Lab which is NVLAP accredited by the National Institute of Standards and Technology

Photometric values based on tests performed in compliance with LM-79

Candle	oower			
Angle	End	45	Cross	Back-45
0	1616	1616	1616	1616
5	1593	1609	1634	1604
15	1534	1548	1574	1536
25	1408	1425	1451	1408
35	1230	1250	1280	1227
45	1007	1041	1085	1016
55	767	827	893	805
65	519	624	693	603
75	277	405	443	384
85	68	139	133	119

Coe cients of Utilization
5 EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)

pcc		80			70		_ 5	0	
pw	70	50	30	70	50	30	50	30	Ξ
RCR									_
0	118	118	118	115	115	115	111	111	
1	108	103	97	105	101	96	95	93	
2	97	89	81	94	86	81	83	78	
3	89	78	69	86	77	68	73	67	
4	81	68	59	79	68	58	65	57	
5	75	61	52	72	60	52	57	51	
6	68	56	46	67	55	46	53	45	
7	64	50	40	61	50	40	47	40	
8	59	46	36	57	45	36	44	35	
9	56	41	34	54	41	34	40	33	
10	52	30	30	51	38	30	36	29	

Light Distrib	oution		Averag	e Lumin	ance	
Degrees	Lumens	% Luminaire	Angle	End	45°	Cross
0-30	1241	26.6	45	5317	5496	5727
0-40	2017	43.3	55	4990	5386	5813
0-60	3543	76.0	65	4587	5511	6119
0-90	4662	100	75	3990	5849	6384
			85	2913	5968	5711

Energy saving solution – EvoKit 2'x4'

Estimated light	ina costs	usina a	standard	3 Jamr	T8 tro	er

equivalent to a 10,000 square foot space. kWh rates will vary.

	3		The state of the s		
Present Wattage		85	W		
× Annual operating hours		4,380	hrs		
	=	372,300	Watt-Hours		
÷ 1,000	=	372.3	kWh per year		
× kWh rate of \$0.10	=	\$37.23	per year		
× 125 xtures		\$4,653.75	annual energy cost per space		
Estimated lighting costs using Present Wattage	ng a Pl	hilips 42L 2x 31	4 Evokit G4 W		
× Annual operating hours		4,380	hrs		
	=	135,780	Watt-Hours		
÷ 1,000	=	135.78	kWh per year		
× kWh rate of \$0.10	=	\$13.58	per year		
× 125 xtures		\$1,697.25	annual energy cost per space		
Total estimated annual savings ⁽⁾ \$2,956.50					
♦ Based on 125 xtures per space operating 4,380 hours a year. 125 xtures is roughly					

FOOTNOTES:

- 1) Please refer to the energy saving chart above for details.
- 2) L_{70} 72,000 hours @ 35°C based on TM21 and LM80.
- 3) Based on photometric testing consistent with IES LM-79. Actual wattage may di er by +/- 10%. Actual initial lumen output may vary between -10 and +10% of the rated lumens. Made to sOtock product (Contact your Philips sales representative for stock availability and lead time).
- *** Please visit www.philips.com/warranties for full details.
- † Restrictions on Hazardous Substances (RoHS) is a European directive (2002/95/EC) designed to limit the content of 6 substances [lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE)] in electrical and electrical products. For products used in North America, compliance with RoHS is voluntary and self-certified.
- ‡ Evokit luminaires are Design Lights Consortium quali ed. Please see the DLC QPL list for exact catalog numbers (http://www.designlights.org/QPL)
- These SKUs do not meet DLC Premium qualication criteria. Evokit luminaires are Design Lights Consortium qualicat. Please see the DLC QPL list for exact catalog numbers (http://www.designlights.org/QPL).

© 2018 Philips Lighting Holding B.V. All rights reserved. Philips reserves the right to make changes in speciacations and/or to discontinue any product at any time without notice or obligation and will not be liable for any consequences resulting from the use of this publication. philips.com/evokit

Philips Lighting North America Corporation 200 Franklin Square Drive, Somerset, NJ 08873 Tel. 855-486-2216

Philips Lighting Canada Ltd. 281 Hillmount Rd, Markham, ON, Canada L6C 2S3 Tel. 800-668-9008

Project:	Туре:
Prepared By:	Date:

Driver Inf	o	LED Info			
Туре	Constant Current	Watts	14W		
120V	0.14A	Color Temp	4000K (Neutral)		
208V	N/A	Color Accuracy	90 CRI		
240V	N/A	L70 Lifespan	50,000 Hours		
277V	N/A	Lumens	1,050		
Input Watts	14W	Efficacy	75 lm/W		

Technical Specifications

Listings

UL Listed:

Suitable for wet locations

ENERGY STAR V2.2:

This product is ENERGY STAR® Version 2.2 Certified.

Energy Star Model Number:

DLG0009

NEC Compliant:

Suitable for use in closets. Compliant with NEC Sec. 410.16 (A)(1) and 410.16 (C5).

California Title 24:

Can be used to conform with the requirements of California Title 24 Part 6.

Electrical

Dimming Driver:

TRIAC compatible dimmer with dimming as low as 5%. See dimmer compatibility guide here.

Power Factor:

≥0.9

Remote Driver:

Die-cast metal driver / junction box with a hinged cover.

Listed for 12AWG and 14AWG conduit. Includes two metal knockouts for wiring. Quick connectors included.

Plenum rated cable connector to connect from module to remote driver box.

PF:

≥0.9

Input Voltage:

120V

Operating Frequency (Hz):

60Hz

Performance

Lifespan:

50,000-Hour LED lifespan based on IES LM-80 results and TM-21 calculations

Construction

IC Rated:

Suitable for direct contact with insulation. Type IC inherently protected, suitable for direct contact to air permeable insulation and cULus listed for damp locations.

Not for use in direct contact with spray foam insulation, consult NEMA LSD57-2013.

Air Tight:

Housing certified Air Tight as per ASTM E283

Technical Specifications (continued)

Construction

Housing:

Precision die-cast aluminum

Aperture:

4" Round

Adjustable Lens:

With a 30° tilt and can rotate 360°

Trim Style:

Smooth Trrim

Cold Weather Starting:

The minimum starting temperature is -30°C (-22°F)

Maximum Ambient Temperature:

Suitable for use in up to 35°C (95°F)

Green Technology:

Mercury and UV free. RoHS-compliant components.

Mounting:

Robust retention clips spring loaded tabs ensure the fixture is securely installed. Can be installed in 1/4" to 1 1/2" thick ceilings.

Lens:

Diffuse Polystyrene lens produces smooth uniform light that is glare free

Finish:

Matte White

Optical

Beam Angle:

38° narrow beam spread for accent lighting

LED Characteristics

LEDs:

Long-life, high-efficacy, surface-mount LEDs

Wattage Equivalency:

100W Incandescent

R9 Value:

High color performance with R9 greater than or equal to 50

Flicker:

Silent and flicker free operations of less than 30%

Other

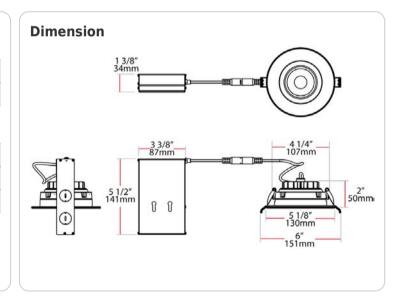
Template:

Template included for easy ceiling cut out

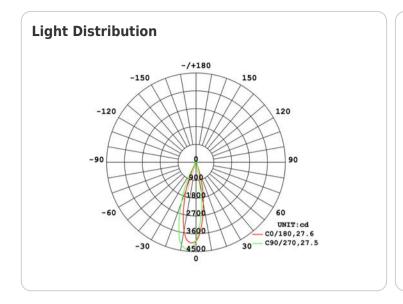
Warranty:

RAB warrants that our LED products will be free from defects in materials and workmanship for a period of five (5) years from the date of delivery to the end user, including coverage of light output, color stability, driver performance and fixture finish. RAB's warranty is subject to all terms and conditions found at rablighting.com/warranty.

Buy American Act Compliance:


RAB values USA manufacturing! Upon request, RAB may be able to manufacture this product to be compliant with the Buy American Act (BAA). Please contact customer service to request a quote for the product to be made BAA compliant.

Minimum Compartment Size


Length x Width x Height [in]	Lamp Quantity
47.8 x 23.8 x 3.0	4

Case and Pallet Dimensions

	QTY	LENGTH (in)	WIDTH (in)	HEIGHT (in)
CASE	6	10.43	9.84	7.28
PALLET	576	6.61	5.04	44.88

Features

Adjustable lens with 32 degree tilt and 360 degree rotation

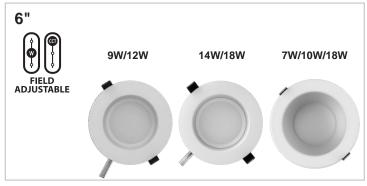
No recessed housing or J-box required

New construction or retrofit applications

UL wet location rated

Spring loaded retention clips

Robust, die cast aluminum construction


IC and airtight rated

5-Year, No-Compromise Warranty

Family	Size	Shape	Wattage	CRI/Color Temp	Voltage	Finish
G	4	R	14	940	120	W
	2 = 2" 3 = 3" 4 = 4"	R = Round	5 = 400lm 8 = 600lm 14 = 1050lm	940 = 90 CRI, 4000K (Neutral) 930 = 90 CRI, 3000K (Warm) 927 = 90 CRI, 2700K (Residential Warm)	120 = 120V	W = White

RAB

Performance Downlight Field-Adjustable

Features

- High Performance LEDs for commercial applications
- Replacement for traditional Compact Fluorescent recessed downlights
- Compatible with new construction or retrofit installations
- UL wet and Energy Star rated
- Meets air-tight requirements
- · Lumen and CCT Selectable
- · Matte white smooth trim finish
- Available in 3 CCTs: 3000K, 3500K, 4000K
- 0-10V dimmable
- Spring loaded retention clips
- 5-Year, No-Compromise Warranty

Project:	Туре:
Prepared by:	Date:

Technical Specifications

CCT and Lumen Selectable:

Choose lumen output and color temperature before installation with integrated switch

UL Listed & UL Classified

Suitable for wet locations

Energy Star V2.2:

This product is Energy Star® Version 2.2 Certified.

California Title 24:

Can be used to conform with the requirements of California Title 24 Part 6

Dimming Driver:

Driver includes dimming control wiring for 0-10V dimming systems. Requires seperate 0-10V DC dimming circuit. Dims as low as 10%

Input Voltage:

120V through 277V

Operating Frequency:

50/60Hz

Lifespan:

50,000-hour LED lifespan based on IES LM-80 results and TM-21 calculations

I FDe

Long-life, high-e cacy surface-mount LEDs

R9 Value:

High color performance with R9 greater than or equal to 50

Flicker

Silent and flicker free operations of less than 30%

IC Rated:

Suitable for direct contact with insulation

Air Tight:

Housing certified Air Tight as per ASTM E283

Trim:

Smooth Trim

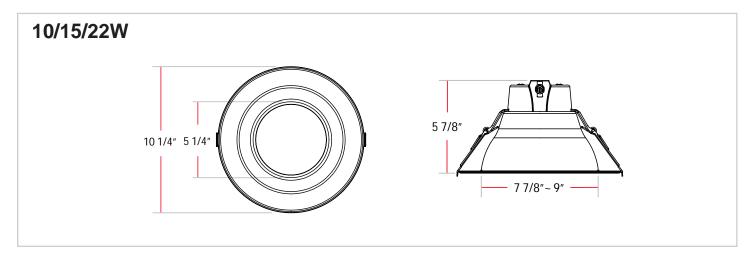
Housing:

Constructed from durable steel sheet metal

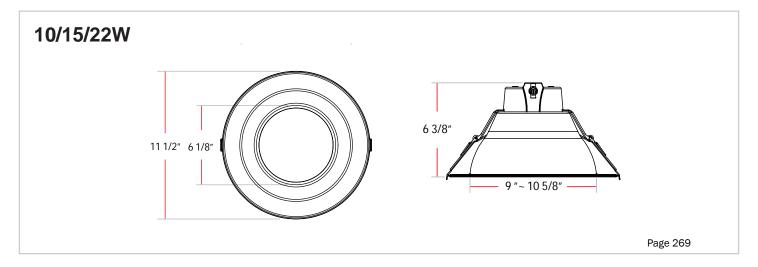
Maximum Ambient Temperature:

Suitable for use in 40°C (104°F)

Finish:


Matte White

Page 268


6"

8"

9.5"

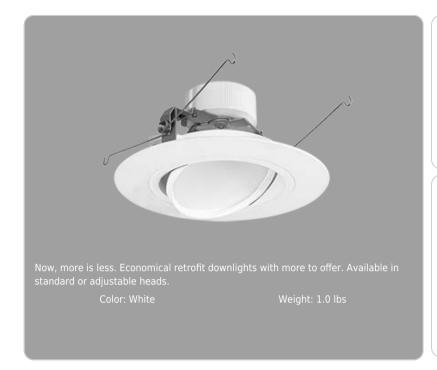
Performance

2 Lumen Output	Size	Wattage	Lumens	E cacy (Im/W)	Color Accuracy (CRI)
C6R9/129FAUNVW 3000K 3500K 4000K	6"	9/12	700 lm 900 lm	78	90
C6R14/189FAUNVW 3000K 3500K 4000K	6"	14/18	1200 lm 1500 lm	86	90
3 Lumen Output	Size	Wattage	Lumens	E cacy (Im/W)	Color Accuracy (CRI)
C6R7/10/189FAUNVW 3000K 3500K 4000K	6"	7/10/18	700 lm 1000 lm 1500 lm	100	90
C8R10/15/229FAUNVW 3000K 3500K 4000K	8"	10/15/22	1000 lm 1500 lm 2000 lm	100	90
C9.5R20/25/329FAUNVW 3000K 3500K 4000K	9.5"	20/25/32	2000 lm 2500 lm 3000 lm	100	90

Accessories

Images	SKU Number	Description	Construction	Dimensions Case Qt					
	Goof Rings - Plastic								
DL6-8GOOF/R/P		6" Goof Ring for 6" Downlight - 2 Lumen Output Models	Robust Polycarbonate construction. Matte White Finish	9 1/2' 241mm 6 3/4' 172mm					
	1	Goof Rings - M	etal	'					
0	DL8-10GOOF/R/M	10" Goof Ring for 8" Downlight - 3 Lumen Output Model	High-quality steel construction White powder coat finish	10 147 296mm 6 142 160mm					
	DL10-12GOOF/R/M	12" Goof Ring for 9.5" Downlight - 3 Lumen Output Model	High-quality steel construction White powder coat finish	12 3/77 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
0	DL12-14GOOF/R/M	12" Goof Ring for 9.5" Downlight - 3 Lumen Output Model	High-quality steel construction White powder coat finish	14 \$716' 150mm					

Accessories


		Mounting Plat	es		
20	DLPLATE/SJ New Construction Plate for Stud/ Joist mounting for use with 4", 6" smooth and ba e models		Sturdy galvanized steel construction	1021 1021 1021 1021 1021 1021 1021 1021	10
	DLPLATE/T	New Construction or Remodel Plate for T-Grid ceilings for use with 4", 6" smooth and ba e models	Sturdy galvanized steel construction	07147 07147 11 15 10 47 13 10 10 47 13 10 10 47 14 10 47 14 10 47 15 10 47 16 10 47 17 10 47 17 10 47 17 10 47 18	10
		Emergency Dri	ver		
	DRI-25-EMGR-DC	Emergency Driver	Sturdy galvanized steel construction	19/16* 40mm 11/8* 435mm	4
	BRACKET_TG_DRI	T-Grid bracket for Emergency Driver	Sturdy galvanized steel construction	7 10 10 10 10 10 10 10 10 10 10 10 10 10	12

Ordering Matrix

Product	Size	Shape	Wattage	CRI/Color Temp	Voltage	Finish
C		R		9FA	UNV	W
	6 6" 8 8" 9.5 9.5"	R Round	700lm-1500lm 7/10/18 700lm-900lm 9/12 1000lm-2000lm 10/15/22 1200lm-1500lm 14/18 2000lm-3000lm 20/25/32	9FA 90 CRI, Field Adjustable	120-277V UNV	W White

DLED6AR14YN

Project:	Type:
Prepared By:	Date:

Driver Inf	o	LED Info	
Туре	Constant Current	Watts	14W
120V 208V	0.104A N/A	Color Temp	3500K (Warm Neutral)
240V	N/A	Color Accuracy	89 CRI
277V	N/A	L70 Lifespan	50,000 Hours
Input Watts	12.40W	Lumens	980
•		Efficacy	79 lm/W

Technical Specifications

Listings

UL Classified:

Suitable for damp locations

ENERGY STAR V2.0:

This product is ENERGY STAR® Version 2.0 Certified.

IESNA LM-79 & IESNA LM-80 Testing:

RAB LED luminaires and LED components have been tested by an independent laboratory in accordance with IESNA LM-79 and LM-80.

CEC Status:

Not lawful for sale in California

Electrical

Driver:

Constant Current, Class 2, 50/60 Hz, 120V: 0.104A

THD:

11.75% at 120V

Power Factor:

99.3% at 120V

Dimming:

TRIAC and ELV dimming compatibility. See dimmer compatibility guide here.

Construction

Ambient Temperature:

-20°C to 40°C

Housing:

Precision, die-cast aluminum

Installation:

Torsion springs for secure installation

Socket Adapter:

Edison 26 Medium Base Socket adapter included in box

Lens:

Frosted acrylic lens

Finish:

Chip and fade-resistant polyester powder coat finish

Technical Specifications (continued)

Construction

Green Technology:

Mercury and UV free. RoHS-compliant components.

LED Characteristics

LEDs:

Multi-chip, high-output, long-life LEDs

Performance

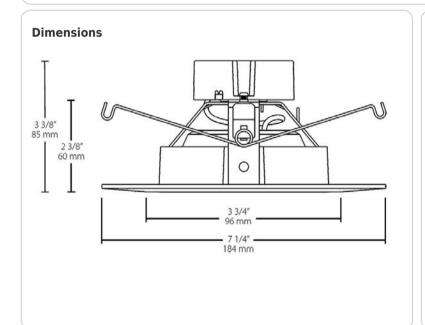
Lifespan:

50,000-Hour LED lifespan based on IES LM-80 results and TM-21 calculations

Optical

Adjustable Range:

38° range


Other

Warranty:

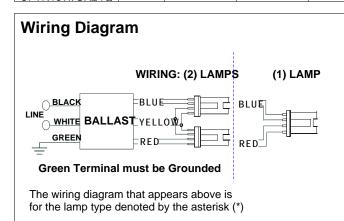
RAB warrants that our LED products will be free from defects in materials and workmanship for a period of five (5) years from the date of delivery to the end user, including coverage of light output, color stability, driver performance and fixture finish. RAB's warranty is subject to all terms and conditions found at rablighting.com/warranty.

Buy American Act Compliance:

RAB values USA manufacturing! Upon request, RAB may be able to manufacture this product to be compliant with the Buy American Act (BAA). Please contact customer service to request a quote for the product to be made BAA compliant.

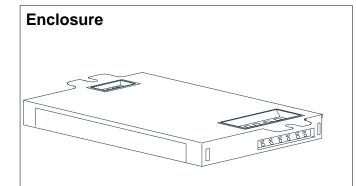
Features

Superior thermal management with heat-dissipating fins Specification-grade 90 CRI standard Edison E26 Medium Base socket adapter included 5-Year, No-Compromise Warranty


Ordering Matrix

Family	Size	Shape	Wattage	Color Temp
DLED	6	AR	14	YN
	6 = 6" 4 = 4"	R = Round AR = Adjustable Round		YN = 3500K (Warm Neutral) Y = 3000K (Warm) YY = 2700K (Residential Warm)

ICF-2S13-H1-LD@120					
Brand Name	SMARTMATE				
Ballast Type	Electronic				
Starting Method	Programmed Start				
Lamp Connection	Series				
Input Voltage	120-277				
Input Frequency	50/60 HZ				
Status	Active				


Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F
* CFQ13W/G24Q	1	13	0/-18	0.13	16	1.00	10	0.96	1.5	6.25
CFQ13W/G24q	2	13	0/-18	0.25	29	1.00	10	0.99	1.5	3.45
CFS10W/GR10Q	1	10	0/-18	0.11	13	1.05	15	0.96	1.5	8.08
CFS10W/GR10Q	2	10	0/-18	0.19	23	0.95	15	0.97	1.5	4.13
CFS16W/GR10q	1	16	0/-18	0.14	17	1.00	12	0.96	1.5	5.88
CFTR13W/GX24Q	1	13	0/-18	0.13	16	1.00	10	0.96	1.5	6.25
CFTR13W/GX24Q	2	13	0/-18	0.25	29	1.00	10	0.99	1.5	3.45

Standard Lead Length (inches)

Otaliaara Load Long							
	in.	cm.					
Black	0.0						
White	0.0						
Blue	0.0						
Red	0.0						
Yellow	0						
Gray							
Violet							

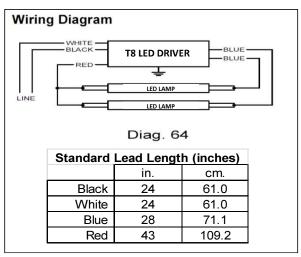
ches)	in.	cm.
Yellow/Blue		
Blue/White		
Brown		
Orange		
Orange/Black		
Black/White		
Red/White		

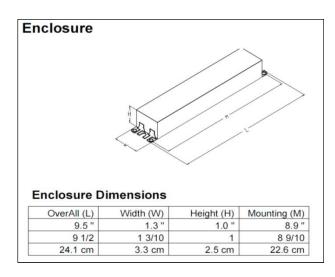
Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
4.98 "	2.4 "	1.0 "	4.6 "
4 49/50	2 2/5	1	4 3/5
12.6 cm	6.1 cm	2.5 cm	11.7 cm

Revised 08/15/2006

Data is based upon tests performed by Philips Lighting Electronics N.A. in a controlled environment and is representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.


PHILIPS LIGHTING ELECTRONICS N.A.


10275 WEST HIGGINS ROAD · ROSEMONT, IL 60018
Tel: 800-322-2086 · Fax: 888-423-1882 · www.philips.com/advance
Customer Support/Technical Service: 800-372-3331 · OEM Support: 866-915-5886

ICN-2P16-TLED-N					
Brand Name CENTIUM					
Driver Type	T8 LED Electronic				
Lamp Connection	Parallel				
Input Voltage	120-277V				
Input Frequency	50/60 Hz				
Status	Active				

	Compatible Lamp Information					Dri	ver Sp	ecificatio	ons @1	20V/@	277V	
T8 LED Lamp Brand	T8 LED Lamp Description	T8 LED Lamp Product No.	T8 LED Lamp Model No.	T8 LED Lamp Ordering Code	Bare Lamp Watts (W)	Nom. Initial Lumens	Min. Start Temp (°F/°C)	Num. of Lamps	Input Current (A)	Input Power (W)	Max THD%	Power Factor
Philips	LED InstantFit T8 - 4'	453589 453597	9290011239 9290011240	12T8/48-3000 IF 10/1 12T8/48-3500 IF 10/1	12	1500 1500	-13/-25	2	0.21/0.09	25	10	0.99/0.96
		453605 453613	9290011241 9290011242	12T8/48-4000 IF 10/1 12T8/48-5000 IF 10/1		1600 1650		1	0.11/0.06	14	15	0.98/0.90
Philips	LED InstantFit T8 - 4'	456897 456905	9290011585 9290011586	15T8/48-3000 IF 10/1 15T8/48-3500 IF 10/1	15	2000 2000	-13/-25	2	0.28/0.12	33	10	0.99/0.97
i impo	High Output	456913 456921	9290011587 9290011588	15T8/48-4000 IF 10/1 15T8/48-5000 IF 10/1	10	2100 2100	0	1	0.17/0.08	20	15	0.99/0.94
Philips	LED InstantFit T8 - 4'	434860 434878	9290002880 9290002881	16.5T8/48-3000 IF 10/1 16.5T8/48-3500 IF 10/1	16.5	2000 2000	-13/-25 -	2	0.33/0.14	40	10	0.99/0.97
i iiiips	High Output	434886 434894	9290002882 9290002883	16.5T8/48-4000 IF 10/1 16.5T8/48-5000 IF 10/1	10.0	2100 2150		1	0.17/0.08	20	15	0.99/0.94
Philips	LED InstantFit T8 U-Bent -6"	452664 452672	9290011196 9290011197	16.5T8/22.5-3000 IF-6U 10/1 16.5T8/22.5-3500 IF-6U 10/1	16.5	2000 2000	-13/-25	2	0.33/0.14	40	10	0.99/0.97
i iiiips	High Output	452680 452698	9290011198 9290011199	16.5T8/22.5-4000 IF-6U 10/1 16.5T8/22.5-5000 IF-6U 10/1	10.0	2100 2150	10/-20	1	0.17/0.08	20	15	0.99/0.94
Philips	LED InstantFit T8 - 3'	452052 452060	9290011183 9290011184	10.5T8/36-3000 IF 10/1 10.5T8/36-3500 IF 10/1	10.5	1100 1160	60	2	0.20/0.09	24	10	0.99/0.95
Fillips	LED IIIstant It 10-3	452078 452086	9290011185 9290011186	10.5T8/36-4000 IF 10/1 10.5T8/36-5000 IF 10/1	10.5	1200 1270 -13/-25	1	0.11/0.05	13	15	0.98/0.89	
Philips	LED InstantFit T8 - 2'	452011 452029	9290011179 9290011180	8.5T8/24-3000 IF 10/1 8.5T8/24-3500 IF 10/1	8.5	950 1040	-13/-25	2	0.18/0.08	21	10	0.99/0.94
Fillips	LLD IIIStanti II 10 - 2	452037 452045	9290011181 9290011182	8.5T8/24-4000 IF 10/1 8.5T8/24-5000 IF 10/1	0.5	1050 1100	- 10/-20	1	0.10/0.05	12	15	0.98/0.88

Revised: 07/28/15

Data is based on tests performed by Philips Lighting NA in a controlled environment and is representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ICN-2P16-TLED-N					
Brand Name	CENTIUM				
Driver Type	T8 LED Electronic				
Lamp Connection	Parallel				
Input Voltage	120-277V				
Input Frequency	50/60 Hz				
Status	Active				

Notes:

Section I - Physical Characteristics

- 1.1 Driver shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Driver shall be provided with integral leads color coded per ANSI C82.11.

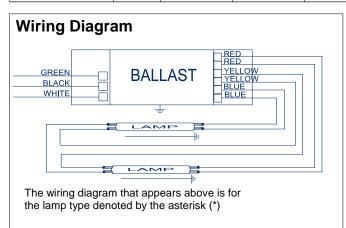
Section II - Performance Requirements

- 2.1 Driver shall energize compatible LED lamps within 1 second after mains power is applied.
- 2.2 Driver shall provide Independent Lamp Operation (ILO) allowing remaining lamp(s) to maintain full light output when one or more lamps fail.
- 2.3 Driver shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.4 Driver shall operate from a 50Hz or 60 Hz AC input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency).
- 2.5 Driver shall be high frequency electronic type and operate lamps at frequencies above 42 kHz to avoid interference with infrared devices and eliminate visible flicker
- 2.6 Driver shall have a Power Factor of 0.94 or above when operating the maximum rated number of compatible lamps, and 0.88 or above when operating the minimum rated number of compatible lamps.
- 2.7 Driver input current shall Total Harmonic Distortion (THD) of 10% or less when operating the maximum rated number of compatible lamps and 15% or less when operating the minimum rated number of compatible lamps.
- 2.8 Driver shall have a Class A sound rating.
- 2.9 Driver shall have a minimum starting temperature of -13°F / -25°C.
- 2.10 Driver shall tolerate sustained open circuit and short circuit output conditions.
- 2.11 Driver shall be capable of operating lamps remotely and in tandem for wire lengths up to 20 ft.
- 2.12 Driver shall be suitable of operation in up to a 45°C ambient temperature.

Section III - Regulatory Requirements

- 3.1 Driver shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Driver shall be Underwriters Laboratories (UL) Recognized, Class P, and suitable for Damp and Dry conditions; and CSA Certified where applicable.
- 3.3 Driver shall comply with ANSI C62.41 Category A Transient protection.
- 3.4 Driver shall comply with the requirements of the Federal Communication Commission (FCC) rules and regulations, Title 47, CFR part 15, Non-Consumer (Class A) for EMI/RFI (conducted and radiated).
- 3.5 Driver shall comply with NEMA 410 for in-rush current limits.

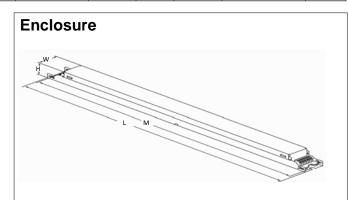
Section IV - Other


- 4.1 Driver shall be manufactured in a factory certified to ISO 9001 Quality System Standards.
- 4.2 Driver shall carry a five year warranty from date of manufacture against defects in material and workmanship when operating in a 45°C ambient (

PHILIPS ADVANCE

Electrical Specifications

ICN-2S28-T@120						
Brand Name	CENTIUM T5					
Ballast Type	Electronic					
Starting Method	Programmed Start					
Lamp Connection	Series					
Input Voltage	120-277					
Input Frequency	50/60 HZ					
Status	Active					


Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F14T5	1	14	0/-18	0.14	17	1.07	15	0.98	1.7	6.29
F14T5	2	14	0/-18	0.27	32	1.06	10	0.98	1.7	3.31
F21T5	1	21	0/-18	0.19	23	1.03	15	0.98	1.7	4.48
F21T5	2	21	0/-18	0.38	46	1.02	10	0.98	1.7	2.22
F28T5	1	28	0/-18	0.27	31	1.00	10	0.98	1.7	3.23
* F28T5	2	28	0/-18	0.51	62	1.00	10	0.98	1.7	1.61
F28T5/ES (25W)	1	25	0/-18	0.24	28	1.00	10	0.98	1.7	3.57
F28T5/ES (25W)	2	25	0/-18	0.47	56	1.00	10	0.98	1.7	1.79
F35T5	1	35	0/-18	0.34	39	1.00	10	0.98	1.7	2.56
F35T5	2	35	0/-18	0.64	77	1.00	10	0.98	1.7	1.30

Standard Lead Length (inches)

	in.	cm.
Black	0	0
White	0	0
Blue	0	0
Red	0	0
Yellow	0	0
Gray		0
Violet		0

in.	cm.
	0
	0
	0
	0
	0
	0
	0
	in.

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
14.17 "	1.18 "	1.06 "	13.78 "
14 17/100	1 9/50	1 3/50	13 39/50
36 cm	3 cm	2.7 cm	35 cm

Revised 05/31/13

Data is based upon tests performed by Philips Lighting N.A in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

Philips Lighting Electronic N.A

10275 West Higgins Road Rosemont, IL 60018 Tel.: 800-322-2086 Fax: 888-432-1882
Customer Support/Technical Service: 800-372-3331 · OEM Support: 866-915-5886

ICN-2S28-T@120					
Brand Name	CENTIUM T5				
Ballast Type	Electronic				
Starting Method	Programmed Start				
Lamp Connection	Series				
Input Voltage	120-277				
Input Frequency	50/60 HZ				
Status	Active				

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be provided with integral leads or poke-in wire trap connectors color-coded per ANSI C82.11.

Section II - Performance

- 2.1 Ballast shall be Programmed Start.
- 2.2 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.3 Ballast shall operate from 50/60 Hz input source of ______ (120V through 277V, 347V or 347V through 480V) with sustained variations of +/- 10% (voltage and frequency).
- 2.4 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 2.5 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.6 Ballast shall have a minimum ballast factor of 1.0 for primary lamp application.
- 2.7 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less.
- 2.8 Ballast input current shall have Total Harmonic Distortion (THD) of less than 10% when operated at nominal line voltage with primary lamp.
- 2.9 Ballast shall have a Class A sound rating.
- 2.10 Ballast shall have a minimum starting temperature of _____ {-18C (0F) or -29C (-20F)} for primary lamp. Consult lamp manufacturer for temperature versus light output characteristics.
- 2.11 Ballast shall provide Lamp EOL Protection Circuit.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions.
- 2.13 Four-lamp ballast shall have (semi-independent or independent) lamp operation.

Section III - Regulatory

- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable.
- 3.3 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.4 Ballast shall comply with ANSI C82.11 where applicable.
- 3.5 Ballast shall comply with applicable requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, for Non-Consumer equipment.
- 3.6 Ballast shall comply with UL Type CC rating.
- 3.7 Ballast shall comply with NEMA 410 for in-rush current limits.

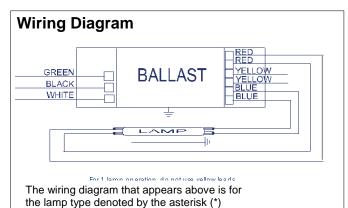
Section IV - Other

- 4.1 Ballast shall be manufactured in a factory certified to ISO 9001 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 70C. Ballasts with a "90C" designation in their catalog number shall also carry a three-year warranty at a maximum case temperature of 90C.
- 4.3 Manufacturer shall have a twenty-year history of producing electronic ballasts for the North American market.

Revised 05/31/13

Data is based upon tests performed by Philips Lighting Electronic N.A. in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

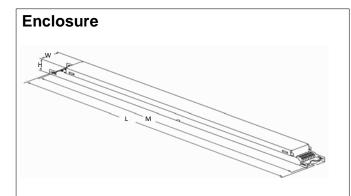
Philips Lighting Electronic N.A.


10275 West Higgins Road Rosemont, IL 60018 Tel.: 800-322-2086 Fax: 888-432-1882 Customer Support/Technical Service: 800-372-3331 OEM Support: 866-915-5886

PHILIPS ADVANCE

Electrical Specifications

ICN-2S28-T@277				
Brand Name	CENTIUM T5			
Ballast Type	Electronic			
Starting Method	Programmed Start			
Lamp Connection	Series			
Input Voltage	120-277			
Input Frequency	50/60 HZ			
Status	Active			


Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (\(\mathcal{F}/\mathcal{C}\))	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F14T5	1	14	0/-18	0.07	18	1.07	15	0.90	1.7	5.94
F14T5	2	14	0/-18	0.12	32	1.06	10	0.95	1.7	3.31
F21T5	1	21	0/-18	0.09	23	1.03	15	0.95	1.7	4.48
F21T5	2	21	0/-18	0.17	45	1.02	10	0.98	1.7	2.27
* F28T5	1	28	0/-18	0.12	31	1.00	10	0.95	1.7	3.23
F28T5	2	28	0/-18	0.23	61	1.00	10	0.98	1.7	1.64
F28T5/ES (25W)	1	25	0/-18	0.11	28	1.00	10	0.95	1.7	3.57
F28T5/ES (25W)	2	25	0/-18	0.20	55	1.00	10	0.98	1.7	1.82
F35T5	1	35	0/-18	0.15	39	1.00	10	0.95	1.7	2.56
F35T5	2	35	0/-18	0.28	75	1.00	10	0.95	1.7	1.33

Standard Lead Length (inches)

		· · · · · · ·
	in.	cm.
Black	0	0
White	0	0
Blue	0	0
Red	0	0
Yellow	0	0
Gray		0
Violet		0

in.	cm.
	0
	0
	0
	0
	0
	0
	0
	in.

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
14.17 "	1.18 "	1.06 "	13.78 "
14 17/100	1 9/50	1 3/50	13 39/50
36 cm	3 cm	2.7 cm	35 cm

Revised 05/31/13

Data is based upon tests performed by Philips Lighting N.A in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

Philips Lighting Electronic N.A

10275 West Higgins Road Rosemont, IL 60018 Tel.: 800-322-2086 Fax: 888-432-1882
Customer Support/Technical Service: 800-372-3331 · OEM Support: 866-915-5886

Brand Name CENTIUM T5 Ballast Type Electronic Starting Method Programmed Start Lamp Connection Series Input Voltage 120-277 Input Frequency 50/60 HZ Status Active

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be provided with integral leads or poke-in wire trap connectors color-coded per ANSI C82.11.

Section II - Performance

- 2.1 Ballast shall be Programmed Start.
- 2.2 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.3 Ballast shall operate from 50/60 Hz input source of ______ (120V through 277V, 347V or 347V through 480V) with sustained variations of +/- 10% (voltage and frequency).
- 2.4 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 2.5 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.6 Ballast shall have a minimum ballast factor of 1.0 for primary lamp application.
- 2.7 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less.
- 2.8 Ballast input current shall have Total Harmonic Distortion (THD) of less than 10% when operated at nominal line voltage with primary lamp.
- 2.9 Ballast shall have a Class A sound rating.
- 2.10 Ballast shall have a minimum starting temperature of _____ {-18C (0F) or -29C (-20F)} for primary lamp. Consult lamp manufacturer for temperature versus light output characteristics.
- 2.11 Ballast shall provide Lamp EOL Protection Circuit.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions.
- 2.13 Four-lamp ballast shall have (semi-independent or independent) lamp operation.

Section III - Regulatory

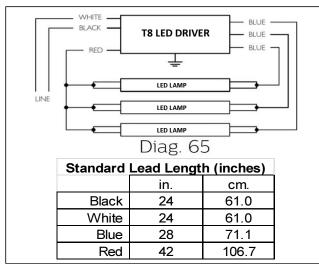
- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable.
- 3.3 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.4 Ballast shall comply with ANSI C82.11 where applicable.
- 3.5 Ballast shall comply with applicable requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, for Non-Consumer equipment.
- 3.6 Ballast shall comply with UL Type CC rating.
- 3.7 Ballast shall comply with NEMA 410 for in-rush current limits.

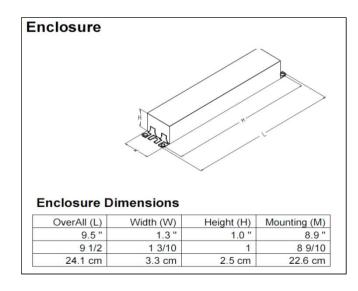
Section IV - Other

- 4.1 Ballast shall be manufactured in a factory certified to ISO 9001 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 70C. Ballasts with a "90C" designation in their catalog number shall also carry a three-year warranty at a maximum case temperature of 90C.
- 4.3 Manufacturer shall have a twenty-year history of producing electronic ballasts for the North American market.

Revised 05/31/13

Data is based upon tests performed by Philips Lighting Electronic N.A. in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.


Philips Lighting Electronic N.A.


10275 West Higgins Road Rosemont, IL 60018 Tel.: 800-322-2086 Fax: 888-432-1882 Customer Support/Technical Service: 800-372-3331 OEM Support: 866-915-5886

ICN-3P16-TLED-N					
Brand Name	CENTIUM				
Driver Type	T8 LED Electronic				
Lamp Connection	Parallel				
Input Voltage	120-277V				
Input Frequency	50/60 Hz				
Status	Active				

	Compatible Lamp Information				Dri	ver Sp	ecificatio	ons @12	20V/@	277V					
T8 LED Lamp Brand	T8 LED Lamp Description	T8 LED Lamp Product No.	T8 LED Lamp Model No.	T8 LED Lamp Ordering Code	Bare Lamp Watts (W)	Nom. Initial Lumens	Min. Start Temp (°F/°C)	Num. of Lamps	Input Current (A)	Input Power (W)	Max THD%	Power Factor			
Philips	LED InstantFit T8 - 4'	453589 453597	9290011239 9290011240	12T8/48-3000 IF 10/1 12T8/48-3500 IF 10/1	12	1500 1500	-13/-25	3	0.33/0.15	40	10	0.99/0.96			
Timps	EED IIIStanti it 10 - 4	453605 453613	9290011241 9290011242	12T8/48-4000 IF 10/1 12T8/48-5000 IF 10/1	12	1600 1650			-10/-20	2	0.25/0.11	30	15	0.99/0.93	
Philips	LED InstantFit T8 - 4'	456897 456905	9290011585 9290011586	15T8/48-3000 IF 10/1 15T8/48-3500 IF 10/1	15	2000 2000	-13/-25	3	0.43/0.19	51	10	0.99/0.97			
Fillips	High Output	456913 456921	9290011587 9290011588	15T8/48-4000 IF 10/1 15T8/48-5000 IF 10/1	13	2100 2100	-13/-23	2	0.41/0.18	49	15	0.99/0.97			
Philips	LED InstantFit T8 - 4'	463133 463141	9290012267 9290012268	16.5T8 LED/48-3500 IF 10/1 UHO 16.5T8 LED/48-4000 IF 10/1 UHO	16.5	2400 2500	-13/-25	3	0.45/0.20	56	10	0.99/0.97			
Timps	Ultra High Output	463158	9290012269	16.5T8 LED/48-5000 IF 10/1 UHO	10.5	2500	-13/-23	2	0.52/0.23	62	15	0.99/0.97			
Philips	LED InstantFit T8 - 3'	452052 452060	9290011183 9290011184	10.5T8/36-3000 IF 10/1 10.5T8/36-3500 IF 10/1	10.5	1100 1160	-13/-25	3	0.31/0.14	36	10	0.99/0.95			
Fillips	LLD IIIstanti it 10-3	452078 452086	9290011185 9290011186	10.5T8/36-4000 IF 10/1 10.5T8/36-5000 IF 10/1	120	1200 1270	1200	1200	1200	00	2	0.23/0.11	28	15	0.99/0.93
Philips	LED InstantFit T8 - 2'	452011 452029	9290011179 9290011180	8.5T8/24-3000 IF 10/1 8.5T8/24-3500 IF 10/1	8.5	950 1040	-13/-25	3	0.27/0.12	32	10	0.99/0.94			
riilips	LLD IIIStaillFit 10 - 2	452037 452045	9290011181 9290011182	8.5T8/24-4000 IF 10/1 8.5T8/24-5000 IF 10/1	0.5	1050 1100	-13/-23	2	0.21/0.10	25	15	0.99/0.91			

Revised: 07/27/16

Data is based on tests performed by Philips Lighting NA in a controlled environment and is representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ICN-3P16-TLED-N					
Brand Name	CENTIUM				
Driver Type	T8 LED Electronic				
Lamp Connection	Parallel				
Input Voltage	120-277V				
Input Frequency	50/60 Hz				
Status	Active				

Notes:

Section I - Physical Characteristics

- 1.1 Driver shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Driver shall be provided with integral leads color coded per ANSI C82.11.

Section II - Performance Requirements

- 2.1 Driver shall energize compatible LED lamps within 1 second after mains power is applied.
- 2.2 Driver shall provide Independent Lamp Operation (ILO) allowing remaining lamp(s) to maintain full light output when one or more lamps fail.
- 2.3 Driver shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.4 Driver shall operate from a 50Hz or 60 Hz AC input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency).
- 2.5 Driver shall be high frequency electronic type and operate lamps at frequencies above 42 kHz to avoid interference with infrared devices and eliminate visible flicker
- 2.6 Driver shall have a Power Factor of 0.90 or above when operating either the maximum or minimum rated number of compatible lamps.
- 2.7 Driver input current shall Total Harmonic Distortion (THD) of 10% or less when operating the maximum rated number of compatible lamps and 15% or less when operating the minimum rated number of compatible lamps.
- 2.8 Driver shall have a Class A sound rating.
- 2.9 Driver shall have a minimum starting temperature of -13°F / -25°C.
- 2.10 Driver shall tolerate sustained open circuit and short circuit output conditions.
- 2.11 Driver shall be capable of operating lamps remotely and in tandem for wire lengths up to 20 ft.
- 2.12 Driver shall be suitable of operation in up to a 45°C ambient temperature.

Section III - Regulatory Requirements

- 3.1 Driver shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Driver shall be Underwriters Laboratories (UL) Recognized, and suitable for Damp and Dry conditions; and CSA Certified where applicable.
- 3.3 Driver shall comply with ANSI C62.41 Category A Transient protection.
- 3.4 Driver shall comply with the requirements of the Federal Communication Commission (FCC) rules and regulations, Title 47, CFR part 15, Non-Consumer (Class A) for EMI/RFI (conducted and radiated).
- 3.5 Driver shall comply with NEMA 410 for in-rush current limits.

Section IV - Other

- 4.1 Driver shall be manufactured in a factory certified to ISO 9001 Quality System Standards.
- 4.2 Driver shall carry a five year warranty from date of manufacture against defects in material and workmanship when operating in a 45°C ambient (

Accent with higher performance LED retrofits

MR16/GU10/PAR16

Philips MR16 Dimmable LED Lamps provide ambient level light to illuminate hard to maintain applications. Increased transformer compatability allows for operation on a wider range of transformers. Available in dimmable and non-dimmable versions, these lamps are ideal for track and open recessed fixtures in retail, hospitality and residential spaces.

Benefits

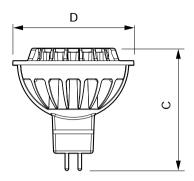
- Long life properties-- lowers maintenance costs by reducing re-lamp frequency
- · Will not fade colors, avoids inventory spoilage
- · Contains no mercury
- Emits virtually no UV/IR light in the beam
- 3-year or 5-year limited warranty depending upon operating hours

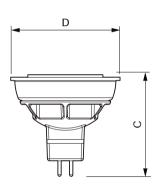
Features

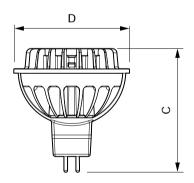
- · Available in dimmable* and non-dimmable versions
- · Provides quality white light and a crisp, uniform beam
- 7W and 7W HO MRX16s are suitable for use in many enclosed fixtures
- 40,000-hour rated average life⁺ for 7W MRX16
- · Instant-on light
- ^{*}Dimmable when using leading edge dimmers (see Philips Website: www.philips.com/ledtechguide for compatible leading edge dimmers.)
- ⁺Rated average life based on engineering testing and probability analysis.

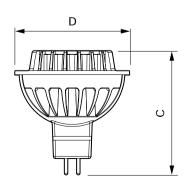
Application

• Ideal for accent and ambient lighting in retail and hospitality spaces.

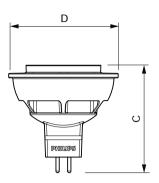

data subject to change

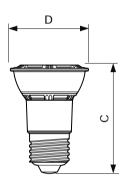

MR16/GU10/PAR16

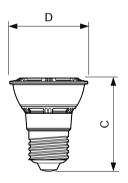

Versions

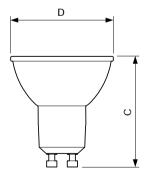


Dimensional drawing

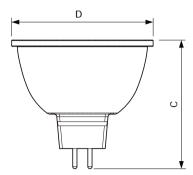

Product	D	С
7MR16/F35 2700 DIM AF2 10/1	51 mm	51 mm
BC7MR16/AMB/F35/3000 DIM 12V	51 mm	51 mm
7MR16/F35 4000 DIM AF2 10/1	51 mm	51 mm
7MR16/F25 4000 DIM AF2 10/1	51 mm	51 mm
7MR16/F25 3000 DIM AF2 10/1	51 mm	51 mm
7MR16/LED/S15/827/DIM AF2 10/1	51 mm	51 mm
7MR16/LED/S15/840/DIM AF2 10/1	51 mm	51 mm
7MR16/LED/S15/830/DIM AF2 10/1	51 mm	51 mm
7MR16/LED/F35/830/DIM AF2 10/1	51 mm	51 mm
7MR16/LED/F35/827/DIM AF2 10/1	51 mm	51 mm
7MR16/LED/F25/830/DIM AF2 10/1	51 mm	51 mm
7MR16/LED/F25/840/DIM AF2 10/1	51 mm	51 mm
7MR16/LED/F25/827/DIM AF2 10/1	51 mm	51 mm
7MR16/LED/F35/840/DIM AF2 10/1	51 mm	51 mm
7MR16/F35 3000 DIM AF2 10/1	51 mm	51 mm


Product	D	С
6.5MR16/F36/2700 DIM 12V	50 mm	50 mm


Product	D	С
7MR16/F36 2700 DIM HO	50 mm	54 mm
7MR16/F36 3000 DIM HO	50 mm	54 mm
7MR16/F24 2700 DIM HO	50 mm	54 mm
7MR16/F24 3000 DIM HO	50 mm	54 mm


Product	D	С
8.5MRX16/F35 4000 DIM AF 10/1	51 mm	55 mm
8.5MRX16/F25 4000 DIM AF 10/1	51 mm	55 mm
8.5MRX16/F35 3000 DIM AF 10/1	51 mm	55 mm
8.5MRX16/F25 2700 DIM AF 10/1	51 mm	55 mm
8.5MRX16/F25 3000 DIM AF 10/1	51 mm	55 mm
8.5MRX16/F35 2700 DIM AF 10/1	51 mm	55 mm

Dimensional drawing


Product	D	С
6.5MR16/F25/2700-2200 DIM 12V	51 mm	50 mm
6.6MR16/F25/3000 DIM 12V	51 mm	51 mm
6.6MR16/F35/3000 DIM 12V	51 mm	51 mm
6.5MR16/F35/2700-2200 DIM 12V	51 mm	50 mm
6.4MR16/F25/3000 DIM 12V	51 mm	51 mm
6.4MR16/F35/3000 DIM 12V	51 mm	51 mm

Product	D	С
AmbientLED PAR16 7W 35D 830 D	50 mm	70 mm

Product	D	С
AmbientLED PAR16S 7W 35D 830 D	50 mm	60 mm

Product	D	С
4.5GU10/LEDCLA/F35/830/DIM 10/1	50 mm	53 mm

Dimensional drawing

Product	D	С
7MR16 ExpertColor S10 930 D 10/1	51 mm	46 mm
7MR16 ExpertColor S10 940 D 10/1	51 mm	46 mm
7MR16 ExpertColor F35 930 D 10/1	51 mm	46 mm
7MR16 ExpertColor F25 927 D 10/1	51 mm	46 mm
7MR16 ExpertColor F35 927 D 10/1	51 mm	46 mm
7MR16 ExpertColor F35 940 D 10/1	51 mm	46 mm
7MR16 ExpertColor F25 940 D 10/1	51 mm	46 mm
7MR16 ExpertColor Retail F35 930 10/1	51 mm	46 mm
7MR16 ExpertColor Retail S10 930 10/1	51 mm	46 mm
7MR16 ExpertColor S10 927 D 10/1	51 mm	46 mm
7MR16 ExpertColor Retail F25 930 10/1	51 mm	46 mm
7MR16 ExpertColor F25 930 D 10/1	51 mm	46 mm

General Information	
Switching Cycle	50000X
Light Technical	
Limf At End Of Nominal Lifetime (Nom)	70 %

Approval and Application

		Energy Consumption kWh/	Energy Efficiency Label
Order Code	Full Product Name	1000 h	(EEL)
929000263004	7MR16/F24 2700 DIM HO	8 kWh	A+
929000263104	7MR16/F24 3000 DIM HO	8 kWh	A+
929000263304	7MR16/F36 2700 DIM HO	8 kWh	Α
929000263404	7MR16/F36 3000 DIM HO	8 kWh	A+
929001123104	6.5MR16/F36/2700 DIM 12V	7 kWh	A
929001127804	6.5MR16/F25/2700-2200 DIM 12V	- kWh	Not applicable
929001127904	6.5MR16/F35/2700-2200 DIM 12V	7 kWh	Not applicable
929001149804	8.5MRX16/F25 2700 DIM AF 10/1	9 kWh	Not applicable
929001149904	8.5MRX16/F25 3000 DIM AF 10/1	- kWh	Not applicable
929001150004	8.5MRX16/F25 4000 DIM AF 10/1	9 kWh	Not applicable
929001150104	8.5MRX16/F35 2700 DIM AF 10/1	9 kWh	Not applicable
929001150204	8.5MRX16/F35 3000 DIM AF 10/1	9 kWh	Not applicable
929001150304	8.5MRX16/F35 4000 DIM AF 10/1	9 kWh	Not applicable
929001151804	6.6MR16/F25/3000 DIM 12V	7 kWh	Not applicable
929001151834	6.4MR16/F25/3000 DIM 12V	-	Not applicable
929001152204	6.6MR16/F35/3000 DIM 12V	7 kWh	Not applicable
929001152234	6.4MR16/F35/3000 DIM 12V	-	Not applicable
929001152534	7MR16/LED/S15/827/DIM AF2 10/1	8 kWh	Not applicable
929001152634	7MR16/LED/S15/830/DIM AF2 10/1	8 kWh	Not applicable
929001152734	7MR16/LED/S15/840/DIM AF2 10/1	8 kWh	Not applicable
929001152834	7MR16/LED/F25/827/DIM AF2 10/1	8 kWh	Not applicable
929001152904	7MR16/F25 3000 DIM AF2 10/1	8 kWh	A
929001152934	7MR16/LED/F25/830/DIM AF2 10/1	8 kWh	Not applicable
929001153004	7MR16/F25 4000 DIM AF2 10/1	8 kWh	A
929001153034	7MR16/LED/F25/840/DIM AF2 10/1	8 kWh	Not applicable

		Energy	Energy
		Consumption kWh/	Efficiency Label
Order Code	Full Product Name	1000 h	(EEL)
929001153104	7MR16/F35 2700 DIM AF2 10/1	8 kWh	Α
929001153134	7MR16/LED/F35/827/DIM AF2 10/1	8 kWh	Not applicable
929001153204	7MR16/F35 3000 DIM AF2 10/1	8 kWh	Α
929001153234	7MR16/LED/F35/830/DIM AF2 10/1	8 kWh	Not applicable
929001153304	7MR16/F35 4000 DIM AF2 10/1	8 kWh	Α
929001153334	7MR16/LED/F35/840/DIM AF2 10/1	8 kWh	Not applicable
929001208003	BC7MR16/AMB/F35/3000 DIM 12V	-	-
929001245403	AmbientLED PAR16 7W 35D 830 D	-	Not applicable
929001245605	AmbientLED PAR16S 7W 35D 830 D	-	Not applicable
929001300604	4.5GU10/LEDCLA/F35/830/DIM 10/1	-	Not applicable
929001341704	7MR16 ExpertColor S10 927 D 10/1	-	-
929001341804	7MR16 ExpertColor S10 930 D 10/1	-	-
929001341904	7MR16 ExpertColor S10 940 D 10/1	-	-
929001342604	7MR16 ExpertColor Retail S10 930	-	-
	10/1		
929001342004	7MR16 ExpertColor F25 927 D 10/1	-	-
929001342104	7MR16 ExpertColor F25 930 D 10/1	-	-
929001342204	7MR16 ExpertColor F25 940 D 10/1	-	-
929001342304	7MR16 ExpertColor F35 927 D 10/1	-	-
929001342404	7MR16 ExpertColor F35 930 D 10/1	-	-
929001342504	7MR16 ExpertColor F35 940 D 10/1	-	-
929001342704	7MR16 ExpertColor Retail F25 930	-	-
	10/1		

data subject to change

Order Code	Full Product Name	Energy Consumption kWh/ 1000 h	Energy Efficiency Label (EEL)
929001342804	7MR16 ExpertColor Retail F35 930	-	-
	10/1		

Controls and Dimming

Controls and D	imming	
Order Code	Full Product Name	Dimmable
929000263004	7MR16/F24 2700 DIM HO	Yes
929000263104	7MR16/F24 3000 DIM HO	Yes
929000263304	7MR16/F36 2700 DIM HO	Yes
929000263404	7MR16/F36 3000 DIM HO	Yes
929001123104	6.5MR16/F36/2700 DIM 12V	Yes
929001127804	6.5MR16/F25/2700-2200 DIM 12V	Yes
929001127904	6.5MR16/F35/2700-2200 DIM 12V	Yes
929001149804	8.5MRX16/F25 2700 DIM AF 10/1	Yes
929001149904	8.5MRX16/F25 3000 DIM AF 10/1	Yes
929001150004	8.5MRX16/F25 4000 DIM AF 10/1	Yes
929001150104	8.5MRX16/F35 2700 DIM AF 10/1	Yes
929001150204	8.5MRX16/F35 3000 DIM AF 10/1	Yes
929001150304	8.5MRX16/F35 4000 DIM AF 10/1	Yes
929001151804	6.6MR16/F25/3000 DIM 12V	Yes
929001151834	6.4MR16/F25/3000 DIM 12V	Yes
929001152204	6.6MR16/F35/3000 DIM 12V	Yes
929001152234	6.4MR16/F35/3000 DIM 12V	Yes
929001152534	7MR16/LED/S15/827/DIM AF2 10/1	Yes
929001152634	7MR16/LED/S15/830/DIM AF2 10/1	Yes
929001152734	7MR16/LED/S15/840/DIM AF2 10/1	Yes
929001152834	7MR16/LED/F25/827/DIM AF2 10/1	Yes
929001152904	7MR16/F25 3000 DIM AF2 10/1	Yes
929001152934	7MR16/LED/F25/830/DIM AF2 10/1	Yes
929001153004	7MR16/F25 4000 DIM AF2 10/1	Yes

Order Code	Full Product Name	Dimmable
929001153034	7MR16/LED/F25/840/DIM AF2 10/1	Yes
929001153104	7MR16/F35 2700 DIM AF2 10/1	Yes
929001153134	7MR16/LED/F35/827/DIM AF2 10/1	Yes
929001153204	7MR16/F35 3000 DIM AF2 10/1	Yes
929001153234	7MR16/LED/F35/830/DIM AF2 10/1	Yes
929001153304	7MR16/F35 4000 DIM AF2 10/1	Yes
929001153334	7MR16/LED/F35/840/DIM AF2 10/1	Yes
929001208003	BC7MR16/AMB/F35/3000 DIM 12V	Yes
929001245403	AmbientLED PAR16 7W 35D 830 D	Yes
929001245605	AmbientLED PAR16S 7W 35D 830 D	Yes
929001300604	4.5GU10/LEDCLA/F35/830/DIM 10/1	Yes
929001341704	7MR16 ExpertColor S10 927 D 10/1	Yes
929001341804	7MR16 ExpertColor S10 930 D 10/1	Yes
929001341904	7MR16 ExpertColor S10 940 D 10/1	Yes
929001342604	7MR16 ExpertColor Retail S10 930 10/1	No
929001342004	7MR16 ExpertColor F25 927 D 10/1	Yes
929001342104	7MR16 ExpertColor F25 930 D 10/1	Yes
929001342204	7MR16 ExpertColor F25 940 D 10/1	Yes
929001342304	7MR16 ExpertColor F35 927 D 10/1	Yes
929001342404	7MR16 ExpertColor F35 930 D 10/1	Yes
929001342504	7MR16 ExpertColor F35 940 D 10/1	Yes
929001342704	7MR16 ExpertColor Retail F25 930 10/1	No
929001342804	7MR16 ExpertColor Retail F35 930 10/1	No

Operating and Electrical

-						
Order Code	Full Product Name	Input Frequency	Voltage (Nom)	Wattage Equivalent	Power (Rated) (Nom)	Starting Time (Nom)
929000263004	7MR16/F24 2700 DIM HO	50 to 60 Hz	12 V	40 W	7 W	0.1 s
929000263104	7MR16/F24 3000 DIM HO	50 to 60 Hz	12 V	40 W	7 W	0.1 s
929000263304	7MR16/F36 2700 DIM HO	50 to 60 Hz	12 V	40 W	7 W	0.5 s
929000263404	7MR16/F36 3000 DIM HO	50 to 60 Hz	12 V	40 W	7 W	0.5 s
929001123104	6.5MR16/F36/2700 DIM 12V	50 to 60 Hz	12 V	35 W	6.5 W	0.5 s
929001127804	6.5MR16/F25/2700-2200 DIM 12V	50 to 60 Hz	12 V	35 W	6.5 W	0.5 s
929001127904	6.5MR16/F35/2700-2200 DIM 12V	50 to 60 Hz	12 V	35 W	6.5 W	0.5 s
929001149804	8.5MRX16/F25 2700 DIM AF 10/1	60 Hz	12 V	50 W	8.5 W	0.5 s
929001149904	8.5MRX16/F25 3000 DIM AF 10/1	60 Hz	12 V	50 W	8.5 W	0.5 s
929001150004	8.5MRX16/F25 4000 DIM AF 10/1	60 Hz	12 V	50 W	8.5 W	0.5 s
929001150104	8.5MRX16/F35 2700 DIM AF 10/1	60 Hz	12 V	50 W	8.5 W	0.5 s
929001150204	8.5MRX16/F35 3000 DIM AF 10/1	60 Hz	12 V	50 W	8.5 W	0.5 s
929001150304	8.5MRX16/F35 4000 DIM AF 10/1	60 Hz	12 V	50 W	8.5 W	0.5 s
929001151804	6.6MR16/F25/3000 DIM 12V	60 Hz	12 V	35 W	6.6 W	0.5 s
929001151834	6.4MR16/F25/3000 DIM 12V	-	12 V	35 W	6.4 W	0.5 s

Order Code	Full Product Name	Input Frequency	Voltage (Nom)	Wattage Equivalent	Power (Rated) (Nom)	Starting Time (Nom)
929001152204	6.6MR16/F35/3000 DIM 12V	60 Hz	12 V	35 W	6.6 W	0.5 s
929001152234	6.4MR16/F35/3000 DIM 12V	-	12 V	35 W	6.4 W	0.6 s
929001152534	7MR16/LED/S15/827/DIM AF2 10/1	-	12 V	35 W	7 W	0.5 s
929001152634	7MR16/LED/S15/830/DIM AF2 10/1	-	12 V	35 W	7 W	0.5 s
929001152734	7MR16/LED/S15/840/DIM AF2 10/1	-	12 V	35 W	7 W	0.5 s
929001152834	7MR16/LED/F25/827/DIM AF2 10/1	-	12 V	50 W	7 W	0.5 s
929001152904	7MR16/F25 3000 DIM AF2 10/1	-	12 V	35 W	7 W	0.5 s
929001152934	7MR16/LED/F25/830/DIM AF2 10/1	-	12 V	50 W	7 W	0.5 s
929001153004	7MR16/F25 4000 DIM AF2 10/1	-	12 V	35 W	7 W	0.5 s
929001153034	7MR16/LED/F25/840/DIM AF2 10/1	-	12 V	50 W	7 W	0.5 s
929001153104	7MR16/F35 2700 DIM AF2 10/1	-	12 V	35 W	7 W	0.5 s
929001153134	7MR16/LED/F35/827/DIM AF2 10/1	-	12 V	50 W	7 W	0.5 s
929001153204	7MR16/F35 3000 DIM AF2 10/1	-	12 V	35 W	7 W	0.5 s
929001153234	7MR16/LED/F35/830/DIM AF2 10/1	-	12 V	50 W	7 W	0.5 s
929001153304	7MR16/F35 4000 DIM AF2 10/1	-	12 V	35 W	7 W	0.5 s
929001153334	7MR16/LED/F35/840/DIM AF2 10/1	-	12 V	50 W	7 W	0.5 s
929001208003	BC7MR16/AMB/F35/3000 DIM 12V	-	12 V	50 W	7 W	0.5 s
929001245403	AmbientLED PAR16 7W 35D 830 D	60 Hz	120 V	50 W	7 W	0.5 s
929001245605	AmbientLED PAR16S 7W 35D 830 D	60 Hz	120 V	50 W	7 W	0.5 s
929001300604	4.5GU10/LEDCLA/F35/830/DIM 10/1	60 Hz	120 V	50 W	4.5 W	0.5 s
929001341704	7MR16 ExpertColor S10 927 D 10/1	-	12 V	30 W	7 W	0.5 s
929001341804	7MR16 ExpertColor S10 930 D 10/1	-	12 V	30 W	7 W	0.5 s
929001341904	7MR16 ExpertColor S10 940 D 10/1	-	12 V	30 W	7 W	0.5 s
929001342604	7MR16 ExpertColor Retail S10 930 10/1	-	12 V	30 W	7 W	0.5 s
929001342004	7MR16 ExpertColor F25 927 D 10/1	-	12 V	42 W	7 W	0.5 s
929001342104	7MR16 ExpertColor F25 930 D 10/1	-	12 V	42 W	7 W	0.5 s
929001342204	7MR16 ExpertColor F25 940 D 10/1	-	12 V	42 W	7 W	0.5 s
929001342304	7MR16 ExpertColor F35 927 D 10/1	-	12 V	42 W	7 W	0.5 s
929001342404	7MR16 ExpertColor F35 930 D 10/1	-	12 V	42 W	7 W	0.5 s
929001342504	7MR16 ExpertColor F35 940 D 10/1	-	12 V	42 W	7 W	0.5 s
929001342704	7MR16 ExpertColor Retail F25 930 10/1	-	12 V	42 W	7 W	0.5 s
929001342804	7MR16 ExpertColor Retail F35 930 10/1	-	12 V	42 W	7 W	0.5 s

General Information

		Сар-	Nominal	Rated Lifetime
Order Code	Full Product Name	Base	Lifetime (Nom)	(Hours)
929000263004	7MR16/F24 2700 DIM HO	GU5.3	40000 h	40000 h
929000263104	7MR16/F24 3000 DIM HO	GU5.3	40000 h	40000 h
929000263304	7MR16/F36 2700 DIM HO	GU5.3	40000 h	40000 h
929000263404	7MR16/F36 3000 DIM HO	GU5.3	40000 h	40000 h
929001123104	6.5MR16/F36/2700 DIM 12V	GU5.3	25000 h	25000 h
929001127804	6.5MR16/F25/2700-2200 DIM	GU5.3	25000 h	25000 h
	12V			
929001127904	6.5MR16/F35/2700-2200 DIM	GU5.3	25000 h	25000 h
	12V			
929001149804	8.5MRX16/F25 2700 DIM AF 10/1	GU5.3	25000 h	25000 h
929001149904	8.5MRX16/F25 3000 DIM AF 10/1	GU5.3	25000 h	25000 h
929001150004	8.5MRX16/F25 4000 DIM AF 10/1	GU5.3	25000 h	25000 h
929001150104	8.5MRX16/F35 2700 DIM AF 10/1	GU5.3	25000 h	25000 h
929001150204	8.5MRX16/F35 3000 DIM AF 10/1	GU5.3	25000 h	25000 h
929001150304	8.5MRX16/F35 4000 DIM AF 10/1	GU5.3	25000 h	25000 h

		Сар-	Nominal	Rated Lifetime
Order Code	Full Product Name	Base	Lifetime (Nom)	(Hours)
929001151804	6.6MR16/F25/3000 DIM 12V	GU5.3	25000 h	25000 h
929001151834	6.4MR16/F25/3000 DIM 12V	GU5.3	25000 h	25000 h
929001152204	6.6MR16/F35/3000 DIM 12V	GU5.3	25000 h	25000 h
929001152234	6.4MR16/F35/3000 DIM 12V	GU5.3	25000 h	25000 h
929001152534	7MR16/LED/S15/827/DIM AF2	GU5.3	40000 h	40000 h
	10/1			
929001152634	7MR16/LED/S15/830/DIM AF2	GU5.3	40000 h	40000 h
	10/1			
929001152734	7MR16/LED/S15/840/DIM AF2	GU5.3	40000 h	40000 h
	10/1			
929001152834	7MR16/LED/F25/827/DIM AF2	GU5.3	25000 h	25000 h
	10/1			
929001152904	7MR16/F25 3000 DIM AF2 10/1	GU5.3	40000 h	40000 h
929001152934	7MR16/LED/F25/830/DIM AF2	GU5.3	25000 h	25000 h
	10/1			

		Сар-	Nominal	Rated Lifetime
Order Code	Full Product Name	Base	Lifetime (Nom)	(Hours)
929001153004	7MR16/F25 4000 DIM AF2 10/1	GU5.3	40000 h	40000 h
929001153034	7MR16/LED/F25/840/DIM AF2 10/1	GU5.3	25000 h	25000 h
929001153104	7MR16/F35 2700 DIM AF2 10/1	GU5.3	40000 h	40000 h
929001153134	7MR16/LED/F35/827/DIM AF2 10/1	GU5.3	25000 h	25000 h
929001153204	7MR16/F35 3000 DIM AF2 10/1	GU5.3	40000 h	40000 h
929001153234	7MR16/LED/F35/830/DIM AF2 10/1	GU5.3	25000 h	25000 h
929001153304	7MR16/F35 4000 DIM AF2 10/1	GU5.3	40000 h	40000 h
929001153334	7MR16/LED/F35/840/DIM AF2 10/1	GU5.3	25000 h	25000 h
929001208003	BC7MR16/AMB/F35/3000 DIM 12V	GU5.3	25000 h	25000 h
929001245403	AmbientLED PAR16 7W 35D 830 D	E26	25000 h	25000 h
929001245605	AmbientLED PAR16S 7W 35D 830 D	E26	25000 h	25000 h
929001300604	4.5GU10/LEDCLA/F35/830/DIM 10/1	GU10	25000 h	25000 h
929001341704	7MR16 ExpertColor S10 927 D 10/1	GU5.3	40000 h	40000 h

		Сар-	Nominal	Rated Lifetime
Order Code	Full Product Name	Base	Lifetime (Nom)	(Hours)
929001341804	7MR16 ExpertColor S10 930 D	GU5.3	40000 h	40000 h
	10/1			
929001341904	7MR16 ExpertColor S10 940 D	GU5.3	40000 h	40000 h
	10/1			
929001342604	7MR16 ExpertColor Retail S10	GU5.3	40000 h	40000 h
	930 10/1			
929001342004	7MR16 ExpertColor F25 927 D	GU5.3	40000 h	40000 h
	10/1			
929001342104	7MR16 ExpertColor F25 930 D	GU5.3	40000 h	40000 h
	10/1			
929001342204	7MR16 ExpertColor F25 940 D	GU5.3	40000 h	40000 h
	10/1			
929001342304	7MR16 ExpertColor F35 927 D	GU5.3	40000 h	40000 h
	10/1			
929001342404	7MR16 ExpertColor F35 930 D	GU5.3	40000 h	40000 h
	10/1			
929001342504	7MR16 ExpertColor F35 940 D	GU5.3	40000 h	40000 h
	10/1			
929001342704	7MR16 ExpertColor Retail F25	GU5.3	40000 h	40000 h
	930 10/1			
929001342804	7MR16 ExpertColor Retail F35	GU5.3	40000 h	40000 h
	930 10/1			

Light Technical (1/2)

igni recini	···· (·/)							
					Color			
		Beam Angle		Correlated Color	Rendering		Luminous Flux	Luminous Flux
Order Code	Full Product Name	(Nom)	Color Code	Temperature (Nom)	Index (Nom)	Light Distribution	(Nom)	(Rated) (Nom)
929000263004	7MR16/F24 2700 DIM HO	24 °	827	2700 K	80	Medium beam 24°	500 lm	500 lm
929000263104	7MR16/F24 3000 DIM HO	24 °	830	3000 K	80	Medium beam 24°	510 lm	510 lm
929000263304	7MR16/F36 2700 DIM HO	36 °	827	2700 K	80	Medium beam 36°	500 lm	500 lm
929000263404	7MR16/F36 3000 DIM HO	36 °	830	3000 K	80	Medium beam 36°	510 lm	510 lm
929001123104	6.5MR16/F36/2700 DIM 12V	36 °	827	2700 K	80	Medium beam 36°	450 lm	450 lm
929001127804	6.5MR16/F25/2700-2200 DIM 12V	25 °	822-827	2200-2700 K	80	Medium beam 25°	410 lm	410 lm
929001127904	6.5MR16/F35/2700-2200 DIM 12V	35 °	822-827	2200-2700 K	80	Medium beam 35°	410 lm	410 lm
929001149804	8.5MRX16/F25 2700 DIM AF 10/1	25 °	827	2700 K	80	Medium beam 25°	635 lm	635 lm
929001149904	8.5MRX16/F25 3000 DIM AF 10/1	25 °	830	3000 K	80	Medium beam 25°	660 lm	660 lm
929001150004	8.5MRX16/F25 4000 DIM AF 10/1	25 °	840	4000 K	80	Medium beam 25°	710 lm	710 lm
929001150104	8.5MRX16/F35 2700 DIM AF 10/1	35 °	827	2700 K	80	Medium beam 35°	635 lm	635 lm
929001150204	8.5MRX16/F35 3000 DIM AF 10/1	35 °	830	3000 K	80	Medium beam 35°	660 lm	660 lm
929001150304	8.5MRX16/F35 4000 DIM AF 10/1	35 °	840	4000 K	80	Medium beam 35°	710 lm	710 lm
929001151804	6.6MR16/F25/3000 DIM 12V	25 °	830	3000 K	80	Medium beam 25°	395 lm	395 lm
929001151834	6.4MR16/F25/3000 DIM 12V	25 °	830	3000 K	80	Medium beam 24°	450 lm	450 lm
929001152204	6.6MR16/F35/3000 DIM 12V	35 °	830	3000 K	80	Medium beam 35°	395 lm	395 lm
929001152234	6.4MR16/F35/3000 DIM 12V	35 °	830	3000 K	80	Medium beam 36°	450 lm	450 lm
929001152534	7MR16/LED/S15/827/DIM AF2 10/1	15 °	827	2700 K	80	Narrow beam 15°	500 lm	-
929001152634	7MR16/LED/S15/830/DIM AF2 10/1	15 °	930	3000 K	90	Narrow beam 15°	500 lm	-
929001152734	7MR16/LED/S15/840/DIM AF2 10/1	15 °	940	4000 K	90	Narrow beam 15°	530 lm	-
929001152834	7MR16/LED/F25/827/DIM AF2 10/1	25 °	827	2700 K	80	Medium beam 25°	500 lm	500 lm
929001152904	7MR16/F25 3000 DIM AF2 10/1	24 °	930	3000 K	90	Medium beam 24°	440 lm	-
929001152934	7MR16/LED/F25/830/DIM AF2 10/1	25 °	930	3000 K	90	Medium beam 25°	500 lm	500 lm

					Color			
		Beam Angle		Correlated Color	Rendering		Luminous Flux	Luminous Flux
Order Code	Full Product Name	(Nom)	Color Code	Temperature (Nom)	Index (Nom)	Light Distribution	(Nom)	(Rated) (Nom)
929001153004	7MR16/F25 4000 DIM AF2 10/1	24 °	940	4000 K	90	Medium beam 24°	460 lm	-
929001153034	7MR16/LED/F25/840/DIM AF2 10/1	25 °	940	4000 K	90	Medium beam 25°	530 lm	530 lm
929001153104	7MR16/F35 2700 DIM AF2 10/1	36 °	827	2700 K	80	Medium beam 36°	420 lm	-
929001153134	7MR16/LED/F35/827/DIM AF2 10/1	35 °	827	2700 K	80	Medium beam 36°	500 lm	500 lm
929001153204	7MR16/F35 3000 DIM AF2 10/1	36 °	930	3000 K	90	Medium beam 36°	440 lm	-
929001153234	7MR16/LED/F35/830/DIM AF2 10/1	35 °	930	3000 K	90	Medium beam 35°	500 lm	500 lm
929001153304	7MR16/F35 4000 DIM AF2 10/1	36 °	940	4000 K	90	Medium beam 36°	460 lm	-
929001153334	7MR16/LED/F35/840/DIM AF2 10/1	35 °	940	4000 K	90	Medium beam 35°	530 lm	530 lm
929001208003	BC7MR16/AMB/F35/3000 DIM 12V	35 °	830	3000 K	80	-	500 lm	500 lm
929001245403	AmbientLED PAR16 7W 35D 830 D	35 °	830	3000 K	80	-	500 lm	500 lm
929001245605	AmbientLED PAR16S 7W 35D 830 D	35 °	830	3000 K	80	-	500 lm	500 lm
929001300604	4.5GU10/LEDCLA/F35/830/DIM 10/1	35 °	830	3000 K	80	-	400 lm	400 lm
929001341704	7MR16 ExpertColor S10 927 D 10/1	10 °	927	2700 K	95	-	430 lm	430 lm
929001341804	7MR16 ExpertColor S10 930 D 10/1	10 °	930	3000 K	95	-	460 lm	460 lm
929001341904	7MR16 ExpertColor S10 940 D 10/1	10 °	940	4000 K	95	-	460 lm	460 lm
929001342604	7MR16 ExpertColor Retail S10 930 10/1	10 °	930	3000 K	90	-	430 lm	430 lm
929001342004	7MR16 ExpertColor F25 927 D 10/1	25 °	927	2700 K	95	-	430 lm	430 lm
929001342104	7MR16 ExpertColor F25 930 D 10/1	25 °	930	3000 K	95	-	460 lm	460 lm
929001342204	7MR16 ExpertColor F25 940 D 10/1	25 °	940	4000 K	95	-	460 lm	460 lm
929001342304	7MR16 ExpertColor F35 927 D 10/1	35 °	927	2700 K	95	-	430 lm	430 lm
929001342404	7MR16 ExpertColor F35 930 D 10/1	35 °	930	3000 K	95	-	460 lm	460 lm
929001342504	7MR16 ExpertColor F35 940 D 10/1	35 °	940	4000 K	95	-	460 lm	460 lm
929001342704	7MR16 ExpertColor Retail F25 930 10/1	25 °	930	3000 K	90	-	430 lm	430 lm
929001342804	7MR16 ExpertColor Retail F35 930 10/1	35 °	930	3000 K	90	-	430 lm	430 lm

Light Technical (2/2)

		Luminous Intensity	Rated Beam
Order Code	Full Product Name	(Nom)	Angle
929000263004	7MR16/F24 2700 DIM HO	2400 cd	24 °
929000263104	7MR16/F24 3000 DIM HO	2500 cd	24 °
929000263304	7MR16/F36 2700 DIM HO	1300 cd	36 °
929000263404	7MR16/F36 3000 DIM HO	1350 cd	36 °
929001123104	6.5MR16/F36/2700 DIM 12V	900 cd	36 °
929001127804	6.5MR16/F25/2700-2200 DIM 12V	1800 cd	25 °
929001127904	6.5MR16/F35/2700-2200 DIM 12V	900 cd	35 °
929001149804	8.5MRX16/F25 2700 DIM AF 10/1	3100 cd	25 °
929001149904	8.5MRX16/F25 3000 DIM AF 10/1	3250 cd	25 °
929001150004	8.5MRX16/F25 4000 DIM AF 10/1	3350 cd	25 °
929001150104	8.5MRX16/F35 2700 DIM AF 10/1	1650 cd	35 °
929001150204	8.5MRX16/F35 3000 DIM AF 10/1	1700 cd	35 °
929001150304	8.5MRX16/F35 4000 DIM AF 10/1	1750 cd	35 °
929001151804	6.6MR16/F25/3000 DIM 12V	1800 cd	25 °
929001151834	6.4MR16/F25/3000 DIM 12V	1800 cd	25 °
929001152204	6.6MR16/F35/3000 DIM 12V	1000 cd	35 °
929001152234	6.4MR16/F35/3000 DIM 12V	1000 cd	35 °
929001152534	7MR16/LED/S15/827/DIM AF2 10/1	2800 cd	15 °
929001152634	7MR16/LED/S15/830/DIM AF2 10/1	2950 cd	15 °
929001152734	7MR16/LED/S15/840/DIM AF2 10/1	3050 cd	15 °
929001152834	7MR16/LED/F25/827/DIM AF2 10/1	2400 cd	25 °

		Luminous Intensity	Rated Beam
Order Code	Full Product Name	(Nom)	Angle
929001152904	7MR16/F25 3000 DIM AF2 10/1	2200 cd	24 °
929001152934	7MR16/LED/F25/830/DIM AF2 10/1	2500 cd	25 °
929001153004	7MR16/F25 4000 DIM AF2 10/1	2300 cd	24 °
929001153034	7MR16/LED/F25/840/DIM AF2 10/1	2600 cd	25 °
929001153104	7MR16/F35 2700 DIM AF2 10/1	1150 cd	36 °
929001153134	7MR16/LED/F35/827/DIM AF2 10/1	1320 cd	35 °
929001153204	7MR16/F35 3000 DIM AF2 10/1	1200 cd	36 °
929001153234	7MR16/LED/F35/830/DIM AF2 10/1	1350 cd	35 °
929001153304	7MR16/F35 4000 DIM AF2 10/1	1250 cd	36 °
929001153334	7MR16/LED/F35/840/DIM AF2 10/1	1400 cd	35 °
929001208003	BC7MR16/AMB/F35/3000 DIM 12V	1350 cd	35 °
929001245403	AmbientLED PAR16 7W 35D 830 D	1000 cd	35 °
929001245605	AmbientLED PAR16S 7W 35D 830 D	1000 cd	35 °
929001300604	4.5GU10/LEDCLA/F35/830/DIM 10/1	750 cd	35 °
929001341704	7MR16 ExpertColor S10 927 D 10/1	4600 cd	10 °
929001341804	7MR16 ExpertColor S10 930 D 10/1	5000 cd	10 °
929001341904	7MR16 ExpertColor S10 940 D 10/1	5000 cd	10 °
929001342604	7MR16 ExpertColor Retail S10 930 10/1	4600 cd	10 °
929001342004	7MR16 ExpertColor F25 927 D 10/1	2200 cd	25 °
929001342104	7MR16 ExpertColor F25 930 D 10/1	2350 cd	25 °
929001342204	7MR16 ExpertColor F25 940 D 10/1	2350 cd	25 °

		Luminous Intensity	Rated Beam
Order Code	Full Product Name	(Nom)	Angle
929001342304	7MR16 ExpertColor F35 927 D 10/1	1300 cd	35 °
929001342404	7MR16 ExpertColor F35 930 D 10/1	1400 cd	35 °
929001342504	7MR16 ExpertColor F35 940 D 10/1	1400 cd	35 °

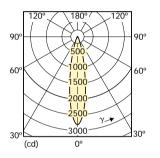
		Luminous Intensity	Rated Beam
Order Code	Full Product Name	(Nom)	Angle
929001342704	7MR16 ExpertColor Retail F25 930 10/1	2200 cd	25 °
929001342804	7MR16 ExpertColor Retail F35 930 10/1	1300 cd	35 °

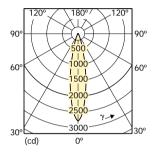
Mechanical and Housing

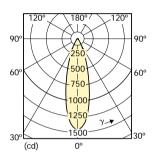
Order Code	Full Product Name	Bulb Shape
929000263004	7MR16/F24 2700 DIM HO	MR16
929000263104	7MR16/F24 3000 DIM HO	MR16
929000263304	7MR16/F36 2700 DIM HO	MR16
929000263404	7MR16/F36 3000 DIM HO	MR16
929001123104	6.5MR16/F36/2700 DIM 12V	MR16
929001127804	6.5MR16/F25/2700-2200 DIM 12V	MR16
929001127904	6.5MR16/F35/2700-2200 DIM 12V	MR16
929001149804	8.5MRX16/F25 2700 DIM AF 10/1	MR16
929001149904	8.5MRX16/F25 3000 DIM AF 10/1	MR16
929001150004	8.5MRX16/F25 4000 DIM AF 10/1	MR16
929001150104	8.5MRX16/F35 2700 DIM AF 10/1	MR16
929001150204	8.5MRX16/F35 3000 DIM AF 10/1	MR16
929001150304	8.5MRX16/F35 4000 DIM AF 10/1	MR16
929001151804	6.6MR16/F25/3000 DIM 12V	MR16
929001151834	6.4MR16/F25/3000 DIM 12V	MR16
929001152204	6.6MR16/F35/3000 DIM 12V	MR16
929001152234	6.4MR16/F35/3000 DIM 12V	MR16
929001152534	7MR16/LED/S15/827/DIM AF2 10/1	MR16
929001152634	7MR16/LED/S15/830/DIM AF2 10/1	MR16
929001152734	7MR16/LED/S15/840/DIM AF2 10/1	MR16
929001152834	7MR16/LED/F25/827/DIM AF2 10/1	MR16
929001152904	7MR16/F25 3000 DIM AF2 10/1	MR16
929001152934	7MR16/LED/F25/830/DIM AF2 10/1	MR16
929001153004	7MR16/F25 4000 DIM AF2 10/1	MR16

Order Code	Full Product Name	Bulb Shape
929001153034	7MR16/LED/F25/840/DIM AF2 10/1	MR16
929001153104	7MR16/F35 2700 DIM AF2 10/1	MR16
929001153134	7MR16/LED/F35/827/DIM AF2 10/1	MR16
929001153204	7MR16/F35 3000 DIM AF2 10/1	MR16
929001153234	7MR16/LED/F35/830/DIM AF2 10/1	MR16
929001153304	7MR16/F35 4000 DIM AF2 10/1	MR16
929001153334	7MR16/LED/F35/840/DIM AF2 10/1	MR16
929001208003	BC7MR16/AMB/F35/3000 DIM 12V	MR16
929001245403	AmbientLED PAR16 7W 35D 830 D	PAR16
929001245605	AmbientLED PAR16S 7W 35D 830 D	PAR16
929001300604	4.5GU10/LEDCLA/F35/830/DIM 10/1	PAR16
929001341704	7MR16 ExpertColor S10 927 D 10/1	MR16
929001341804	7MR16 ExpertColor S10 930 D 10/1	MR16
929001341904	7MR16 ExpertColor S10 940 D 10/1	MR16
929001342604	7MR16 ExpertColor Retail S10 930 10/1	MR16
929001342004	7MR16 ExpertColor F25 927 D 10/1	MR16
929001342104	7MR16 ExpertColor F25 930 D 10/1	MR16
929001342204	7MR16 ExpertColor F25 940 D 10/1	MR16
929001342304	7MR16 ExpertColor F35 927 D 10/1	MR16
929001342404	7MR16 ExpertColor F35 930 D 10/1	MR16
929001342504	7MR16 ExpertColor F35 940 D 10/1	MR16
929001342704	7MR16 ExpertColor Retail F25 930 10/1	MR16
929001342804	7MR16 ExpertColor Retail F35 930 10/1	MR16

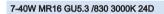
Temperature

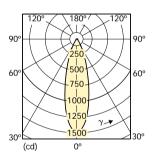

Order Code	Full Product Name	T-Case Maximum (Nom)
929000263004	7MR16/F24 2700 DIM HO	110 °C
929000263104	7MR16/F24 3000 DIM HO	110 °C
929000263304	7MR16/F36 2700 DIM HO	110 °C
929000263404	7MR16/F36 3000 DIM HO	110 °C
929001123104	6.5MR16/F36/2700 DIM 12V	85 °C
929001127804	6.5MR16/F25/2700-2200 DIM 12V	-
929001127904	6.5MR16/F35/2700-2200 DIM 12V	-
929001149804	8.5MRX16/F25 2700 DIM AF 10/1	105 °C
929001149904	8.5MRX16/F25 3000 DIM AF 10/1	105 °C
929001150004	8.5MRX16/F25 4000 DIM AF 10/1	105 °C
929001150104	8.5MRX16/F35 2700 DIM AF 10/1	105 °C
929001150204	8.5MRX16/F35 3000 DIM AF 10/1	105 °C
929001150304	8.5MRX16/F35 4000 DIM AF 10/1	105 °C
929001151804	6.6MR16/F25/3000 DIM 12V	100 °C
929001151834	6.4MR16/F25/3000 DIM 12V	100 °C

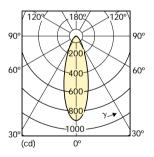

Order Code	Full Product Name	T-Case Maximum (Nom)
929001152204	6.6MR16/F35/3000 DIM 12V	100 °C
929001152234	6.4MR16/F35/3000 DIM 12V	100 °C
929001152534	7MR16/LED/S15/827/DIM AF2 10/1	92 °C
929001152634	7MR16/LED/S15/830/DIM AF2 10/1	92 °C
929001152734	7MR16/LED/S15/840/DIM AF2 10/1	92 °C
929001152834	7MR16/LED/F25/827/DIM AF2 10/1	92 °C
929001152904	7MR16/F25 3000 DIM AF2 10/1	92 °C
929001152934	7MR16/LED/F25/830/DIM AF2 10/1	92 °C
929001153004	7MR16/F25 4000 DIM AF2 10/1	92 °C
929001153034	7MR16/LED/F25/840/DIM AF2 10/1	92 °C
929001153104	7MR16/F35 2700 DIM AF2 10/1	92 °C
929001153134	7MR16/LED/F35/827/DIM AF2 10/1	92 °C
929001153204	7MR16/F35 3000 DIM AF2 10/1	92 °C
929001153234	7MR16/LED/F35/830/DIM AF2 10/1	92 °C
929001153304	7MR16/F35 4000 DIM AF2 10/1	92 °C


Order Code	Full Product Name	T-Case Maximum (Nom)
929001153334	7MR16/LED/F35/840/DIM AF2 10/1	92 °C
929001208003	BC7MR16/AMB/F35/3000 DIM 12V	102 °C
929001245403	AmbientLED PAR16 7W 35D 830 D	85 °C
929001245605	AmbientLED PAR16S 7W 35D 830 D	85 °C
929001300604	4.5GU10/LEDCLA/F35/830/DIM 10/1	80 °C
929001341704	7MR16 ExpertColor S10 927 D 10/1	92 °C
929001341804	7MR16 ExpertColor S10 930 D 10/1	92 °C
929001341904	7MR16 ExpertColor S10 940 D 10/1	92 °C
929001342604	7MR16 ExpertColor Retail S10 930 10/1	90 °C

Order Code	Full Product Name	T-Case Maximum (Nom)
929001342004	7MR16 ExpertColor F25 927 D 10/1	92 °C
929001342104	7MR16 ExpertColor F25 930 D 10/1	92 °C
929001342204	7MR16 ExpertColor F25 940 D 10/1	92 °C
929001342304	7MR16 ExpertColor F35 927 D 10/1	92 °C
929001342404	7MR16 ExpertColor F35 930 D 10/1	92 °C
929001342504	7MR16 ExpertColor F35 940 D 10/1	92 °C
929001342704	7MR16 ExpertColor Retail F25 930 10/1	90 °C
929001342804	7MR16 ExpertColor Retail F35 930 10/1	90 °C

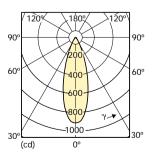

Light Distribution Diagrams

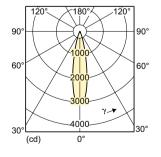


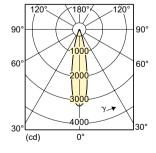


7-40W MR16 GU5.3 /827 2700K 24D

7-40W MR16 GU5.3 /827 2700K 36D

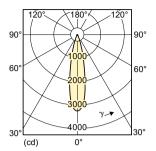


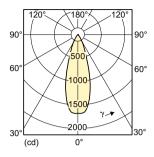


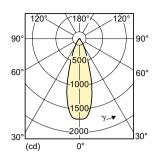

7-40W MR16 GU5.3 /830 3000K 36D

6.5-35 W GU5.3 MR16 /827 36D

6.5-35 W GU5.3 /827 MR16 24D

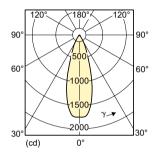


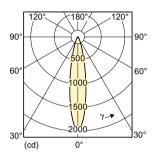

6.5-35 W GU5.3 /827 MR16 36D

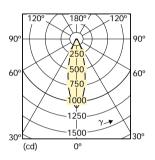

8-50 W GU5.3 /827 MR16 24D

8-50 W GU5.3 /830 MR16 24D

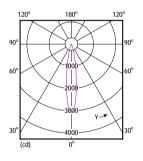
Light Distribution Diagrams

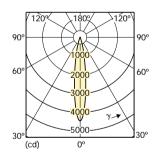


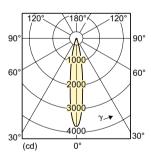




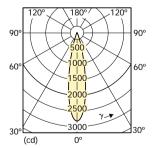
8-50 W GU5.3 /827 MR16 36D

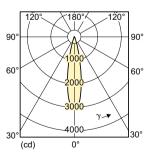


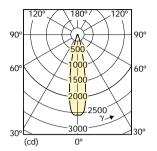


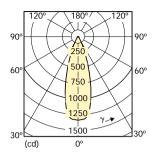


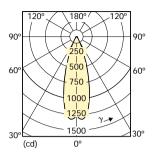
6.3-35 W GU5.3 /830 MR16 24D

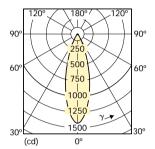

6.3-35 W GU5.3 /830 MR16 36D

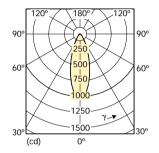


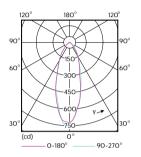


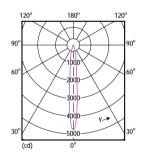

LEDspot Master 50W G5.3 MR16 927 15D DIM

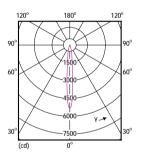


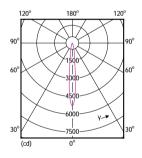


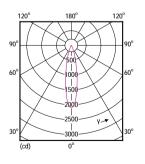

Light Distribution Diagrams

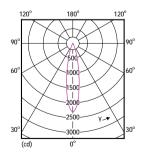


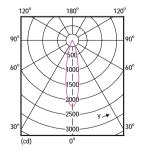






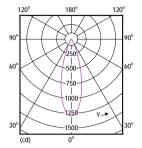


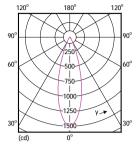


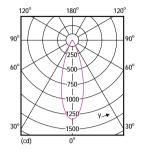

LEDSpot MR16 7W 927 430lm 10D

LEDSpots MR16 7W 930 460lm 10D

LEDSpots MR16 7W 940 460lm 10D

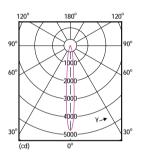


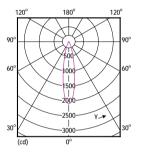

LEDSpots MR16 7W 927 430lm 25D

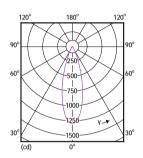

LEDSpots MR16 7W 930 460lm 25D

LEDSpots MR16 7W 940 460lm 25D

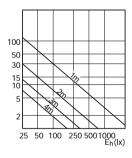
Light Distribution Diagrams

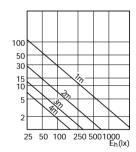


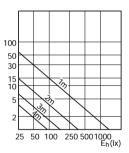


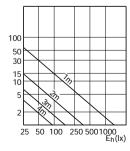

LEDSpots MR16 7W 927 430lm 35D

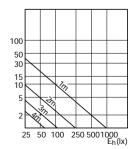
LEDSpots MR16 7W 940 460lm 35D

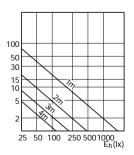


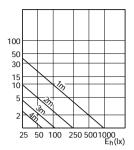

LEDSpots MR16 7W 930 430lm 10D

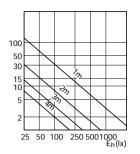

LEDSpots MR16 7W 930 430lm 25D

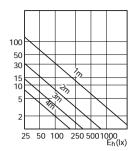

LEDSpots MR16 7W 930 430lm 35D

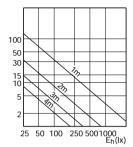

Accent Diagrams

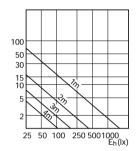


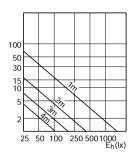


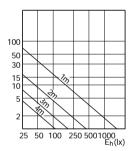


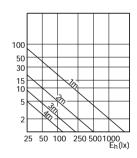


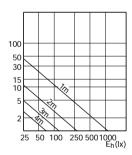


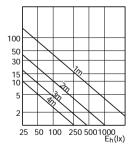

Accent Diagrams

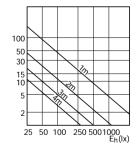


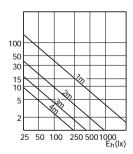


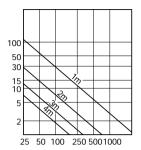


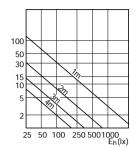


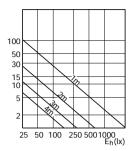


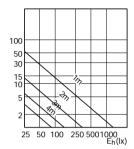


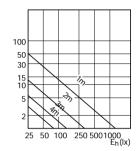


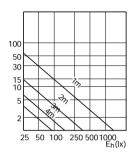


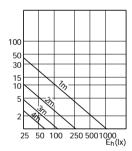


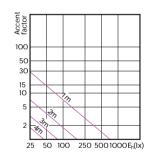


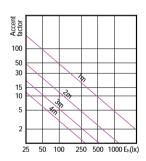


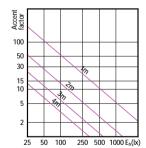

Accent Diagrams

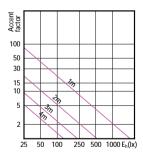


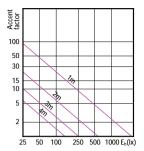


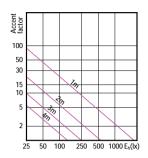


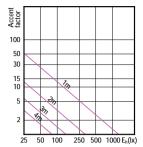


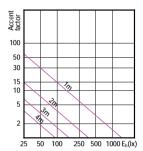


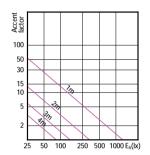


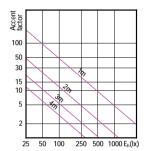


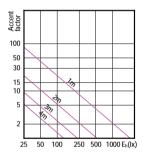


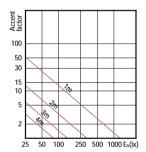


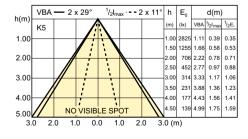


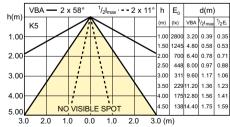

Accent Diagrams

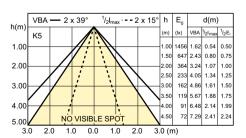


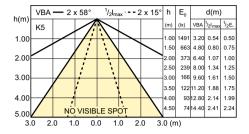


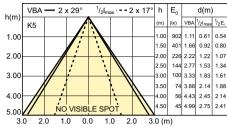


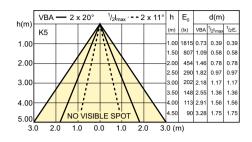


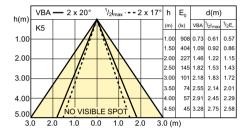


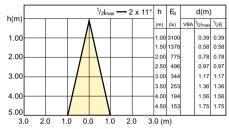


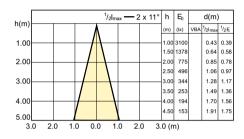


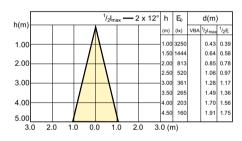


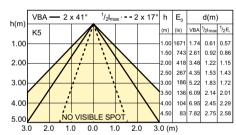


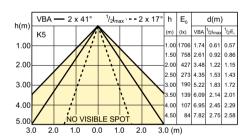


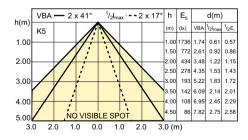


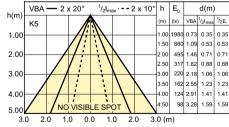


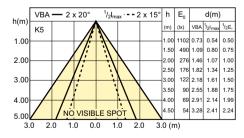


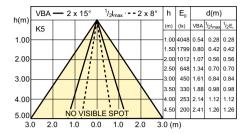


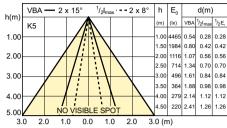


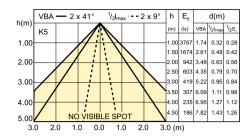


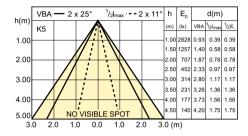


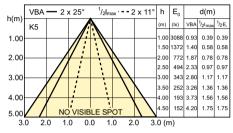


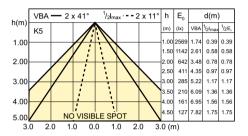


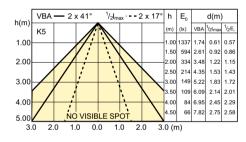


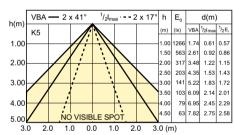


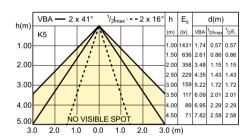


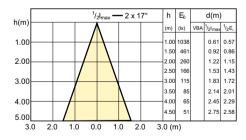


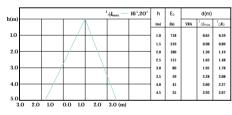


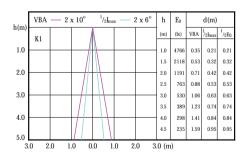


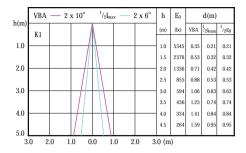


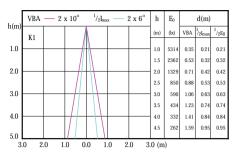


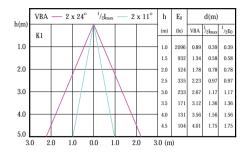


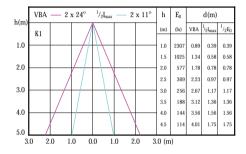


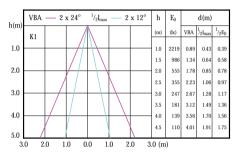


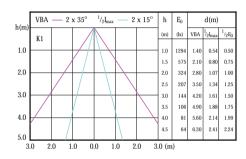


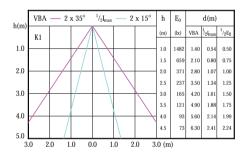


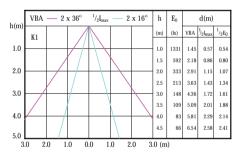


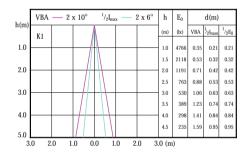


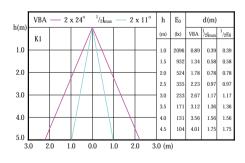


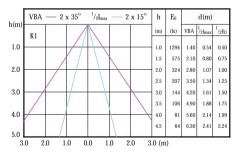












A smooth design solution for a seamless look

PAR30/PAR20 LED

Philips PAR30S LED Single Optic Lamps with AirFlux Technology provide superior lighting aesthetics and optimal thermal efficiency in a sleek, lightweight design.

Bene to

- · Will not fade colors, avoids inventory spoilage
- Lowers maintenance costs by reducing re-lamp frequency
- 5-year limited warranty**
- ** For details see: http://www.usa.lighting.philips.com/connect/tools_literature/ warranties.wpd

Features

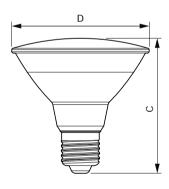
- Retail Optic reduces glare to improve shopper experience
- 25,000-hour rated average life*
- 12W PAR3OS saves 63 watts when compared to a 75W halogen PAR3OS
- 83 CRI for excellent color rendering
- · Virtually UV/IR free in the beam
- · Contains no mercury

Application

• Ideal for general and accent lighting in retail, hospitality and office spaces.

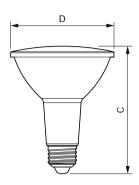
Versions

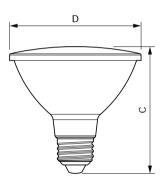
LEDspot E27 PAR30S


LEDspot PAR20 E27

Single Contact Medium Screw PAR 3.75 inch/95mm Long

Single Contact Medium Screw PAR 3.75 inch/95mm Short





Product	D	С
LEDspot 70W PAR30S 827 100-277V 25D ND	93 mm	91 mm
LEDspot 70W PAR30S 865 100-277V 25D ND	93 mm	91 mm

Product	D	С
LEDspot 50W PAR20 865 100-240V 25D ND SO	63 mm	89 mm

Dimensional drawing

Approval and Application	
Energy Consumption kWh/1000 h	- kWh
Energy E ciency Label (EEL)	Not applicable
Operating and Electrical	
Input Frequency	50 to 60 Hz
Starting Time (Nom)	0.5 s
General Information	
Nominal Lifetime (Nom)	25000 h
Light Technical	
LImf At End Of Nominal Lifetime	70 %
(Nom)	

Product	D	С
9.4PAR30L/COR/930/F25/DIM/120V T20 6/1FB	97 mm	119 mm
9.4PAR30L/COR/930/F40/DIM/120V T20 6/1FB	97 mm	119 mm

Product	D C
9.4PAR30S/COR/930/F25/DIM/120V T20 6/1FB	97 mm 94 mm
9.4PAR30S/COR/930/F40/DIM/120V T20 6/1FB	97 mm 94 mm

Controls and Dimming

Order Code	Full Product Name	Dimmable
929001389612	LEDspot 70W PAR30S 827 100-277V 25D ND	No
929001929512	LEDspot 70W PAR30S 865 100-277V 25D ND	No
929001929412	LEDspot 50W PAR20 865 100-240V 25D ND SO	No
929002045404	9.4PAR30L/COR/930/F25/DIM/120V T20 6/1FB	Yes

Order Code	Full Product Name	Dimmable
929002045504	9.4PAR30L/COR/930/F40/DIM/120V T20 6/1FB	Yes
929002045604	9.4PAR30S/COR/930/F25/DIM/120V T20 6/1FB	Yes
929002045704	9.4PAR30S/COR/930/F40/DIM/120V T20 6/1FB	Yes

Operating and Electrical

				Power
		Voltage	Wattage	(Rated)
Order Code	Full Product Name	(Nom)	Equivalent	(Nom)
929001389612	LEDspot 70W PAR30S 827	100-277 V	70 W	9 W
	100-277V 25D ND			
929001929512	LEDspot 70W PAR30S 865	100-277 V	70 W	9 W
	100-277V 25D ND			
929001929412	LEDspot 50W PAR20 865	100-240 V	50 W	6.5 W
	100-240V 25D ND SO			
929002045404	9.4PAR30L/COR/930/F25	120 V	75 W	9.4 W
	/DIM/120V T20 6/1FB			

				Power
		Voltage	Wattage	(Rated)
Order Code	Full Product Name	(Nom)	Equivalent	(Nom)
929002045504	9.4PAR30L/COR/930/F40	120 V	75 W	9.4 W
	/DIM/120V T20 6/1FB			
929002045604	9.4PAR3OS/COR/930/F25	120 V	75 W	9.4 W
	/DIM/120V T20 6/1FB			
929002045704	9.4PAR30S/COR/930/F40	120 V	75 W	9.4 W
	/DIM/120V T20 6/1FB			

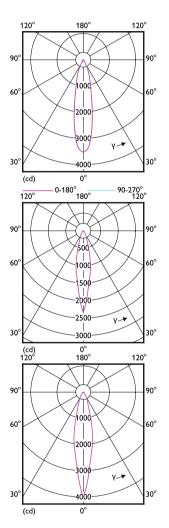
General Information

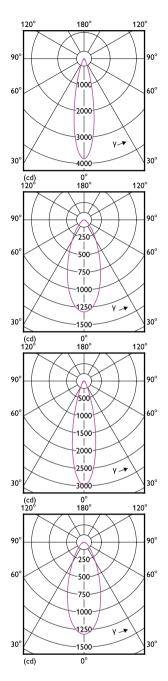
		Cap-	Switching
Order Code	Full Product Name	Base	Cycle
929001389612	LEDspot 70W PAR30S 827 100-277V 25D	E27	25000X
	ND		
929001929512	LEDspot 70W PAR30S 865 100-277V 25D	E27	25000X
	ND		
929001929412	ND LEDspot 50W PAR20 865 100-240V 25D	E27	25000X
929001929412		E27	25000X
	LEDspot 50W PAR20 865 100-240V 25D	E27	25000X 50000X
	LEDspot 50W PAR20 865 100-240V 25D ND SO		

		Cap-	Switching
Order Code	Full Product Name	Base	Cycle
929002045504	9.4PAR30L/COR/930/F40/DIM/120V T20 6/1FB	E26	50000X
929002045604	9.4PAR30S/COR/930/F25/DIM/120V T20 6/1FB	E26	50000X
929002045704	9.4PAR3OS/COR/930/F40/DIM/120V T20 6/1FB	E26	50000X

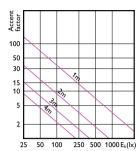
Light Technical

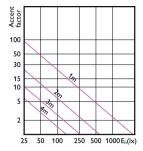
0							
		Beam Angle	Color	Correlated Color	Color Rendering	Luminous Flux	Luminous Intensity
Order Code	Full Product Name	(Nom)	Code	Temperature (Nom)	Index (Nom)	(Nom)	(Nom)
929001389612	LEDspot 70W PAR30S 827 100-277V 25D ND	25 °	827	2700 K	80	900 lm	3300 cd
929001929512	LEDspot 70W PAR30S 865 100-277V 25D ND	25 °	865	6500 K	80	900 lm	3300 cd
929001929412	LEDspot 50W PAR20 865 100-240V 25D ND	25 °	865	6500 K	80	525 lm	1500 cd
	SO						
929002045404	9.4PAR30L/COR/930/F25/DIM/120V T20	25 °	930	3000 K	90	850 lm	2910 cd
	6/1FB						
929002045504	9.4PAR30L/COR/930/F40/DIM/120V T20	40 °	930	3000 K	90	850 lm	1315 cd
	6/1FB						
929002045604	9.4PAR30S/COR/930/F25/DIM/120V T20	25 °	930	3000 K	90	850 lm	2910 cd
	6/1FB						
929002045704	9.4PAR30S/COR/930/F40/DIM/120V T20	40 °	930	3000 K	90	850 lm	1315 cd
	6/1FB						

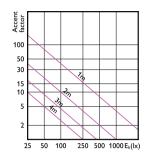

Mechanical and Housing


Order Code	Full Product Name	Bulb Shape
929001389612	LEDspot 70W PAR30S 827 100-277V 25D ND	PAR30S
929001929512	LEDspot 70W PAR30S 865 100-277V 25D ND	PAR30S
929001929412	LEDspot 50W PAR20 865 100-240V 25D ND SO	PAR20
929002045404	9.4PAR30L/COR/930/F25/DIM/120V T20 6/1FB	PAR30L

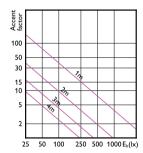
Order Code	Full Product Name	Bulb Shape
929002045504	9.4PAR30L/COR/930/F40/DIM/120V T20 6/1FB	PAR30L
929002045604	9.4PAR30S/COR/930/F25/DIM/120V T20 6/1FB	PAR30S
929002045704	9.4PAR30S/COR/930/F40/DIM/120V T20 6/1FB	PAR30S

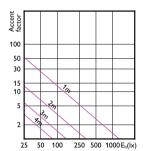

Temperature

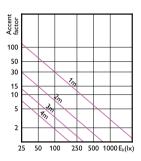

		T-Case Maximum
Order Code	Full Product Name	(Nom)
929001389612	LEDspot 70W PAR30S 827 100-277V 25D ND	80 °C
929001929512	LEDspot 70W PAR30S 865 100-277V 25D ND	75 °C
929001929412	LEDspot 50W PAR20 865 100-240V 25D ND SO	75 °C
929002045404	9.4PAR30L/COR/930/F25/DIM/120V T20 6/1FB	80 °C
929002045504	9.4PAR30L/COR/930/F40/DIM/120V T20	80 °C
	6/1FB	
929002045604	9.4PAR30S/COR/930/F25/DIM/120V T20 6/1FB	80 °C
	0/11 5	
929002045704	9.4PAR3OS/COR/930/F40/DIM/120V T20 6/1FB	80 °C



Accent Diagrams

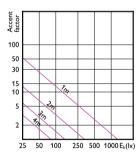




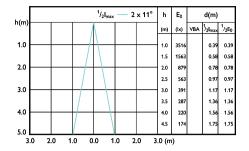

LEDspot_70W_E27_PAR30S_827_25°

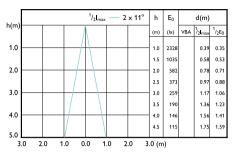
LEDspot PAR20 14-90W 1300Im 25D 6500K

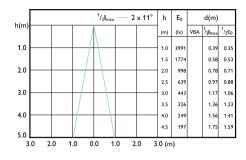
LEDspot PAR30Sd 9-75W 950Im 25D 6500K



LEDspots 9,4W PAR30L E26 930 25D

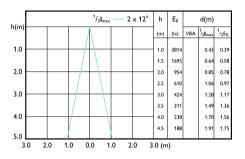

LEDspots 9,4W PAR30L E26 930 40D

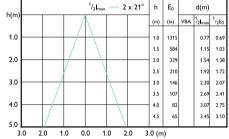

LEDspots 9,4W PAR30S E26 930 25D

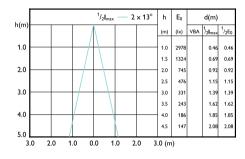


LEDspots 9,4W PAR30S E26 930 40D

Beam Diagrams

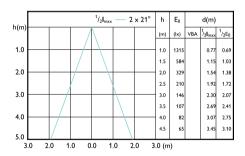





LEDspot_70W_E27_PAR30S_827_25°

LEDspot PAR20 14-90W 1300Im 25D 6500K

LEDspot PAR30Sd 9-75W 950Im 25D 6500K



LEDspots 9,4W PAR30L E26 930 25D

LEDspots 9,4W PAR30L E26 930 40D

LEDspots 9,4W PAR30S E26 930 25D

LEDspots 9,4W PAR30S E26 930 40D

Everything you value in a Halogen PAR30 with the benefits of LED. Accent your merchandise or space without distraction.

LED PAR30 S/L

Philips LED spots with a single optic beam, provide a clean beam that's free from shadows with beam angles from 15 and 40 degrees to suit every general lighting application.

Bene ts

- Up to 80% energy saving compared with halogen lamps
- · Lower maintenance costs
- · Will not cause fading or damage

Features

- · Lifetime of upto 40,000 hours
- Emit virtually no UV/IR light in the beam
- Upto CRI95
- Ranging between 3 to 5-year limited warranty
- · Contains no mercury

LED PAR30 S/L

Application

- Hotels, restaurants, bars, cafés, lobbies
- Museums, exhibitions
- Retail shops

Versions

PAR30L

PAR30S

PAR30L E26

E26 PAR30S

E26 PAR30L

PAR30S

PAR30S E26

PAR30S

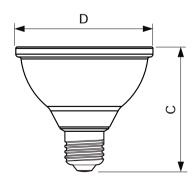
PHILIPS

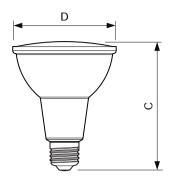
LED PAR30 S/L

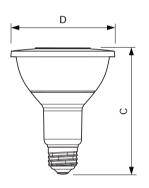
Versions

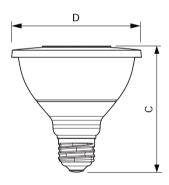
PAR30S

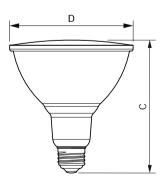
PAR30S


LEDspot PAR30L E26

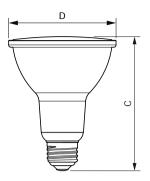

LEDspot PAR30S E26

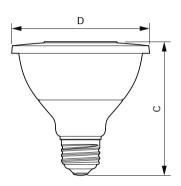


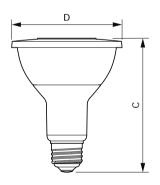

Single Contact Medium Screw PAR 3.75 inch/95mm Short



Product	D	С
12PAR3OS/AMB/E4O/83O/DIM ULW	95 mm	95 mm




Product	D	С
12PAR30L/AMB/F25/830/DIM ULW	95 mm	115 mm


Product	D	С
12PAR30L/EXPERTCOLOR RETAIL/S10/930/DIM	94.8 mm	116.1 mm
12PAR30L/EXPERTCOLOR RETAIL/F25/930/DIM	94.8 mm	116.1 mm
12PAR30L/EXPERTCOLOR RETAIL/F40/930/DIM	94.8 mm	116.1 mm
12PAR30L/EXPERTCOLOR/F25/927/DIM	94.8 mm	93.1 mm
12PAR30L/EXPERTCOLOR/F40/927/DIM	94.8 mm	93.1 mm
12PAR30L/EXPERTCOLOR/F25/940/DIM	94.8 mm	116.1 mm
12PAR30L/EXPERTCOLOR/F40/940/DIM	94.8 mm	116.1 mm

Product	D	С
12PAR30S/EXPERTCOLOR RETAIL/F25/930/DIM	94.8 mm	93.1 mm
12PAR30S/EXPERTCOLOR RETAIL/S10/930/DIM	94.8 mm	93.1 mm
12PAR30S/EXPERTCOLOR RETAIL/F40/930/DIM	94.8 mm	93.1 mm
12PAR30S/EXPERTCOLOR RETAIL/F25/930/DIMB	94.8 mm	93.1 mm
12PAR30S/EXPERTCOLOR/S10/927/DIM	94.8 mm	93.1 mm
12PAR30S/EXPERTCOLOR/F40/940/DIM	120.7 mm	134.6 mm
12PAR3OS/EXPERTCOLOR/F25/927/DIM B	94.8 mm	116.1 mm
12PAR30S/EXPERTCOLOR/F40/927/DIM	94.8 mm	116.1 mm
12PAR30S/EXPERTCOLOR/S10/940/DIM/120V	94.8 mm	93.1 mm
12PAR30S/EXPERTCOLOR/F25/940/DIM	120.7 mm	134.6 mm
12PAR30S/EXPERTCOLOR/F25/927/DIM	94.8 mm	93.1 mm
12PAR30S/MAS/927/F40/DIM/EC/120V B 6/1FB	94.8 mm	93.1 mm

Product	D	С
10PAR30S/LED/830/F25/DIM/ULW/120V 6/1FB	94 mm	93 mm
10PAR30S/LED/827/F25/DIM/ULW/120V 6/1FB	94 mm	93 mm
10PAR30S/LED/827/F40/DIM/ULW/120V 6/1FB	94 mm	93 mm
10PAR30S/LED/840/F25/DIM/ULW/120V 6/1FB	94 mm	93 mm
10PAR30S/LED/840/F40/DIM/ULW/120V 6/1FB	94 mm	93 mm
10PAR30S/LED/830/F40/DIM/ULW/120V 6/1FB	94 mm	93 mm

Controls and Dimming	
Dimmable	Yes
Operating and Electrical	
Voltage (Nom)	120 V
Wattage Equivalent	75 W
Starting Time (Nom)	0.5 s
General Information	
Cap-Base	E26
Light Technical	
LImf At End Of Nominal Lifetime	70 %
(Nom)	

Product	D	С
10PAR30L/LED/827/F40/DIM/ULW/120V 6/1FB	94 mm	118 mm
10PAR30L/LED/827/F25/DIM/ULW/120V 6/1FB	94 mm	118 mm
10PAR30L/LED/840/F25/DIM/ULW/120V 6/1FB	94 mm	118 mm
10PAR30L/LED/830/F40/DIM/ULW/120V 6/1FB	94 mm	118 mm
10PAR30L/LED/840/F40/DIM/ULW/120V 6/1FB	94 mm	118 mm
10PAR30L/LED/830/F25/DIM/ULW/120V 6/1FB	94 mm	118 mm

Product	D	С
11.3PAR30S/PER/930/F40/DIM/120V 6/1FBT20	94.8 mm	93.1 mm
11.3PAR30S/PER/930/F25/DIM/120V 6/1FBT20	94.8 mm	93.1 mm

Product	D	С
11.3PAR30L/PER/930/F40/DIM/120V 6/1FBT20	94.8 mm	116.1 mm
11.3PAR30L/PER/930/F25/DIM/120V 6/1FBT20	94.8 mm	116.1 mm

LED PAR30 S/L

Order			Power (Rated)
Code	Full Product Name	Input Frequency	(Nom)
471037	12PAR30L/EC RETAIL/S10/930/DIM 6/1	60 Hz	12 W
471045	12PAR30L/EC RETAIL/F25/930/DIM 6/1	60 Hz	12 W
471052	12PAR30L/EC RETAIL/F40/930/DIM 6/1	60 Hz	12 W
471060	12PAR30S/EC RETAIL/S10/930/DIM 6/1	60 Hz	12 W
470914	12PAR30S/EC/F40/927/DIM/120V 6/1	60 Hz	12 W
470970	12PAR30L/EC/F25/940/DIM/120V 6/1	60 Hz	12 W
470988	12PAR30L/EC/F40/940/DIM/120V 6/1	60 Hz	12 W
471078	12PAR30S/EC RETAIL/F25/930/DIM 6/1	60 Hz	12 W
471086	12PAR30S/EC RETAIL/F40/930/DIM 6/1	60 Hz	12 W
470898	12PAR30S/EC/S10/927/DIM/120V 6/1	60 Hz	12 W
470954	12PAR30L/EC/F25/927/DIM/120V 6/1	60 Hz	12 W
470962	12PAR30L/EC/F40/927/DIM/120V 6/1	60 Hz	12 W
471789	12PAR30S/EXPERTCOLOR/	60 Hz	12 W
	S10/940/DIM/120V		
471094	12PAR30S/EC RETAIL/F25/930/DIM 6/1	60 Hz	12 W
467829	12PAR30L/AMB/F25/830/DIM ULW	50 to 60 Hz	12 W
467910	12PAR3OS/AMB/F4O/83O/DIM ULW	50 to 60 Hz	12 W
529768	10PAR30S/LED/827/F25/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
529776	10PAR30S/LED/830/F25/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
529784	10PAR30S/LED/840/F25/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
529792	10PAR30S/LED/827/F40/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
529800	10PAR30S/LED/830/F40/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
529818	10PAR30S/LED/840/F40/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		

Order			Power (Rated)
Code	Full Product Name	Input Frequency	(Nom)
529701	10PAR30L/LED/827/F25/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
529719	10PAR30L/LED/830/F25/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
529727	10PAR30L/LED/840/F25/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
529735	10PAR30L/LED/827/F40/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
529743	10PAR30L/LED/830/F40/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
529750	10PAR30L/LED/840/F40/DIM/ULW/	50 to 60 Hz	10 W
	120V 6/1FB		
470906	12PAR30S/EC/F25/927/DIM/120V 6/1	60 Hz	12 W
470922	12PAR3OS/EC/F25/927/DIM/12OV B 6/1	60 Hz	12 W
470930	12PAR30S/EC/F25/940/DIM/120V 6/1	60 Hz	12 W
470948	12PAR30S/EC/F40/940/DIM/120V 6/1	60 Hz	12 W
535419	11.3PAR30L/PER/930/F25/DIM/120V	60 Hz	11.3 W
	6/1FBT20		
535427	11.3PAR30L/PER/930/F40/DIM/120V	60 Hz	11.3 W
	6/1FBT20		
535393	11.3PAR30S/PER/930/F25/DIM/120V	60 Hz	11.3 W
	6/1FBT20		
535400	11.3PAR30S/PER/930/F40/DIM/120V	60 Hz	11.3 W
	6/1FBT2O		
547687	12PAR30S/MAS/927/F40/DIM/EC/120V	60 Hz	12 W
	B 6/1FB		

General Information

		Nominal	Rated	
Order		Lifetime	Lifetime	Switching
Code	Full Product Name	(Nom)	(Hours)	Cycle
471037	12PAR30L/EC RETAIL/	25000 h	25000 h	50000X
	S10/930/DIM 6/1			
471045	12PAR30L/EC RETAIL/	25000 h	25000 h	50000X
	F25/930/DIM 6/1			
471052	12PAR30L/EC RETAIL/	25000 h	25000 h	50000X
	F40/930/DIM 6/1			
471060	12PAR3OS/EC RETAIL/	25000 h	25000 h	50000X
	S10/930/DIM 6/1			
470914	12PAR30S/EC/F40/927/DIM/	40000 h	40000 h	50000X
	120V 6/1			
470970	12PAR30L/EC/F25/940/DIM/	40000 h	40000 h	50000X
	120V 6/1			
470988	12PAR30L/EC/F40/940/DIM/	40000 h	40000 h	50000X
	120V 6/1			
471078	12PAR3OS/EC RETAIL/	25000 h	25000 h	50000X
	F25/930/DIM 6/1			

		Nominal	Rated	
Order		Lifetime	Lifetime	Switching
Code	Full Product Name	(Nom)	(Hours)	Cycle
471086	12PAR30S/EC RETAIL/	25000 h	25000 h	50000X
	F40/930/DIM 6/1			
470898	12PAR30S/EC/S10/927/DIM/	40000 h	40000 h	50000X
	120V 6/1			
470954	12PAR30L/EC/F25/927/DIM/	40000 h	40000 h	50000X
	120V 6/1			
470962	12PAR30L/EC/F40/927/DIM/	40000 h	40000 h	50000X
	120V 6/1			
471789	12PAR30S/EXPERTCOLOR/	40000 h	40000 h	50000X
	S10/940/DIM/120V			
471094	12PAR30S/EC RETAIL/	25000 h	25000 h	50000X
	F25/930/DIM 6/1			
467829	12PAR30L/AMB/F25/830/DIM	25000 h	25000 h	50000X
	ULW			
467910	12PAR30S/AMB/F40/830/DIM	25000 h	25000 h	50000X
	ULW			

		Nominal	Rated	
Order		Lifetime	Lifetime	Switching
Code	Full Product Name	(Nom)	(Hours)	Cycle
529768	10PAR30S/LED/827/F25/DIM/U	25000 h	25000 h	25000X
	LW/120V 6/1FB			
529776	10PAR30S/LED/830/F25/DIM/U	25000 h	25000 h	25000X
	LW/120V 6/1FB			
529784	10PAR30S/LED/840/F25/DIM/U	25000 h	25000 h	25000X
	LW/120V 6/1FB			
529792	10PAR30S/LED/827/F40/DIM/U	25000 h	25000 h	25000X
	LW/120V 6/1FB			
529800	10PAR30S/LED/830/F40/DIM/	25000 h	25000 h	25000X
	ULW/120V 6/1FB			
529818	10PAR30S/LED/840/F40/DIM/	25000 h	25000 h	25000X
	ULW/120V 6/1FB			
529701	10PAR30L/LED/827/F25/DIM/U	25000 h	25000 h	25000X
	LW/120V 6/1FB			
529719	10PAR30L/LED/830/F25/DIM/U	25000 h	25000 h	25000X
	LW/120V 6/1FB			
529727	10PAR30L/LED/840/F25/DIM/U	25000 h	25000 h	25000X
	LW/120V 6/1FB			
529735	10PAR30L/LED/827/F40/DIM/U	25000 h	25000 h	25000X
	LW/120V 6/1FB			
529743	10PAR30L/LED/830/F40/DIM/	25000 h	25000 h	25000X
	ULW/120V 6/1FB			

		Nominal	Rated	
Order		Lifetime	Lifetime	Switching
Code	Full Product Name	(Nom)	(Hours)	Cycle
529750	10PAR30L/LED/840/F40/DIM/	25000 h	25000 h	25000X
	ULW/120V 6/1FB			
470906	12PAR30S/EC/F25/927/DIM/	40000 h	40000 h	50000X
	120V 6/1			
470922	12PAR30S/EC/F25/927/DIM/	40000 h	40000 h	50000X
	120V B 6/1			
470930	12PAR30S/EC/F25/940/DIM/	40000 h	40000 h	50000X
	120V 6/1			
470948	12PAR30S/EC/F40/940/DIM/	40000 h	40000 h	50000X
	120V 6/1			
535419	11.3PAR30L/PER/930/F25/DIM/	25000 h	25000 h	50000X
	120V 6/1FBT20			
535427	11.3PAR30L/PER/930/F40/DIM/	25000 h	25000 h	50000X
	120V 6/1FBT20			
535393	11.3PAR30S/PER/930/F25/DIM/	25000 h	25000 h	50000X
	120V 6/1FBT20			
535400	11.3PAR30S/PER/930/F40/DIM/	25000 h	25000 h	50000X
	120V 6/1FBT20			
547687	12PAR30S/MAS/927/F40/DIM/	40000 h	40000 h	50000X
	EC/120V B 6/1FB			

Light Technical (1/2)

g 00.								
					Color			
		Beam Angle	Color	Correlated Color	Rendering	Luminous Flux	Luminous Flux	Luminous
Order Code	Full Product Name	(Nom)	Code	Temperature (Nom)	Index (Nom)	(Nom)	(Rated) (Nom)	Intensity (Nom)
471037	12PAR30L/EC RETAIL/S10/930/DIM 6/1	10 °	930	3000 K	90	880 lm	880 lm	10000 cd
471045	12PAR3OL/EC RETAIL/F25/930/DIM 6/1	25 °	930	3000 K	90	880 lm	880 lm	4500 cd
471052	12PAR3OL/EC RETAIL/F40/930/DIM 6/1	40 °	930	3000 K	90	880 lm	880 lm	2000 cd
471060	12PAR30S/EC RETAIL/S10/930/DIM 6/1	10 °	930	3000 K	90	880 lm	880 lm	10000 cd
470914	12PAR30S/EC/F40/927/DIM/120V 6/1	40 °	927	2700 K	95	850 lm	850 lm	1800 cd
470970	12PAR30L/EC/F25/940/DIM/120V 6/1	25 °	940	4000 K	95	950 lm	950 lm	4800 cd
470988	12PAR30L/EC/F40/940/DIM/120V 6/1	40 °	940	4000 K	95	950 lm	950 lm	2100 cd
471078	12PAR3OS/EC RETAIL/F25/930/DIM 6/1	25 °	930	3000 K	90	880 lm	880 lm	4500 cd
471086	12PAR30S/EC RETAIL/F40/930/DIM 6/1	40 °	930	3000 K	90	880 lm	880 lm	2000 cd
470898	12PAR30S/EC/S10/927/DIM/120V 6/1	10 °	927	2700 K	95	850 lm	850 lm	10000 cd
470954	12PAR30L/EC/F25/927/DIM/120V 6/1	25 °	927	2700 K	95	850 lm	850 lm	4200 cd
470962	12PAR30L/EC/F40/927/DIM/120V 6/1	40 °	927	2700 K	95	850 lm	850 lm	1800 cd
471789	12PAR30S/EXPERTCOLOR/S10/940/DIM/	10 °	940	4000 K	95	950 lm	950 lm	10500 cd
	120V							
471094	12PAR3OS/EC RETAIL/F25/930/DIM 6/1	25 °	930	3000 K	90	880 lm	880 lm	4500 cd
467829	12PAR3OL/AMB/F25/83O/DIM ULW	25 °	830	3000 K	80	850 lm	850 lm	3300 cd
467910	12PAR3OS/AMB/F4O/83O/DIM ULW	40 °	830	3000 K	80	850 lm	850 lm	1500 cd
529768	10PAR30S/LED/827/F25/DIM/ULW/120V	25 °	827	2700 K	80	800 lm	800 lm	3300 cd
	6/1FB							
529776	10PAR30S/LED/830/F25/DIM/ULW/120V	25 °	830	3000 K	80	850 lm	850 lm	3300 cd
	6/1FB							

					Color			
		Beam Angle	Color	Correlated Color	Rendering	Luminous Flux	Luminous Flux	Luminous
Order Code	Full Product Name	(Nom)	Code	Temperature (Nom)	Index (Nom)	(Nom)	(Rated) (Nom)	Intensity (Nom)
529784	10PAR30S/LED/840/F25/DIM/ULW/120V	25 °	841	4000 K	80	850 lm	850 lm	3300 cd
	6/1FB							
529792	10PAR30S/LED/827/F40/DIM/ULW/120V	40 °	827	2700 K	80	800 lm	800 lm	1600 cd
	6/1FB							
529800	10PAR30S/LED/830/F40/DIM/ULW/120V	40 °	830	3000 K	80	850 lm	850 lm	1600 cd
	6/1FB							
529818	10PAR30S/LED/840/F40/DIM/ULW/120V	40 °	841	4000 K	80	850 lm	850 lm	1600 cd
	6/1FB							
529701	10PAR30L/LED/827/F25/DIM/ULW/120V	25 °	827	2700 K	80	800 lm	800 lm	3300 cd
	6/1FB							
529719	10PAR30L/LED/830/F25/DIM/ULW/120V	25 °	830	3000 K	80	850 lm	850 lm	3300 cd
	6/1FB							
529727	10PAR30L/LED/840/F25/DIM/ULW/120V	25 °	841	4000 K	80	850 lm	850 lm	3300 cd
	6/1FB							
529735	10PAR30L/LED/827/F40/DIM/ULW/120V	40 °	827	2700 K	80	800 lm	800 lm	1600 cd
	6/1FB							
529743	10PAR30L/LED/830/F40/DIM/ULW/120V	40 °	830	3000 K	80	850 lm	850 lm	1600 cd
	6/1FB							
529750	10PAR30L/LED/840/F40/DIM/ULW/120V	40 °	841	4000 K	80	850 lm	850 lm	1600 cd
	6/1FB							
470906	12PAR3OS/EC/F25/927/DIM/12OV 6/1	25 °	927	2700 K	95	850 lm	850 lm	4200 cd
470922	12PAR3OS/EC/F25/927/DIM/12OV B 6/1	25 °	927	2700 K	95	850 lm	850 lm	4200 cd
470930	12PAR3OS/EC/F25/940/DIM/120V 6/1	25 °	940	4000 K	95	950 lm	950 lm	4800 cd
470948	12PAR30S/EC/F40/940/DIM/120V 6/1	40 °	940	4000 K	95	950 lm	950 lm	2100 cd
535419	11.3PAR30L/PER/930/F25/DIM/120V	25 °	930	3000 K	90	850 lm	850 lm	4500 cd
	6/1FBT20							
535427	11.3PAR30L/PER/930/F40/DIM/120V	40 °	930	3000 K	90	850 lm	850 lm	2000 cd
	6/1FBT20							
535393	11.3PAR30S/PER/930/F25/DIM/120V	25 °	930	3000 K	90	850 lm	850 lm	4500 cd
	6/1FBT20							
535400	11.3PAR30S/PER/930/F40/DIM/120V	40 °	930	3000 K	90	850 lm	850 lm	2000 cd
	6/1FBT20							
547687	12PAR3OS/MAS/927/F4O/DIM/EC/12OV B	40 °	927	2700 K	95	850 lm	850 lm	1315 cd
	6/1FB							

Light Technical (2/2)

Order Code	Full Product Name	Rated Beam Angle
471037	12PAR30L/EC RETAIL/S10/930/DIM 6/1	10 °
471045	12PAR30L/EC RETAIL/F25/930/DIM 6/1	25 °
471052	12PAR30L/EC RETAIL/F40/930/DIM 6/1	40 °
471060	12PAR30S/EC RETAIL/S10/930/DIM 6/1	10 °
470914	12PAR30S/EC/F40/927/DIM/120V 6/1	40 °
470970	12PAR30L/EC/F25/940/DIM/120V 6/1	25 °
470988	12PAR30L/EC/F40/940/DIM/120V 6/1	40 °
471078	12PAR30S/EC RETAIL/F25/930/DIM 6/1	25 °
471086	12PAR30S/EC RETAIL/F40/930/DIM 6/1	40 °
470898	12PAR30S/EC/S10/927/DIM/120V 6/1	10 °
470954	12PAR30L/EC/F25/927/DIM/120V 6/1	25 °
470962	12PAR30L/EC/F40/927/DIM/120V 6/1	40 °

Order Code	Full Product Name	Rated Beam Angle
471789	12PAR30S/EXPERTCOLOR/S10/940/DIM/120V	10 °
471094	12PAR30S/EC RETAIL/F25/930/DIM 6/1	25 °
467829	12PAR30L/AMB/F25/830/DIM ULW	25 °
467910	12PAR30S/AMB/F40/830/DIM ULW	40 °
529768	10PAR30S/LED/827/F25/DIM/ULW/120V 6/1FB	25 °
529776	10PAR30S/LED/830/F25/DIM/ULW/120V 6/1FB	25 °
529784	10PAR30S/LED/840/F25/DIM/ULW/120V 6/1FB	25 °
529792	10PAR30S/LED/827/F40/DIM/ULW/120V 6/1FB	40 °
529800	10PAR30S/LED/830/F40/DIM/ULW/120V 6/1FB	40 °
529818	10PAR30S/LED/840/F40/DIM/ULW/120V 6/1FB	40 °
529701	10PAR30L/LED/827/F25/DIM/ULW/120V 6/1FB	25 °
529719	10PAR30L/LED/830/F25/DIM/ULW/120V 6/1FB	25 °

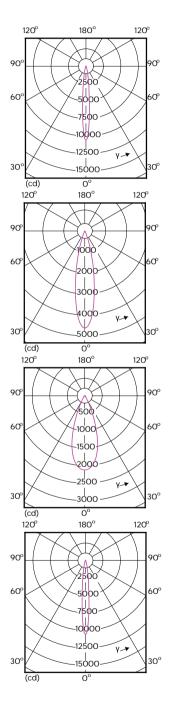
LED PAR30 S/L

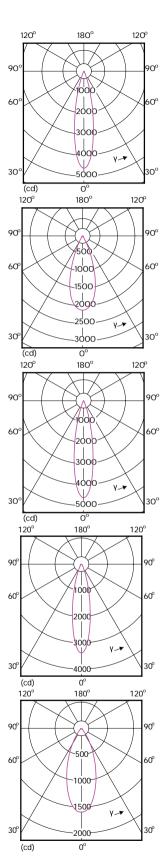
Order Code	Full Product Name	Rated Beam Angle
529727	10PAR30L/LED/840/F25/DIM/ULW/120V 6/1FB	25 °
529735	10PAR30L/LED/827/F40/DIM/ULW/120V 6/1FB	40 °
529743	10PAR30L/LED/830/F40/DIM/ULW/120V 6/1FB	40 °
529750	10PAR30L/LED/840/F40/DIM/ULW/120V 6/1FB	40 °
470906	12PAR30S/EC/F25/927/DIM/120V 6/1	25 °
470922	12PAR30S/EC/F25/927/DIM/120V B 6/1	25 °
470930	12PAR30S/EC/F25/940/DIM/120V 6/1	25 °

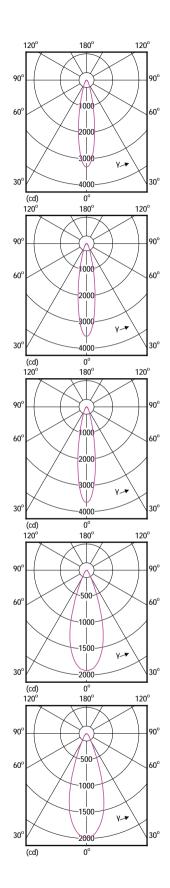
Order Code	Full Product Name	Rated Beam Angle
470948	12PAR30S/EC/F40/940/DIM/120V 6/1	40 °
535419	11.3PAR30L/PER/930/F25/DIM/120V 6/1FBT20	25 °
535427	11.3PAR30L/PER/930/F40/DIM/120V 6/1FBT20	40 °
535393	11.3PAR30S/PER/930/F25/DIM/120V 6/1FBT20	25 °
535400	11.3PAR30S/PER/930/F40/DIM/120V 6/1FBT20	40 °
547687	12PAR30S/MAS/927/F40/DIM/EC/120V B 6/1FB	40 °

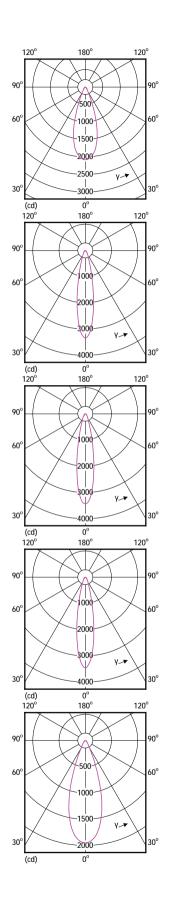
Mechanical and Housing

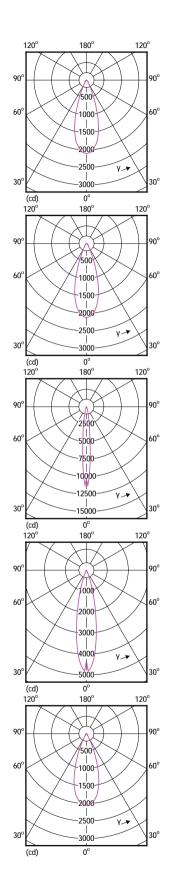
Mechanical and Housing			
Order Code	Full Product Name	Bulb Shape	
471037	12PAR30L/EC RETAIL/S10/930/DIM 6/1	PAR30L	
471045	12PAR3OL/EC RETAIL/F25/930/DIM 6/1	PAR30L	
471052	12PAR30L/EC RETAIL/F40/930/DIM 6/1	PAR30L	
471060	12PAR30S/EC RETAIL/S10/930/DIM 6/1	PAR30S	
470914	12PAR30S/EC/F40/927/DIM/120V 6/1	PAR30S	
470970	12PAR30L/EC/F25/940/DIM/120V 6/1	PAR30L	
470988	12PAR30L/EC/F40/940/DIM/120V 6/1	PAR30L	
471078	12PAR30S/EC RETAIL/F25/930/DIM 6/1	PAR30S	
471086	12PAR30S/EC RETAIL/F40/930/DIM 6/1	PAR30S	
470898	12PAR30S/EC/S10/927/DIM/120V 6/1	PAR30S	
470954	12PAR30L/EC/F25/927/DIM/120V 6/1	PAR30L	
470962	12PAR30L/EC/F40/927/DIM/120V 6/1	PAR30L	
471789	12PAR30S/EXPERTCOLOR/S10/940/DIM/120V	PAR30S	
471094	12PAR30S/EC RETAIL/F25/930/DIM 6/1	PAR30S	
467829	12PAR3OL/AMB/F25/83O/DIM ULW	PAR30L	
467910	12PAR3OS/AMB/F4O/83O/DIM ULW	PAR30S	
529768	10PAR30S/LED/827/F25/DIM/ULW/120V 6/1FB	PAR30S	
529776	10PAR30S/LED/830/F25/DIM/ULW/120V 6/1FB	PAR30S	
529784	10PAR30S/LED/840/F25/DIM/ULW/120V 6/1FB	PAR30S	

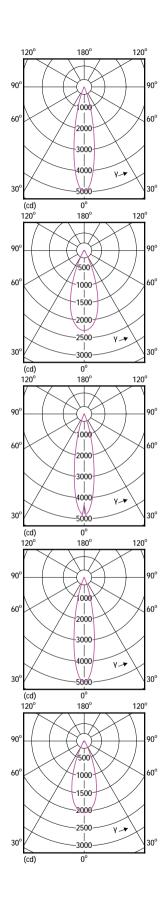

Order Code	Full Product Name	Bulb Shape
529792	10PAR30S/LED/827/F40/DIM/ULW/120V 6/1FB	PAR30S
529800	10PAR30S/LED/830/F40/DIM/ULW/120V 6/1FB	PAR30S
529818	10PAR30S/LED/840/F40/DIM/ULW/120V 6/1FB	PAR30S
529701	10PAR30L/LED/827/F25/DIM/ULW/120V 6/1FB	PAR30L
529719	10PAR30L/LED/830/F25/DIM/ULW/120V 6/1FB	PAR30L
529727	10PAR30L/LED/840/F25/DIM/ULW/120V 6/1FB	PAR30L
529735	10PAR30L/LED/827/F40/DIM/ULW/120V 6/1FB	PAR30L
529743	10PAR30L/LED/830/F40/DIM/ULW/120V 6/1FB	PAR30L
529750	10PAR30L/LED/840/F40/DIM/ULW/120V 6/1FB	PAR30L
470906	12PAR3OS/EC/F25/927/DIM/12OV 6/1	PAR30S
470922	12PAR3OS/EC/F25/927/DIM/12OV B 6/1	PAR30S
470930	12PAR30S/EC/F25/940/DIM/120V 6/1	PAR30S
470948	12PAR30S/EC/F40/940/DIM/120V 6/1	PAR30S
535419	11.3PAR30L/PER/930/F25/DIM/120V 6/1FBT20	PAR30L
535427	11.3PAR30L/PER/930/F40/DIM/120V 6/1FBT20	PAR30L
535393	11.3PAR3OS/PER/93O/F25/DIM/12OV 6/1FBT2O	PAR30S
535400	11.3PAR30S/PER/930/F40/DIM/120V 6/1FBT20	PAR30S
547687	12PAR3OS/MAS/927/F4O/DIM/EC/12OV B 6/1FB	PAR30S

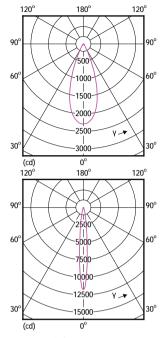

Temperature

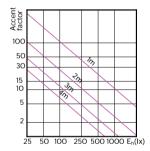

Temperat	remperature		
Order Code	Full Product Name	T-Case Maximum (Nom)	
471037	12PAR30L/EC RETAIL/S10/930/DIM 6/1	85 °C	
471045	12PAR30L/EC RETAIL/F25/930/DIM 6/1	85 °C	
471052	12PAR30L/EC RETAIL/F40/930/DIM 6/1	85 °C	
471060	12PAR30S/EC RETAIL/S10/930/DIM 6/1	90 °C	
470914	12PAR30S/EC/F40/927/DIM/120V 6/1	90 °C	
470970	12PAR30L/EC/F25/940/DIM/120V 6/1	85 °C	
470988	12PAR30L/EC/F40/940/DIM/120V 6/1	85 °C	
471078	12PAR3OS/EC RETAIL/F25/930/DIM 6/1	90 °C	
471086	12PAR3OS/EC RETAIL/F4O/93O/DIM 6/1	90 °C	
470898	12PAR3OS/EC/S10/927/DIM/12OV 6/1	90 °C	
470954	12PAR30L/EC/F25/927/DIM/120V 6/1	85 °C	
470962	12PAR30L/EC/F40/927/DIM/120V 6/1	85 °C	
471789	12PAR3OS/EXPERTCOLOR/S10/940/DIM/120V	90 °C	
471094	12PAR3OS/EC RETAIL/F25/930/DIM 6/1	90 °C	
467829	12PAR3OL/AMB/F25/83O/DIM ULW	85 °C	
467910	12PAR3OS/AMB/F4O/83O/DIM ULW	85 °C	
529768	10PAR30S/LED/827/F25/DIM/ULW/120V 6/1FB	70 °C	

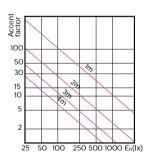

Order Code	Full Product Name	T-Case Maximum (Nom)
529776	10PAR30S/LED/830/F25/DIM/ULW/120V 6/1FB	70 °C
529784	10PAR30S/LED/840/F25/DIM/ULW/120V 6/1FB	70 °C
529792	10PAR30S/LED/827/F40/DIM/ULW/120V 6/1FB	70 °C
529800	10PAR30S/LED/830/F40/DIM/ULW/120V 6/1FB	70 °C
529818	10PAR30S/LED/840/F40/DIM/ULW/120V 6/1FB	70 °C
529701	10PAR30L/LED/827/F25/DIM/ULW/120V 6/1FB	67 °C
529719	10PAR30L/LED/830/F25/DIM/ULW/120V 6/1FB	67 °C
529727	10PAR30L/LED/840/F25/DIM/ULW/120V 6/1FB	67 °C
529735	10PAR30L/LED/827/F40/DIM/ULW/120V 6/1FB	67 °C
529743	10PAR30L/LED/830/F40/DIM/ULW/120V 6/1FB	67 °C
529750	10PAR30L/LED/840/F40/DIM/ULW/120V 6/1FB	67 °C
470906	12PAR30S/EC/F25/927/DIM/120V 6/1	90 °C
470922	12PAR3OS/EC/F25/927/DIM/12OV B 6/1	90 °C
470930	12PAR30S/EC/F25/940/DIM/120V 6/1	90 °C
470948	12PAR30S/EC/F40/940/DIM/120V 6/1	90 °C
535419	11.3PAR30L/PER/930/F25/DIM/120V 6/1FBT20	85 ℃
535427	11.3PAR30L/PER/930/F40/DIM/120V 6/1FBT20	85 °C

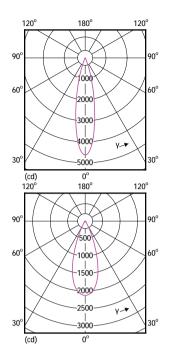

Order Code	Full Product Name	T-Case Maximum (Nom)
535393	11.3PAR30S/PER/930/F25/DIM/120V 6/1FBT20	90 °C
535400	11.3PAR30S/PER/930/F40/DIM/120V 6/1FBT20	90 °C
547687	12PAR3OS/MAS/927/F4O/DIM/EC/12OV B 6/1FB	90 °C

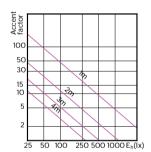




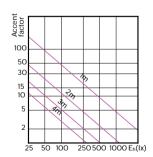




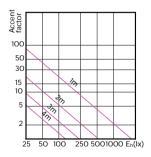




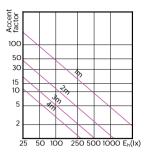
PAR30L 120V 12-75W 900Im 10D 3000K E26 D

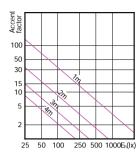


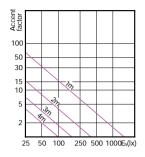
PAR30S 120V 12-75W 900Im 10D 3000K E26 D


PAR30L 120V 12-75W 900Im 25D 3000K E26 D

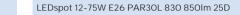
PAR30S 120V 12-75W 25D 3000K E26 D WH

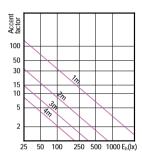


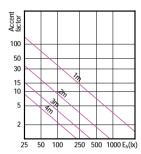

PAR30L 120V 12-75W 900Im 40D 3000K E26 D

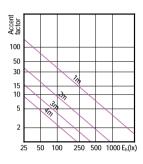


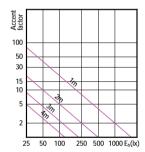
PAR30S 120V 12-75W 900Im 40D 3000K E26 D

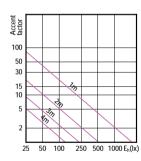

Accent Diagrams





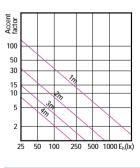

PAR30S 120V 12-75W 25D 3000K E26 D BL

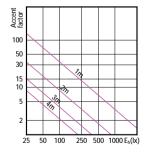


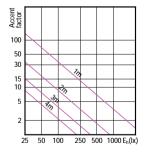

10-75W E26 PAR30S 25D 827 2700K

10-75W E26 PAR30S 25D 830 3000K

10-75W E26 PAR30S 25D 840 4000K

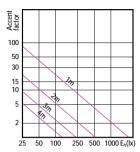


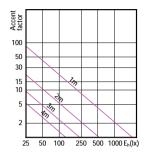



10-75W E26 PAR30S 40D 827 2700K

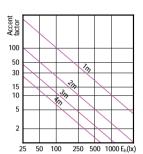
10-75W E26 PAR30S 40D 830 3000K

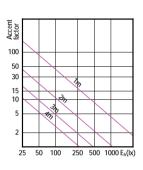
10-75W E26 PAR30S 40D 840 4000K

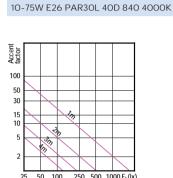

10-75W E26 PAR30L 25D 827 2700K


10-75W E26 PAR30L 25D 830 3000K

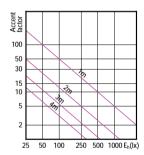
10-75W E26 PAR30L 25D 840 4000K

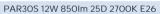

Accent Diagrams

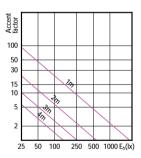


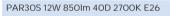


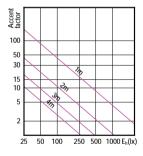
10-75W E26 PAR30L 40D 827 2700K

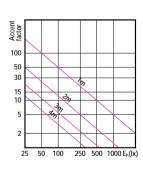


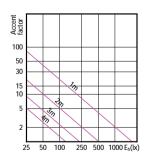


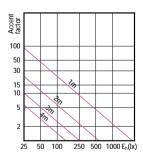




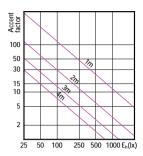

PAR30S 12W 850lm 10D 2700K E26



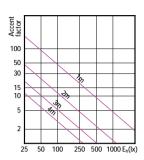



PAR30S 12W 950Im 25D 2700K E26

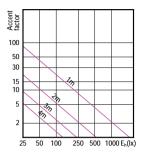
PAR30L 12W 850lm 25D 2700K E26

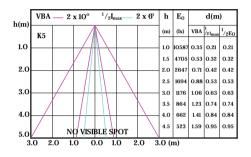


PAR30L 12W 850Im 40D 2700K E26

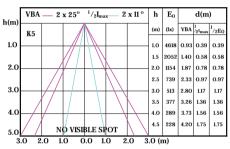

PAR30L 12W 950Im 25D 4000K E26

PAR30L 12W 950Im 40D 4000K E26

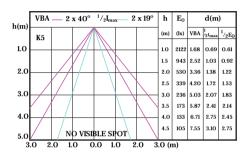

Accent Diagrams

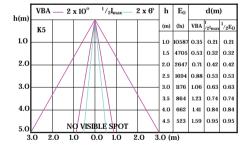


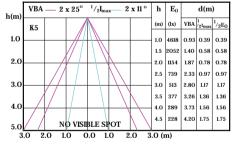
LEDspot E26 25°

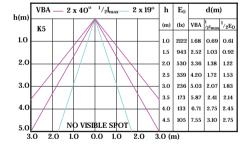


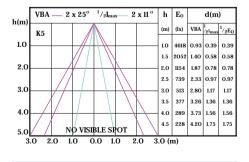
LEDspot E26 40°

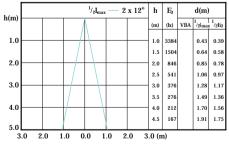

Beam Diagrams

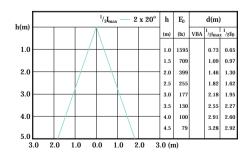

PAR30L 120V 12-75W 900Im 10D 3000K E26 D


PAR30L 120V 12-75W 900Im 25D 3000K E26 D

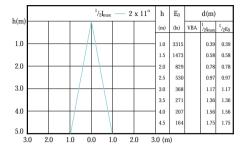

PAR30L 120V 12-75W 900Im 40D 3000K E26 D

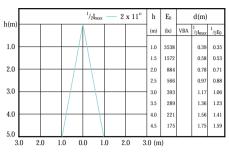

PAR30S 120V 12-75W 900Im 10D 3000K E26 D

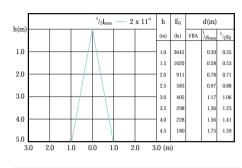

PAR30S 120V 12-75W 25D 3000K E26 D WH


PAR30S 120V 12-75W 900Im 40D 3000K E26 D

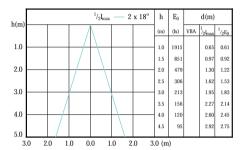
PAR30S 120V 12-75W 25D 3000K E26 D BL

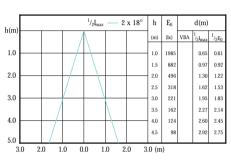


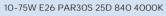

LEDspot 12-75W E26 PAR30L 830 850Im 25D

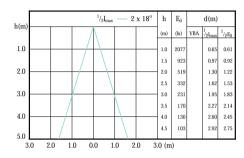


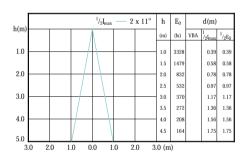
LEDspot 12-75W E26 PAR30S 830 850lm 40D

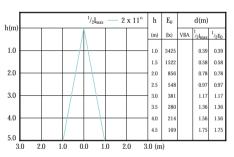

Beam Diagrams

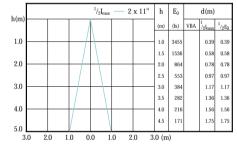


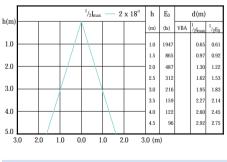


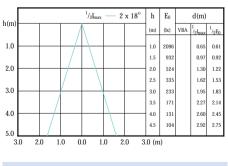

10-75W E26 PAR30S 25D 827 2700K

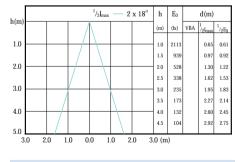





10-75W E26 PAR3OS 40D 827 2700K

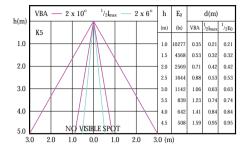

10-75W E26 PAR30S 40D 830 3000K

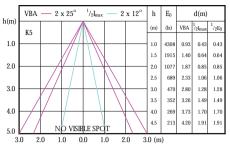

10-75W E26 PAR30S 40D 840 4000K

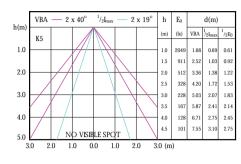

10-75W E26 PAR30L 25D 827 2700K

10-75W E26 PAR30L 25D 830 3000K

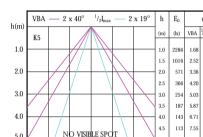
10-75W E26 PAR30L 25D 840 4000K

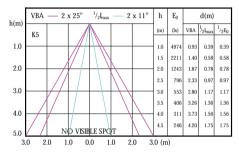


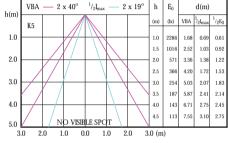

10-75W E26 PAR30L 40D 827 2700K

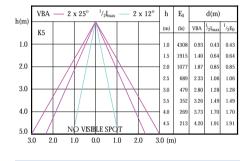

10-75W E26 PAR30L 40D 830 3000K

10-75W E26 PAR30L 40D 840 4000K

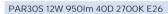

Beam Diagrams

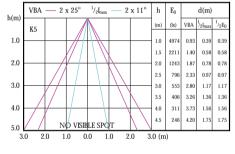


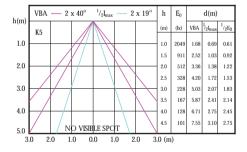

PAR3OS 12W 850lm 10D 2700K E26

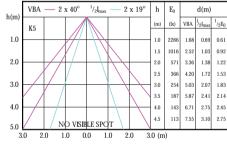


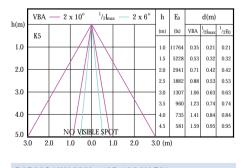
PAR30S 12W 850lm 25D 2700K E26

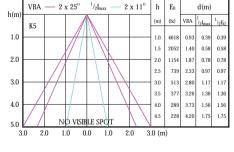


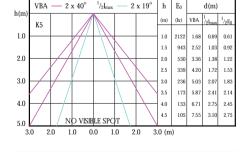





PAR30S 12W 950Im 25D 2700K E26






PAR30L 12W 850lm 40D 2700K E26

PAR30L 12W 950Im 25D 4000K E26

PAR30L 12W 950Im 40D 4000K E26

PAR30S 12W 950lm 10D 4000K E26

LEDspot E26 25°

LEDspot E26 40°

© 2019 Signify Holding All rights reserved. Signify does not give any representation or warranty as to the accuracy or completeness of the information included herein and shall not be liable for any action in reliance thereon. The information presented in this document is not intended as any commercial of er and does not form part of any quotation or contract, unless otherwise agreed by Signify. All trademarks are owned by Signify Holding or their respective owners.

This is real compatibility

Philips InstantFit LED lamps make the transition to LED from CFL lamps as simple as replacing a lamp. With both vertical and horizontal options and a wide array of color temperatures, the InstantFit LED lamps can quickly and e ectively replace compact uorescent lamps. The horizontal version includes a rotatable end cap to ensure the light is correctly aimed.

Bene ts

- Proven over 40% energy savings¹ over uorescent means a satisfed customer and no time wasted going back to a job
- Lifetime delivered average life rating of 50.000 hours²
- Easy replacement Replace conventional 32W and 26W 4-pin (PL-C & PL-T) lamps
 Replace conventional 13W 2-pin and 4-pin (PL-S & PL-C) lamps

Features

- Rotatable end cap ensures proper lamp alignment inside the xture (Horizontal SKUs only)
- Long life 50,000 hour life² means less maintenance than uorescent
- Proven product history and a company with a long history of innovation and reliability in the lighting industry
- Dimmable many Philips LED PL-type lamps are dimmable

Philips LED InstantFit PL lamps

Ordering, Electrical and Technical Data (Subject to change without notice)

Product		DLC		Volts (Depending	Bare Lamp	Avg. System	Equiv.			Color Temp.			Beam
No.	Model No.	Product ID	Ordering Code	on Ballast)	Watts	Watts	Watts	Base	CRI	(K)	Lumens	Life ²	Angle
InstantFit	LED 2-pin lamps	(13W replacem	ents) ³										
52951-1	9290018628	N/A	5PL-S/LED/13H/827/IF5/P/2P	120-277	5	5	13	GX23	82	2700	580	50,000	180°
52956-0	9290018629	N/A	5PL-S/LED/13H/830/IF5/P/2P	120-277	5	5	13	GX23	82	3000	580	50,000	180°
52957-8	9290018630	N/A	5PL-S/LED/13H/835/IF5/P/2P	120-277	5	5	13	GX23	82	3500	580	50,000	180°
52958-6	9290018631	N/A	5PL-S/LED/13H/840/IF5/P/2P	120-277	5	5	13	GX23	82	4000	580	50,000	180°
53230-9	9290018845	N/A	5PL-C/LED/13H/827/IF5/P/2P	120-277	5	5	13	GX23-2	82	2700	520	50,000	150°
53231-7	9290018846	N/A	5PL-C/LED/13H/830/IF5/P/2P	120-277	5	5	13	GX23-2	82	3000	550	50,000	150°
53233-3	9290018847	N/A	5PL-C/LED/13H/835/IF5/P/2P	120-277	5	5	13	GX23-2	82	3500	550	50,000	150°
53234-1	9290018848	N/A	5PL-C/LED/13H/840/IF5/P/2P	120-277	5	5	13	GX23-2	82	4000	580	50,000	150°
53235-8	9290018849	N/A	5PL-C/LED/13V/827/IF5/P/2P	120-277	5	5	13	GX23-2	82	2700	520	50,000	150°
53236-6	9290018850	N/A	5PL-C/LED/13V/830/IF5/P/2P	120-277	5	5	13	GX23-2	82	3000	550	50,000	150°
53237-4	9290018851	N/A	5PL-C/LED/13V/835/IF5/P/2P	120-277	5	5	13	GX23-2	82	3500	550	50,000	150°
53238-2	9290018852	N/A	5PL-C/LED/13V/840/IF5/P/2P	120-277	5	5	13	GX23-2	82	4000	580	50,000	150°
InstantFit	LED 4-pin lamps	(13W replaceme	ents) ³										
53239-0	9290018853	N/A	5.5PL-C/LED/13H/827/IF5/P/4P	14-60	5.5	7	13	G24q	82	2700	520	50,000	150°
53240-8	9290018854	N/A	5.5PL-C/LED/13H/830/IF5/P/4P	14-60	5.5	7	13	G24q	82	3000	550	50,000	150°
53241-6	9290018855	N/A	5.5PL-C/LED/13H/835/IF5/P/4P	14-60	5.5	7	13	G24q	82	3500	550	50,000	150°
53242-4	9290018856	N/A	5.5PL-C/LED/13H/840/IF5/P/4P	14-60	5.5	7	13	G24q	82	4000	580	50,000	150°
53243-2	9290018857	N/A	5.5PL-C/LED/13V/827/IF5/P/4P	14-60	5.5	7	13	G24q	82	2700	520	50,000	150°
53244-0	9290018858	N/A	5.5PL-C/LED/13V/830/IF5/P/4P	14-60	5.5	7	13	G24q	82	3000	550	50,000	150°
53245-7	9290018859	N/A	5.5PL-C/LED/13V/835/IF5/P/4P	14-60	5.5	7	13	G24q	82	3500	550	50,000	150°
53246-5	9290018860	N/A	5.5PL-C/LED/13V/840/IF5/P/4P	14-60	5.5	7	13	G24q	82	4000	580	50,000	150°
	LED 4-pin lamps	1	<u> </u>						1		1	1	1
45836-4	9290013880	P227UKPG	8.5PL-C/T LED/26H-2700 IF 4P	100-277, 347	8.5	10.5	26	G24q/GX24	>80	2700	900	50,000	120°
45837-2	9290013881	PYHS75V7	8.5PL-C/T LED/26H-3000 IF 4P	100-277, 347	8.5	10.5	26	G24q/GX24	>80	3000	900	50,000	120°
45838-0	9290013882	P1956NU5	8.5PL-C/T LED/26H-3500 IF 4P	100-277, 347	8.5	10.5	26	G24q/GX24	>80	3500	900	50,000	120°
45839-8	9290013883	PUK7J4AA	8.5PL-C/T LED/26H-4000 IF 4P	100-277, 347	8.5	10.5	26	G24q/GX24	>80	4000	950	50,000	120°
45840-6	9290013884	PW2GPMX6	10.5PL-C/T LED/26V-2700 IF 4P	100-277, 347	10.5	14.5	26	G24q/GX24	+	2700	1200	50,000	120°
45841-4	9290013885	PGPTBMF9	10.5PL-C/T LED/26V-3000 IF 4P	100-277, 347	10.5	14.5	26	G24q/GX24	>80	3000	1200	50,000	120°
45842-2	9290013886	PZ1KKRNR	10.5PL-C/T LED/26V-3500 IF 4P	100-277, 347	10.5	14.5	26	G24q/GX24	>80	3500	1200	50,000	120°
45843-0	9290013887	PV2HQGZW	10.5PL-C/T LED/26V-4000 IF 4P	100-277, 347	10.5	14.5	26	G24q/GX24	+	4000	1300	50,000	120°
	LED 4-pin lamps			100 277,017	10.0	11.0	120	0219/0/21	700	1000	1000	100,000	120
IIIStantrit	LLD 4-pill lallips	(32 W Teptacetti	12PLC/T LED/32H/827/IF/4P/DIM		T				I		1		
47606-9	9290018197	PIADVYIP	1PK 10/1	100-277, 347	12	15	32	G24q/GX24	>80	2700	1300	50,000	120°
47607-7	9290018198	PO8NB9Q1	12PLC/T LED/32H/830/IF/4P/DIM 1PK 10/1	100-277, 347	12	15	32	G24q/GX24	>80	3000	1350	50,000	120°
47608-5	9290018199	PZHF15J0	12PLC/T LED/32H/835/IF/4P/DIM 1PK 10/1	100-277, 347	12	15	32	G24q/GX24	>80	3500	1400	50,000	120°
47609-3	9290018200	PT5IC4ON	12PLC/T LED/32H/840/IF/4P/DIM 1PK 10/1	100-277, 347	12	15	32	G24q/GX24	>80	4000	1450	50,000	120°
47610-1	9290018201	PUS3MZTV	12PLC/T LED/32V/827/IF/4P/DIM 1PK 10/1	100-277, 347	12	15	32	G24q/GX24	>80	2700	1350	50,000	120°
47611-9	9290018202	PEIZQ8AS	12PLC/T LED/32V/83O/IF/4P/DIM 1PK 10/1	100-277, 347	12	15	32	G24q/GX24	>80	3000	1400	50,000	120°
47612-7	9290018203	PJG8ADHK	12PLC/T LED/32V/835/IF/4P/DIM 1PK 10/1	100-277, 347	12	15	32	G24q/GX24	>80	3500	1450	50,000	120°
47613-5	9290018204	PFKH6AQA	12PLC/T LED/32V/840/IF/4P/DIM 1PK 10/1	100-277, 347	12	15	32	G24q/GX24	>80	4000	1500	50,000	120°
InstantFit	LED 4-Pin long co	mpact (PL-L) -	2' high output ³										<u> </u>
45663-2	929001151304	Not DLC	16.5PL-LED/24-3000 IF 10/1	120-277	16.5	21.0	n/a	2G11	82	3000	1900	40,000	160°
45664-0	929001151404	Not DLC	16.5PL-LED/24-3500 IF 10/1	120-277	16.5	21.0	n/a	2G11	82	3500	2000	40,000	160°
45665-7	929001151504	Not DLC	16.5PL-LED/24-4000 IF 10/1	120-277	16.5	21.0	n/a	2G11	82	4000	2100	40,000	160°

Philips LED InstantFit PL lamps

Shipping Data (Subject to change without notice)

Product Number	SKU UPC (0-46677)	Outer Bar Code (5-00-46677)	Case Qty.	Case Weight (lbs.)	Case Cube (cu. Ft.)	Pallet Oty	Lamps/ SKU	SKUs per Layer	Layers High	SKU Dimensions (W x D x H) (In.)	Case Dimensions (W x D x H) (In.)	Pallet Dimensions (W x D x H) (In.)
InstantFit LE	D 2-pin lamps	(13W replacements	5)								•	1
52951-1	52951-2	52951-7	20	2.25	0.12	7920	1	1320	6	0.9 x 1.3 x 6.6	5.7 x 4.9 x 7.2	47.2 x 39.4 x 49.2
52956-0	52956-7	52956-2	20	2.25	0.12	7920	1	1320	6	0.9 x 1.3 x 6.6	5.7 x 4.9 x 7.2	47.2 x 39.4 x 49.2
52957-8	52957-4	52957-9	20	2.25	0.12	7920	1	1320	6	0.9 x 1.3 x 6.6	5.7 x 4.9 x 7.2	47.2 x 39.4 x 49.2
52958-6	52958-1	52958-6	20	2.25	0.12	7920	1	1320	6	0.9 x 1.3 x 6.6	5.7 x 4.9 x 7.2	47.2 x 39.4 x 49.2
53230-9	53230-7	53230-2	20	3.18	0.195	4760	1	680	7	8.2 x 6.6 x 6.2	8.2 x 6.6 x 6.2	48.0 x 40.6 x 49.2
53231-7	53231-4	53231-9	20	3.18	0.195	4760	1	680	7	8.2 x 6.6 x 6.2	8.2 x 6.6 x 6.2	48.0 x 40.6 x 49.2
53233-3	53233-8	53233-3	20	3.18	0.195	4760	1	680	7	8.2 x 6.6 x 6.2	8.2 x 6.6 x 6.2	48.0 x 40.6 x 49.2
53234-1	53234-5	53234-0	20	3.18	0.195	4760	1	680	7	8.2 x 6.6 x 6.2	8.2 x 6.6 x 6.2	48.0 x 40.6 x 49.2
53235-8	53235-2	53235-7	20	2.97	0.285	3600	1	400	9	10.2 x 8.2 x 5.4	11.2 x 8.2 x 5.4	48.0 x 39.8 x 54.0
53236-6	53236-9	53236-4	20	2.97	0.285	3600	1	400	9	10.2 x 8.2 x 5.4	11.2 x 8.2 x 5.4	48.0 x 39.8 x 54.0
53237-4	53237-6	53237-1	20	2.97	0.285	3600	1	400	9	10.2 x 8.2 x 5.4	11.2 x 8.2 x 5.4	48.0 x 39.8 x 54.0
53238-2	53238-3	53238-8	20	2.97	0.285	3600	1	400	9	10.2 x 8.2 x 5.4	11.2 x 8.2 x 5.4	48.0 x 39.8 x 54.0
InstantFit LE	D 4-pin lamps	(13W replacements	5)							l .	1	
53239-0	53239-0	53239-5	20	3.18	0.195	4760	1	680	7	8.2 x 6.6 x 6.2	8.2 x 6.6 x 6.2	48.0 x 40.6 x 49.2
53240-8	53240-6	53240-1	20	3.18	0.195	4760	1	680	7	8.2 x 6.6 x 6.2	8.2 x 6.6 x 6.2	48.0 x 40.6 x 49.2
53241-6	53241-3	53241-8	20	3.18	0.195	4760	1	680	7	8.2 x 6.6 x 6.2	8.2 x 6.6 x 6.2	48.0 x 40.6 x 49.2
53242-4	53242-0	53242-5	20	3.18	0.195	4760	1	680	7	8.2 x 6.6 x 6.2	8.2 x 6.6 x 6.2	48.0 x 40.6 x 49.2
53243-2	53243-7	53243-2	20	2.97	0.285	3600	1	400	9	10.2 x 8.2 x 5.4	11.2 x 8.2 x 5.4	48.0 x 39.8 x 54.0
53244-0	53244-4	53244-9	20	2.97	0.285	3600	1	400	9	10.2 x 8.2 x 5.4	11.2 x 8.2 x 5.4	48.0 x 39.8 x 54.0
53245-7	53245-1	53245-6	20	2.97	0.285	3600	1	400	9	10.2 x 8.2 x 5.4	11.2 x 8.2 x 5.4	48.0 x 39.8 x 54.0
53246-5	53246-8	53246-3	20	2.97	0.285	3600	1	400	9	10.2 x 8.2 x 5.4	11.2 x 8.2 x 5.4	48.0 x 39.8 x 54.0
		(26W replacement	ļ		1 0.200	1	<u> </u>				1	
45836-4	45836-2	45836-7	10	2.26	0.113	3250	1	650	5	1.3 x 1.3 x 6.4	8 x 3.4 x 7.2	47.2 x 39.4 x 41.6
45837-2	45837-9	45837-4	10	2.26	0.113	3250	1	650	5	1.3 x 1.3 x 6.4	8 x 3.4 x 7.2	47.2 x 39.4 x 41.6
45838-0	45838-6	45838-1	10	2.26	0.113	3250	1	650	5	1.3 x 1.3 x 6.4	8 x 3.4 x 7.2	47.2 x 39.4 x 41.6
45839-8	45839-3	45839-8	10	2.26	0.113	3250	1	650	5	1.3 x 1.3 x 6.4	8 x 3.4 x 7.2	47.2 x 39.4 x 41.6
45840-6	45840-9	45840-4	10	2.55	0.129	2100	1	350	6	2 x 2 x 4.9	11 x 4.5 x 4.5	47.2 x 39.4 x 39.8
45841-4	45841-6	45841-1	10	2.55	0.129	2100	1	350	6	2 x 2 x 4.9	11 x 4.5 x 4.5	47.2 x 39.4 x 39.8
45842-2	45842-3	45842-8	10	2.55	0.129	2100	1	350	6	2 x 2 x 4.9	11 x 4.5 x 4.5	47.2 x 39.4 x 39.8
45843-0	45843-0	45843-5	10	2.55	0.129	2100	1	350	6	2 x 2 x 4.9	11 x 4.5 x 4.5	47.2 x 39.4 x 39.8
	!	(32W replacement	1	2.00	0.127	2.00		000			1 11 110 110	THE KONTINGNO
47606-9	47606-9	74760-4	10	2.26	0.113	3250	1	650	5	1.3 x 1.3 x 6.4	8 x 3.4 x 7.2	47.2 x 39.4 x 41.6
47607-7	47607-6	74760-1	10	2.26	0.113	3250	1	650	5	1.3 x 1.3 x 6.4	8 x 3.4 x 7.2	47.2 x 39.4 x 41.6
47608-5	47608-3	74760-8	10	2.26	0.113	3250	1	650	5	1.3 x 1.3 x 6.4	8 x 3.4 x 7.2	47.2 x 39.4 x 41.6
47609-3	76090-0	74760-5	10	2.26	0.113	3250	1	650	5	1.3 x 1.3 x 6.4	8 x 3.4 x 7.2	47.2 x 39.4 x 41.6
47610-1	76106-6	74761-1	10	2.55	0.129	2100	1	350	6	2 x 2 x 4.9	11 x 4.5 x 4.5	47.2 x 39.4 x 39.8
47611-9	76113-3	74761-8	10	2.55	0.129	2100	1	350	6	2 x 2 x 4.9	11 x 4.5 x 4.5	47.2 x 39.4 x 39.8
47612-7	76120-0	74761-5	10	2.55	0.129	2100	1	350	6	2 x 2 x 4.9	11 x 4.5 x 4.5	47.2 x 39.4 x 39.8
47613-5	76137-7	74761-2	10	2.55	0.129	2100	1	350	6	2 x 2 x 4.9	11 x 4.5 x 4.5	47.2 x 39.4 x 39.8
		ompact (PL-L) - 2' h		<u> </u>	I.		<u> </u>					
45663-2	45663-4	45663-9	10	4.7	0.30	1200	1	150	8	23.3 x 0.5 x 4.3	23.3 x 5.0 x 4.3	47.3 x 39.4 x 40.2
45664-0	45664-1	45664-6	10	4.7	0.30	1200	1	150	8	23.3 x 0.5 x 4.3	23.3 x 5.0 x 4.3	47.3 x 39.4 x 40.2
45665-7	45665-8	45665-3	10	4.7	0.30	1200	1	150	8	23.3 x 0.5 x 4.3	23.3 x 5.0 x 4.3	47.3 x 39.4 x 40.2

Philips LED InstantFit PL lamps

Energy saving solution

Estimated lighting costs using a standard 26W PL-C CFL lamp							
Present Wattage		26	W				
× Annual operating hours		4,000	hrs				
	=	104,000	Watt-Hours				
÷ 1,000	=	104	kWh per year				
× kWh rate of \$0.11	=	\$11.44	per year				
× 100 lamps		\$1,144.00	annual energy cost per space				
Estimated lighting costs using	a Pl	nilips 8.5W F	PL-C/T LED lamp				
Present Wattage		8.5	W				
× Annual operating hours		4,000	hrs				
	=	34,000	Watt-Hours				
÷ 1,000	=	34	kWh per year				
× kWh rate of \$0.11	=	\$3.74	per year				
× 100 lamps		\$374.00	annual energy cost per space				
Total estimated annual saving	Total estimated annual savings ⁽⁾ \$770.00						
♦ Based on 100 lamps per space operating at 4,000 hours per year							

- Using 2 26W CFL 4-pin lamps on a programmed-start ballast = 52 system watts. Using 2 Philips LED InstantFit 4-pin lamps on a programmed-start ballast = 21 system watts. 52 - 21 = 31 watts saved; 31W/52W = 60% energy saved.
- Tested to B50 L70 Requirement. This is de ned as the number of hours when 50% of a large group of identical lamps drops below 70% of its initial lumens.
- 3. This product is not DLC certi ed or does not have a DLC category.

WARNINGS AND CAUTIONS

- Before replacing, turn o power and let lamp cool to avoid electrical shock or burn
- Not for use in totally enclosed or recessed luminaries (xtures)
- This device is not intended for use with emergency exit xtures or emergency lights

CAUTION: Risk of electric shock – Do not use where directly exposed to water

NOTES: This device complies with Part 15 of the FCC rule. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Any changes or modi cations not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This Class B complies with Canadian ICES-005.

Not all products are quali ed on the DLC QPL. To view our DLC quali ed products, please consult the DLC Quali ed Products List at www.designlights.org/search.

© 2018 Philips Lighting Holding B.V. All rights reserved. Philips reserves the right to make changes in speci cations and/or to discontinue any product at any time without notice or obligation and will not be liable for any consequences resulting from the use of this publication.

Philips Lighting North America Corporation 200 Franklin Square Drive, Somerset, NJ 08873 Tel. 855-486-2216

Philips Lighting Canada Ltd. 281 Hillmount Rd, Markham, ON, Canada L6C 2S3 Tel. 800-668-9008

Attractive, dimmable, LED alternative to popular incandescent

LED A19-A21

Philips A19/A21 LED lamps are the smart alternative to standard incandescent. The unique lamp design provides omni-directional light with excellent dimming performance.

Bene ts

- Long life -- lowers maintenance costs by reducing re-lamp frequency
- Excellent color consistancy with available high 90+ color rendering (CRI)
- Certain offerings feature a warm glow effect that provides an incandescent-like glow, while maintaining CRI throughout dimming range

Features

- Available smooth dimming options
- Tradional look and feel of size, shape, and material
- Up to 25,000-hour rated average life
- Instant on
- · ENERGY STAR certified options

Application

- Hotels/Motels
- Restaurants
- · Residential & Assisted Living

LED A19-A21

Versions

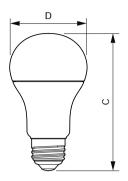
E26 A19 Amber

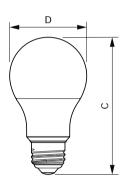
E26 A19 Frosted

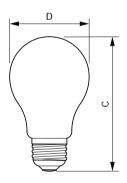
E26 A19

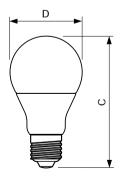
E26 A21

Single Contact Medium Screw A19 (A19) Clear

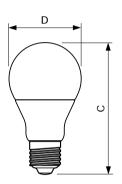

E26 A19 FR

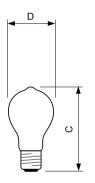


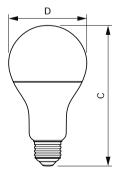

Single Contact Medium Screw A19 (A19) Frosted



Single Contact Medium Screw A19 (A19) Frosted


Product	D	С
12.5A19/LED/850/FR/P/ND 4/2FB	60 mm	110 mm
11A19/LED/827/FR/P/ND 4/2FB	60 mm	110 mm
10A19/LED/850/FR/P/ND 4/2FB	60 mm	110 mm


Product	D	С
6.5A19/LED/827/FR/P/ND 4/2FB	60 mm	110 mm
10A19/LED/827/FR/P/ND 4/2FB	60 mm	110 mm
9A19/LED/850/FR/P/ND 4/2FB	60 mm	110 mm
5.5A19/LED/850/FR/P/ND 4/2FB	60 mm	110 mm


Product	D	С
8.5A19/PER/850/CL/G/DIM 6/1CT	60 mm	103 mm

Product	D	С
18A21/LED/950/P/E26/ND 6/1FB T20	78 mm	140 mm
18A21/LED/927/P/E26/ND 6/1FB T20	78 mm	140 mm
8.8A19/PER/927-22/P/E26/WG 6/1FB T20	62.5 mm	111.5 mm
5A19/PER/927-22/P/E26/WG 6/1FB T20	62.5 mm	111.5 mm

Product	D	С
9A19/LED/927/P/E26/ND 6/1FB T20	61 mm	108 mm
9A19/LED/950/P/E26/ND 6/1FB T20	61 mm	108 mm

Product	D	С
BC10A19/AMB/927/DIM 120V	61.4 mm	109.8 mm

Product	D	С
4.5A19b/LEDFilament/820/CL-A/DIM 120V	60 mm	106 mm

Product	D	С
16A21/PER/927-22/P/E26/WG 6/1FB T20	78 mm	140 mm
12.2A21/PER/927-22/P/E26/WG 6/1FB T20	78 mm	140 mm

Operating and Electrical	
Starting Time (Nom)	0.5 s
General Information	
Cap-Base	E26
Light Technical	
LImf At End Of Nominal Lifetime	70 %
(Nom)	

Approval and Application

		Energy Consumption kWh/
Order Code	Full Product Name	1000 h
461665	4.5A19b/LEDFilament/820/CL-A/DIM 120V	- kWh
465187	BC10A19/AMB/927/DIM 120V 4/1	-
479963	9A19/LED/927/P/E26/ND 6/1FB T20	-
479971	9A19/LED/950/P/E26/ND 6/1FB T20	-
479989	18A21/LED/927/P/E26/ND 6/1FB T20	-
479997	18A21/LED/950/P/E26/ND 6/1FB T20	-
479469		-
479485	16A21/PER/927-22/P/E26/WG 6/1FB T20	-
478644	8.5A19/PER/850/CL/G/DIM 6/1CT	-

		Energy Consumption kWh/
Order Code	Full Product Name	1000 h
479428		-
479444	8.8A19/PER/927-22/P/E26/WG 6/1FB T20	-
548214	6.5A19/LED/827/FR/P/ND 4/2FB	-
548222	10A19/LED/827/FR/P/ND 4/2FB	-
462184	5.5A19/LED/850/FR/P/ND 4/2FB	-
548230	9A19/LED/850/FR/P/ND 4/2FB	-
462969	11A19/LED/827/FR/P/ND 4/2FB	-
463000	10A19/LED/850/FR/P/ND 4/2FB	-
548248	12.5A19/LED/850/FR/P/ND 4/2FB	-

Controls and Dimming

Order Code	Full Product Name	Dimmable
461665	4.5A19b/LEDFilament/820/CL-A/DIM 120V	Yes
465187	BC10A19/AMB/927/DIM 120V 4/1	Yes
479963	9A19/LED/927/P/E26/ND 6/1FB T20	No
479971	9A19/LED/950/P/E26/ND 6/1FB T20	No
479989	18A21/LED/927/P/E26/ND 6/1FB T2O	No
479997	18A21/LED/950/P/E26/ND 6/1FB T20	No
479469		Yes
479485	16A21/PER/927-22/P/E26/WG 6/1FB T20	Yes
478644	8.5A19/PER/850/CL/G/DIM 6/1CT	Yes

Order Code	Full Product Name	Dimmable
479428		Yes
479444	8.8A19/PER/927-22/P/E26/WG 6/1FB T20	Yes
548214	6.5A19/LED/827/FR/P/ND 4/2FB	No
548222	10A19/LED/827/FR/P/ND 4/2FB	No
462184	5.5A19/LED/850/FR/P/ND 4/2FB	No
548230	9A19/LED/850/FR/P/ND 4/2FB	No
462969	11A19/LED/827/FR/P/ND 4/2FB	No
463000	10A19/LED/850/FR/P/ND 4/2FB	No
548248	12.5A19/LED/850/FR/P/ND 4/2FB	No

Operating and Electrical

					Power
Order		Input	Voltage	Wattage	(Rated)
Code	Full Product Name	Frequency	(Nom)	Equivalent	(Nom)
461665	4.5A19b/	50 or 60 Hz	110-130 V	32 W	4.5 W
	LEDFilament/820/CL-				
	A/DIM 120V				
465187	BC10A19/AMB/927/DI	60 Hz	120 V	60 W	10 W
	M 120V 4/1				
479963	9A19/LED/927/P/E26	60 Hz	120 V	60 W	9 W
	/ND 6/1FB T20				
479971	9A19/LED/950/P/E26	60 Hz	120 V	60 W	9 W
	/ND 6/1FB T20				

					Power
Order		Input	Voltage	Wattage	(Rated)
Code	Full Product Name	Frequency	(Nom)	Equivalent	(Nom)
479989	18A21/LED/927/P/E26	60 Hz	120 V	100 W	18 W
	/ND 6/1FB T20				
479997	18A21/LED/950/P/E2	60 Hz	120 V	100 W	18 W
	6/ND 6/1FB T20				
479469		60 Hz	120 V	75 W	12.2 W
479485	16A21/PER/	60 Hz	120 V	100 W	16 W
	927-22/P/E26/WG				
	6/1FB T20				
478644	8.5A19/PER/850/CL/	50 to 60 Hz	120 V	60 W	8.5 W
	G/DIM 6/1CT				

					Power
Order		Input	Voltage	Wattage	(Rated)
Code	Full Product Name	Frequency	(Nom)	Equivalent	(Nom)
479428		60 Hz	120 V	40 W	5 W
479444	8.8A19/PER/	60 Hz	120 V	60 W	8.8 W
	927-22/P/E26/WG				
	6/1FB T20				
548214	6.5A19/LED/827/FR/P	60 Hz	120 V	40 W	6.5 W
	/ND 4/2FB				
548222	10A19/LED/827/FR/P/	60 Hz	120 V	60 W	10 W
	ND 4/2FB				
462184	5.5A19/LED/850/FR/P	60 Hz	120 V	40 W	5.5 W
	/ND 4/2FB				

					Power
Order		Input	Voltage	Wattage	(Rated)
Code	Full Product Name	Frequency	(Nom)	Equivalent	(Nom)
548230	9A19/LED/850/FR/P/	60 Hz	120 V	60 W	9 W
	ND 4/2FB				
462969	11A19/LED/827/FR/P/	60 Hz	120 V	75 W	11 W
	ND 4/2FB				
463000	10A19/LED/850/FR/P	60 Hz	120 V	75 W	10 W
	/ND 4/2FB				
548248	12.5A19/LED/850/FR/	60 Hz	120 V	100 W	12.5 W
	P/ND 4/2FB				

General Information

Contoran	mormation			
		Nominal	Rated	
Order		Lifetime	Lifetime	Switching
Code	Full Product Name	(Nom)	(Hours)	Cycle
461665	4.5A19b/	15000 h	15000 h	20000X
	LEDFilament/820/CL-A/DIM			
	120V			
465187	BC10A19/AMB/927/DIM 120V	25000 h	25000 h	50000X
	4/1			
479963	9A19/LED/927/P/E26/ND	10950 h	10950 h	50000X
	6/1FB T20			
479971	9A19/LED/950/P/E26/ND	10950 h	10950 h	50000X
	6/1FB T20			
479989	18A21/LED/927/P/E26/ND	10950 h	10950 h	50000X
	6/1FB T20			
479997	18A21/LED/950/P/E26/ND	10950 h	10950 h	50000X
	6/1FB T20			
479469		15000 h	15000 h	50000X
479485	16A21/PER/927-22/P/E26/WG	15000 h	15000 h	50000X
	6/1FB T20			
478644	8.5A19/PER/850/CL/G/DIM	15000 h	15000 h	20000X
	6/1CT			

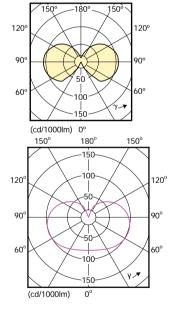
		Nominal	Rated	
Order		Lifetime	Lifetime	Switching
Code	Full Product Name	(Nom)	(Hours)	Cycle
479428		15000 h	15000 h	50000X
479444	8.8A19/PER/	15000 h	15000 h	50000X
	927-22/P/E26/WG 6/1FB T20			
548214	6.5A19/LED/827/FR/P/ND	11000 h	11000 h	50000X
	4/2FB			
548222	10A19/LED/827/FR/P/ND	11000 h	11000 h	50000X
	4/2FB			
462184	5.5A19/LED/850/FR/P/ND	11000 h	11000 h	50000X
	4/2FB			
548230	9A19/LED/850/FR/P/ND	11000 h	11000 h	50000X
	4/2FB			
462969	11A19/LED/827/FR/P/ND	11000 h	11000 h	50000X
	4/2FB			
463000	10A19/LED/850/FR/P/ND	11000 h	11000 h	50000X
	4/2FB			
548248	12.5A19/LED/850/FR/P/ND	11000 h	11000 h	50000X
	4/2FB			

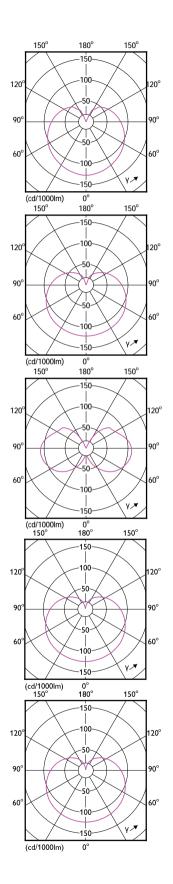
Light Technical

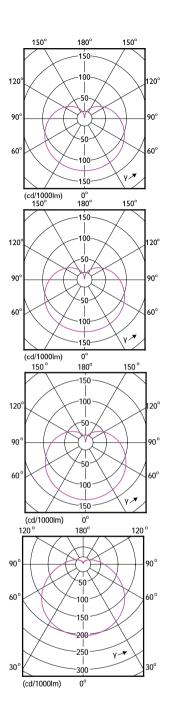
_							
		Beam Angle		Correlated Color	Color Rendering		Luminous Flux
Order Code	Full Product Name	(Nom)	Color Code	Temperature (Nom)	Index (Nom)	Luminous Flux (Nom)	(Rated) (Nom)
461665	4.5A19b/LEDFilament/820/CL-A/DIM 120V	-	820	2000 K	80	350 lm	350 lm
465187	BC10A19/AMB/927/DIM 120V 4/1	-	927	2700 K	90	800 lm	800 lm
479963	9A19/LED/927/P/E26/ND 6/1FB T20	250 °	927	2700 K	90	800 lm	800 lm
479971	9A19/LED/950/P/E26/ND 6/1FB T20	250 °	950	5000 K	90	800 lm	800 lm
479989	18A21/LED/927/P/E26/ND 6/1FB T20	250 °	927	2700 K	90	1500 lm	1500 lm
479997	18A21/LED/950/P/E26/ND 6/1FB T20	250 °	950	5000 K	90	1500 lm	1500 lm
479469		250 °	922-927	2200-2700 K	90	1100 lm	1100 lm
479485	16A21/PER/927-22/P/E26/WG 6/1FB T20	250 °	922-927	2200-2700 K	90	1600 lm	1600 lm
478644	8.5A19/PER/850/CL/G/DIM 6/1CT	-	850	5000 K	80	800 lm	800 lm
479428		250 °	922-927	2200-2700 K	90	450 lm	450 lm

LED A19-A21

		Beam Angle		Correlated Color	Color Rendering		Luminous Flux
Order Code	Full Product Name	(Nom)	Color Code	Temperature (Nom)	Index (Nom)	Luminous Flux (Nom)	(Rated) (Nom)
479444	8.8A19/PER/927-22/P/E26/WG 6/1FB T20	250 °	922-927	2200-2700 K	90	800 lm	800 lm
548214	6.5A19/LED/827/FR/P/ND 4/2FB	150 °	827	2700 K	80	450 lm	450 lm
548222	10A19/LED/827/FR/P/ND 4/2FB	150 °	827	2700 K	80	800 lm	800 lm
462184	5.5A19/LED/850/FR/P/ND 4/2FB	150 °	850	5000 K	80	450 lm	450 lm
548230	9A19/LED/850/FR/P/ND 4/2FB	150 °	850	5000 K	80	800 lm	800 lm
462969	11A19/LED/827/FR/P/ND 4/2FB	150 °	827	2700 K	80	1000 lm	1000 lm
463000	10A19/LED/850/FR/P/ND 4/2FB	150 °	850	5000 K	80	1000 lm	1000 lm
548248	12.5A19/LED/850/FR/P/ND 4/2FB	150 °	850	5000 K	80	1500 lm	1500 lm


Mechanical and Housing


	_		
Order Code	Full Product Name	Bulb Finish	Bulb Shape
461665	4.5A19b/LEDFilament/820/CL-A/DIM 120V	Amber	A19 (A19)
465187	BC10A19/AMB/927/DIM 120V 4/1	Frosted (FR)	A19 (A19)
479963	9A19/LED/927/P/E26/ND 6/1FB T20	Frosted (FR)	A19 (A19)
479971	9A19/LED/950/P/E26/ND 6/1FB T20	Frosted (FR)	A19 (A19)
479989	18A21/LED/927/P/E26/ND 6/1FB T20	Frosted (FR)	A21 (A21)
479997	18A21/LED/950/P/E26/ND 6/1FB T20	Frosted (FR)	A21 (A21)
479469		Frosted (FR)	A21 (A21)
479485	16A21/PER/927-22/P/E26/WG 6/1FB T20	Frosted (FR)	A21 (A21)
478644	8.5A19/PER/850/CL/G/DIM 6/1CT	Clear (CL)	A19 (A19)


Order Code	Full Product Name	Bulb Finish	Bulb Shape
479428		Frosted (FR)	A19 (A19)
479444	8.8A19/PER/927-22/P/E26/WG 6/1FB T20	Frosted (FR)	A19 (A19)
548214	6.5A19/LED/827/FR/P/ND 4/2FB	Frosted (FR)	A19 (A19)
548222	10A19/LED/827/FR/P/ND 4/2FB	Frosted (FR)	A19 (A19)
462184	5.5A19/LED/850/FR/P/ND 4/2FB	Frosted (FR)	A19 (A19)
548230	9A19/LED/850/FR/P/ND 4/2FB	Frosted (FR)	A19 (A19)
462969	11A19/LED/827/FR/P/ND 4/2FB	Frosted (FR)	A19 (A19)
463000	10A19/LED/850/FR/P/ND 4/2FB	Frosted (FR)	A19 (A19)
548248	12.5A19/LED/850/FR/P/ND 4/2FB	Frosted (FR)	A19 (A19)

Temperature

Order Code	Full Product Name	T-Case Maximum (Nom)
461665	4.5A19b/LEDFilament/820/CL-A/DIM 120V	-
465187	BC10A19/AMB/927/DIM 120V 4/1	85 °C
479963	9A19/LED/927/P/E26/ND 6/1FB T20	75 °C
479971	9A19/LED/950/P/E26/ND 6/1FB T20	75 °C
479989	18A21/LED/927/P/E26/ND 6/1FB T20	75 °C
479997	18A21/LED/950/P/E26/ND 6/1FB T20	75 °C
479469		75 °C
479485	16A21/PER/927-22/P/E26/WG 6/1FB T20	85 °C
478644	8.5A19/PER/850/CL/G/DIM 6/1CT	40 °C
479428		65 °C
479444	8.8A19/PER/927-22/P/E26/WG 6/1FB T20	80 °C
548214	6.5A19/LED/827/FR/P/ND 4/2FB	65 °C
548222	10A19/LED/827/FR/P/ND 4/2FB	85 °C
462184	5.5A19/LED/850/FR/P/ND 4/2FB	65 °C
548230	9A19/LED/850/FR/P/ND 4/2FB	80 °C
462969	11A19/LED/827/FR/P/ND 4/2FB	80 °C
463000	10A19/LED/850/FR/P/ND 4/2FB	75 ℃
548248	12.5A19/LED/850/FR/P/ND 4/2FB	80 °C

© 2019 Signify Holding All rights reserved. Signify does not give any representation or warranty as to the accuracy or completeness of the information included herein and shall not be liable for any action in reliance thereon. The information presented in this document is not intended as any commercial of er and does not form part of any quotation or contract, unless otherwise agreed by Signify. All trademarks are owned by Signify Holding or their respective owners.

Affordability and energy savings - all in one lamp

CorePro LEDtube InstantFit T5

The CorePro LED Type A - Ballast Driven InstantFit TLED is a great LED solution suitable for replacing T5 fluorescent lamps using the existing ballast.

Bene to

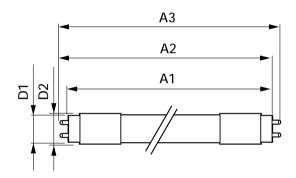
- Offers lowest cost of installation and easiest upgrade fluorescent T5 to LED technology
- True T5 size fits conventional applications
- 2ft and 3ft lamps operate on both HE and HO ballasts

Features

- Average life rating of 50,000 hours
- Philips proprietary safety features
- DLC, NSF and RoHS listed
- · Wide beam angle for cove and direct/indirect applications

Application

- Education facilities and Offices
- Industrial and warehouses
- · Parking lots and covered car parks
- Cove lighting


CorePro LEDtube InstantFit T5

Versions

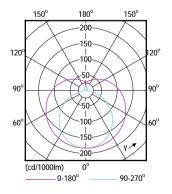
LEDtube G5

Dimensional drawing

Product	D1	D2	A1	A2	A3
11T5HE/34-840/IF15/G/DIM	15.3 mm	18.4 mm	847.8 mm	854.9 mm	862 mm
10/1					
11T5HE/34-830/IF14/G/DIM	15.3 mm	18.4 mm	847.8 mm	854.9 mm	862 mm
10/1					
11T5HE/34-850/IF15/G/DIM	15.3 mm	18.4 mm	847.8 mm	854.9 mm	862 mm
10/1					
11T5HE/34-835/IF14/G/DIM	15.3 mm	18.4 mm	847.8 mm	854.9 mm	862 mm
10/1					
14T5HE/46-830/	15.3 mm	18.4 mm	1147.8 mm	1154.9 mm	1162 mm
IF20/G/DIM 10/1					
8T5HE/22-850/IF10/G/DIM	15.3 mm	18.4 mm	547.8 mm	554.9 mm	562 mm
10/1					
14T5HE/46-840/IF21/G/DIM	15.3 mm	18.4 mm	1147.8 mm	1154.9 mm	1162 mm
10/1					
14T5HE/46-835/	15.3 mm	18.4 mm	1147.8 mm	1154.9 mm	1162 mm
IF20/G/DIM 10/1					
8T5HE/22-835/IF10/G/DIM	15.3 mm	18.4 mm	547.8 mm	554.9 mm	562 mm
10/1					
8T5HE/22-840/IF10/G/DIM	15.3 mm	18.4 mm	547.8 mm	554.9 mm	562 mm
10/1					
14T5HE/46-850/IF21/G/DIM	15.3 mm	18.4 mm	1147.8 mm	1154.9 mm	1162 mm
10/1					
8T5HE/22-830/IF10/G/DIM	15.3 mm	18.4 mm	547.8 mm	554.9 mm	562 mm
10/1					

CorePro LEDtube InstantFit T5

Controls and Dimming	
Dimmable	Yes
Operating and Electrical	
Input Frequency	40000-110000
	Hz
Starting Time (Nom)	0.5 s
General Information	
Cap-Base	G5
Nominal Lifetime (Nom)	50000 h
Rated Lifetime (Hours)	50000 h
Switching Cycle	50000X
Light Technical	
Beam Angle (Nom)	200 °
Color Rendering Index (Nom)	82
LImf At End Of Nominal Lifetime	70 %
(Nom)	
Rated Beam Angle	200°
Temperature	
T-Ambient (Max)	45 °C
T-Ambient (Min)	-20 °C
T-Case Maximum (Nom)	70 °C
T-Storage (Max)	65 °C
T-Storage (Min)	-40 °C


Operating and Electrical

Order Code	Full Product Name	Voltage (Nom)	Power (Rated) (Nom)
476416	8T5HE/22-830/IF10/G/DIM 10/1	40-60 V	8 W
476424	8T5HE/22-835/IF10/G/DIM 10/1	40-60 V	8 W
476432	8T5HE/22-840/IF10/G/DIM 10/1	40-60 V	8 W
476440	8T5HE/22-850/IF10/G/DIM 10/1	40-60 V	8 W
476457	11T5HE/34-830/IF14/G/DIM 10/1	50-80 V	11 W
476465	11T5HE/34-835/IF14/G/DIM 10/1	50-80 V	11 W
476473	11T5HE/34-840/IF15/G/DIM 10/1	50-80 V	11 W
476481	11T5HE/34-850/IF15/G/DIM 10/1	50-80 V	11 W
476499	14T5HE/46-830/IF20/G/DIM 10/1	70-105 V	14 W
476507	14T5HE/46-835/IF2O/G/DIM 10/1	70-105 V	14 W
476515	14T5HE/46-840/IF21/G/DIM 10/1	70-105 V	14 W
476523	14T5HE/46-850/IF21/G/DIM 10/1	70-105 V	14 W

Light Technical

_					
			Correlated Color		Luminous
Order		Color	Temperature	Luminous	Flux (Rated)
Code	Full Product Name	Code	(Nom)	Flux (Nom)	(Nom)
476416	8T5HE/22-830/	830	3000 K	1000 lm	1000 lm
	IF10/G/DIM 10/1				
476424	8T5HE/22-835/	835	3500 K	1000 lm	1000 lm
	IF10/G/DIM 10/1				
476432	8T5HE/22-840/	841	4000 K	1050 lm	1050 lm
	IF10/G/DIM 10/1				
476440	8T5HE/22-850/	850	5000 K	1050 lm	1050 lm
	IF10/G/DIM 10/1				
476457	11T5HE/34-830/	830	3000 K	1400 lm	1400 lm
	IF14/G/DIM 10/1				
476465	11T5HE/34-835/	835	3500 K	1400 lm	1400 lm
	IF14/G/DIM 10/1				
476473	11T5HE/34-840/	841	4000 K	1500 lm	1500 lm
	IF15/G/DIM 10/1				
476481	11T5HE/34-850/	850	5000 K	1500 lm	1500 lm
	IF15/G/DIM 10/1				
476499	14T5HE/46-830/	830	3000 K	2000 lm	2000 lm
	IF20/G/DIM 10/1				

			Correlated Color		Luminous
Order		Color	Temperature	Luminous	Flux (Rated)
Code	Full Product Name	Code	(Nom)	Flux (Nom)	(Nom)
476507	14T5HE/46-835/	835	3500 K	2000 lm	2000 lm
	IF20/G/DIM 10/1				
476515	14T5HE/46-840/	841	4000 K	2100 lm	2100 lm
	IF21/G/DIM 10/1				
476523	14T5HE/46-850/	850	5000 K	2100 lm	2100 lm
	IF21/G/DIM 10/1				

CorePro LEDtube InstantFit T5

© 2019 Signify Holding All rights reserved. Signify does not give any representation or warranty as to the accuracy or completeness of the information included herein and shall not be liable for any action in reliance thereon. The information presented in this document is not intended as any commercial of er and does not form part of any quotation or contract, unless otherwise agreed by Signify. All trademarks are owned by Signify Holding or their respective owners.

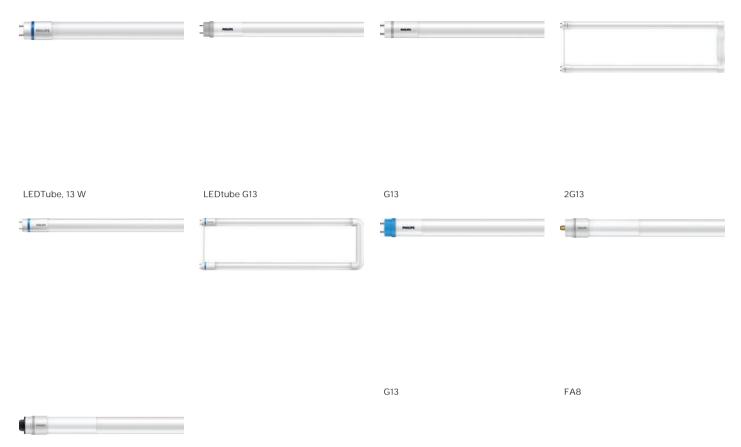
A TLED solution for your application

T8

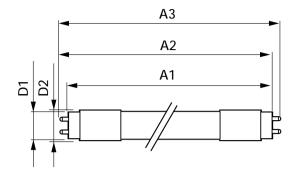
Our TLEDs are available in InstantFit (Type A / Type C) or MainsFit (Ballast bypass / Type B) versions. The InstantFit lamps work on a broad variety of ballasts and LED drivers. Only InstantFit has over 15,000 lamp & ballast combinations delivering even light output, energy savings and a long lifetime. Our MainsFit products feature a double-ended design, simplifying installation while a proprietary safety circuit minimizes a shock risk. Lamp sizes range from 2-foot to 8-foot and U-bend with a variety of lumen outputs.

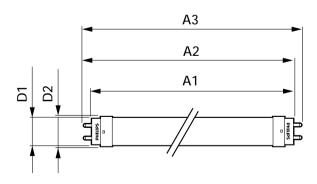
Bene ts

- · Minimizes overall lighting costs
- · Offers cheapest and easiest upgrade to LED lighting technology
- · Excellent compatibility with existing ballasts


Features

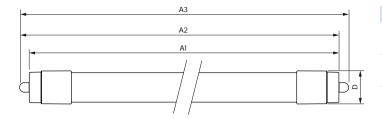
- InstantFit works with over 350 ballasts and drivers
- Lifetime of up to 70,000 hours & a limited warranty of up to 7-years
- Plug-and-play, ballast bypass or UL Type C options available
- Shatter-resistant, polycarbonate tubes avialable
- All T8 replacement TLEDs are NSF certified and most are DLC certified

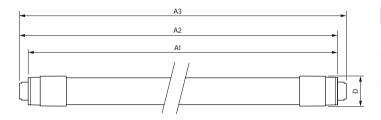

Application


- · Office and Shopping
- Industrial and warehouses
- · Parking lots and covered car parks

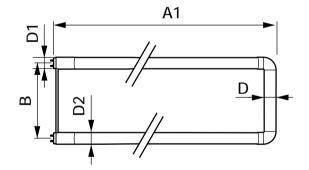
Versions

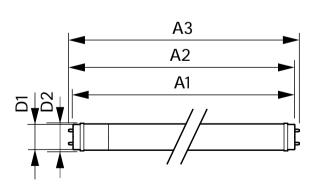
R17d (RDC)



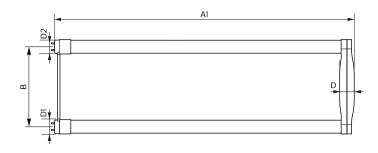

Product	D1	D2	A1	A2	A3
9.5T8/MAS/48-840/	25.7 mm	28 mm	1198.1 mm	1205.2 mm	1212.3 mm
IF16/P 10/1					
9.5T8/MAS/48-850/	25.7 mm	28 mm	1198.1 mm	1205.2 mm	1212.3 mm
IF16/P 10/1					
7T8/MAS/24-850/IF11/P	25.7 mm	26.3 mm	588.6 mm	595.7 mm	602.8 mm
10/1					
7T8/MAS/24-840/IF11/P	25.7 mm	26.3 mm	588.6 mm	595.7 mm	602.8 mm
10/1					
7T8/MAS/24-835/IF10/P	25.7 mm	26.3 mm	588.6 mm	595.7 mm	602.8 mm
10/1					
8.5T8/MAS/36-835/	25.7 mm	26.3 mm	893.4 mm	900.5 mm	907.6 mm
IF13/P 10/1					
8.5T8/MAS/36-850/	25.7 mm	26.3 mm	893.4 mm	900.5 mm	907.6 mm
IF14/P 10/1					
7T8/MAS/24-830/IF10/P	25.7 mm	26.3 mm	588.6 mm	595.7 mm	602.8 mm
10/1					
8.5T8/MAS/36-840/	25.7 mm	26.3 mm	893.4 mm	900.5 mm	907.6 mm
IF14/P 10/1					
8.5T8/MAS/36-830/	25.7 mm	26.3 mm	893.4 mm	900.5 mm	907.6 mm
IF13/P 10/1					
10T8/MAS/48-840/	25.7 mm	26.3 mm	1198.1 mm	1205.2 mm	1212.3 mm
IF16/P 25/1					
13T8/MAS/48-840/	25.7 mm	26.3 mm	1198.1 mm	1205.2 mm	1212.3 mm
IF21/P/DIM 25/1	_0.,	_5.5	,	00.2	
9.5T8/MAS/48-840/	25.7 mm	28 mm	1198 1 mm	1205.2 mm	1212 3 mm
IF16/P 25/1	20.7 111111	20 111111	1170.111111	1200.2 111111	1212.3 111111
9.5T8/MAS/48-835/	25.7 mm	20 mm	11001	1205.2 mm	1212.2 mm
	∠5./ IIIM	∠8 !!!!!	1198.1111M	ı∠U5.∠ IIIM	1212.3 [[][[]
IF15/P 10/1	05.7	00	44004	1005.0	4040.0
9.5T8/MAS/48-830/	25.7 mm	28 mm	1198.1 mm	1205.2 mm	1212.3 mm
IF15/P 10/1					

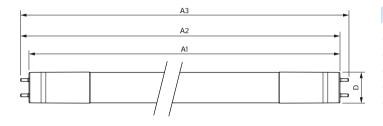
Product	D1	D2	A1	A2	A3
12T8/MAS/48-850/MF18/G 10/1	25.7 mm	28 mm	1198 mm	1205 mm	1212 mm
12T8/MAS/48-840/MF18/G 10/1	25.7 mm	28 mm	1198 mm	1205 mm	1212 mm
12T8/MAS/48-835/MF17/G 10/1	25.7 mm	28 mm	1198 mm	1205 mm	1212 mm
12T8/PER/48-850/BB18/G 10/1 FB	25.7 mm	28 mm	1198 mm	1205 mm	1212 mm
12T8/MAS/48-830/MF17/G 10/1	25.7 mm	28 mm	1198 mm	1205 mm	1212 mm


3



Product	D1	D2	A1	A2	A3
34T8/COR/96-840/	28 mm	27.9 mm	2369.8 mm	2378.7 mm	2387.8 mm
MF42/G/FA8 10/1					
34T8/COR/96-850/	28 mm	27.9 mm	2369.8 mm	2378.7 mm	2387.8 mm
MF42/G/FA8 10/1					


44T8HO/COR/96-850/ 28 mm 27.8 mm 2369.8 mm 2378.7 mm 2387.8 mm MF54/G/R17d 10/1 44T8HO/COR/96-840/ 28 mm 27.8 mm 2369.8 mm 2378.7 mm 2387.8 mm	Product	D1	D2	A1	A2	A3
	44T8HO/COR/96-850/	28 mm	27.8 mm	2369.8 mm	2378.7 mm	2387.8 mm
44T8HO/COR/96-840/ 28 mm 27.8 mm 2369.8 mm 2378.7 mm 2387.8 mm	MF54/G/R17d 10/1					
	44T8HO/COR/96-840/	28 mm	27.8 mm	2369.8 mm	2378.7 mm	2387.8 mm
MF54/G/R17d 10/1	MF54/G/R17d 10/1					



Product	D1	D2	A1	A2	A3
13T8-6U/MAS/24-835/IF2O/P	25.7 mm	28 mm	152 mm	570 mm	27.8 mm
10/1					
13T8-6U/MAS/24-840/IF21/P 10/1	25.7 mm	28 mm	152 mm	570 mm	27.8 mm
13T8-6U/MAS/24-830/IF20/P	25.7 mm	28 mm	152 mm	570 mm	27.8 mm
10/1					
13T8-6U/MAS/24-850/IF21/P 10/1	25.7 mm	28 mm	152 mm	570 mm	27.8 mm

Product	D1	D2	A1	A2	A3
10T8/COR/48-850/IF16/G 25/1	25.7 mm	28 mm	1198.1 mm	1205.2 mm	1212.3 mm
10T8/COR/48-840/IF16/G 25/1	25.7 mm	28 mm	1198.1 mm	1205.2 mm	1212.3 mm

Product	D1	D2	В	A1	D
15.5T8-6U/COR/24-830/	25.7 mm	28.1 mm	152 mm	570 mm	27.9 mm
MF20/G 10/1					
15.5T8-6U/COR/24-850/MF21/G	25.7 mm	28.1 mm	152 mm	570 mm	27.9 mm
10/1					
15.5T8-6U/COR/24-835/	25.7 mm	28.1 mm	152 mm	570 mm	27.9 mm
MF20/G 10/1					
15.5T8-6U/COR/24-840/MF21/G	25.7 mm	28.1 mm	152 mm	570 mm	27.9 mm
10/1					

Product	D	A1	A2	A3
11.5T8/COR/36-850/MF14/G 10/1	25.9 mm	894.3 mm	900.5 mm	908.8 mm
11.5T8/COR/36-840/MF14/G 10/1	25.9 mm	894.3 mm	900.5 mm	908.8 mm
8.5T8/COR/24-850/MF11/G 10/1	25.9 mm	589.5 mm	595.7 mm	604 mm
11.5T8/COR/36-830/MF13/G 10/1	25.9 mm	894.3 mm	900.5 mm	908.8 mm
11.5T8/COR/36-835/MF13/G 10/1	25.9 mm	894.3 mm	900.5 mm	908.8 mm

General Information	
Switching Cycle	50000X
Light Technical	
LImf At End Of Nominal Lifetime	70 %
(Nom)	
Temperature	
T-Ambient (Min)	-20 °C
T-Storage (Max)	65 °C
T-Storage (Min)	-40 °C

Controls and Dimming

10T8/MAS/48-840/IF16/P 25/1 13T8/MAS/48-840/IF21/P/DIM 25/1	No
13T8/MAS/48-840/IF21/P/DIM 25/1	
	Yes
9.5T8/MAS/48-830/IF15/P 10/1	No
9.5T8/MAS/48-835/IF15/P 10/1	No
9.5T8/MAS/48-840/IF16/P 10/1	No
	No
9.5T8/MAS/48-850/IF16/P 10/1	No
12T8/MAS/48-830/MF17/G 10/1	No
12T8/MAS/48-835/MF17/G 10/1	No
12T8/MAS/48-840/MF18/G 10/1	No
12T8/PER/48-850/BB18/G 10/1 FB	No
12T8/MAS/48-850/MF18/G 10/1	No
1	9.5T8/MAS/48-830/IF15/P 10/1 9.5T8/MAS/48-835/IF15/P 10/1 9.5T8/MAS/48-840/IF16/P 10/1 9.5T8/MAS/48-850/IF16/P 10/1 12T8/MAS/48-830/MF17/G 10/1 12T8/MAS/48-840/MF18/G 10/1 12T8/PER/48-850/BB18/G 10/1 FB

Order Code	Full Product Name	Dimmable
535484	8.5T8/COR/24-850/MF11/G 10/1	No
535492	11.5T8/COR/36-830/MF13/G 10/1	No
535500	11.5T8/COR/36-835/MF13/G 10/1	No
535518	11.5T8/COR/36-840/MF14/G 10/1	No
535526	11.5T8/COR/36-850/MF14/G 10/1	No
535534	15.5T8-6U/COR/24-830/MF20/G 10/1	No
535542	15.5T8-6U/COR/24-835/MF2O/G 10/1	No
535559	15.5T8-6U/COR/24-840/MF21/G 10/1	No
535567	15.5T8-6U/COR/24-850/MF21/G 10/1	No
539858	8.5T8/MAS/36-830/IF13/P 10/1	No
539874	8.5T8/MAS/36-840/IF14/P 10/1	No
539882	8.5T8/MAS/36-850/IF14/P10/1	No

Order Code	Full Product Name	Dimmable
539866	8.5T8/MAS/36-835/IF13/P 10/1	No
541813	7T8/MAS/24-830/IF10/P 10/1	No
541821	7T8/MAS/24-835/IF10/P 10/1	No
541839	7T8/MAS/24-840/IF11/P 10/1	No
541847	7T8/MAS/24-850/IF11/P 10/1	No
541854	13T8-6U/MAS/24-830/IF20/P 10/1	No
541862	13T8-6U/MAS/24-835/IF20/P 10/1	No
541870	13T8-6U/MAS/24-840/IF21/P 10/1	No

Order Code	Full Product Name	Dimmable			
541888	541888 13T8-6U/MAS/24-850/IF21/P 10/1				
541986	10T8/COR/48-840/IF16/G 25/1	No			
541994	10T8/COR/48-850/IF16/G 25/1	No			
545269	34T8/COR/96-840/MF42/G/FA8 10/1	No			
545277	34T8/COR/96-850/MF42/G/FA8 10/1	No			
545285	44T8HO/COR/96-840/MF54/G/R17d 10/1	No			
545293	44T8HO/COR/96-850/MF54/G/R17d 10/1	No			

Operating and Electrical

Order Code	Full Product Name	Input Frequency	Voltage (Max)	Voltage (Min)	Voltage (Nom)	Power (Rated) (Nom)	Starting Time (Nom)
540807	10T8/MAS/48-840/IF16/P 25/1	20000-120000 Hz	347 V	120 V	277 V	10 W	0.5 s
540799	13T8/MAS/48-840/IF21/P/DIM 25/1	20000-120000 Hz	347 V	120 V	277 V	13 W	0.5 s
473974	9.5T8/MAS/48-830/IF15/P 10/1	50 to 60 Hz	-	-	120-277, 347 V	9.5 W	0.5 s
473982	9.5T8/MAS/48-835/IF15/P 10/1	50 to 60 Hz	-	-	120-277, 347 V	9.5 W	0.5 s
473990	9.5T8/MAS/48-840/IF16/P 10/1	50 to 60 Hz	-	-	120-277, 347 V	9.5 W	0.5 s
540807		50 to 60 Hz	-	-	120-277, 347 V	9.5 W	0.5 s
474007	9.5T8/MAS/48-850/IF16/P 10/1	50 to 60 Hz	-	-	120-277, 347 V	9.5 W	0.5 s
532671	12T8/MAS/48-830/MF17/G 10/1	50 to 60 Hz	-	-	120-277 V	12 W	0.5 s
532689	12T8/MAS/48-835/MF17/G 10/1	50 to 60 Hz	-	-	120-277 V	12 W	0.5 s
532697	12T8/MAS/48-840/MF18/G 10/1	50 to 60 Hz	-	-	120-277 V	12 W	0.5 s
532705	12T8/PER/48-850/BB18/G 10/1 FB	50 to 60 Hz	-	-	120-277 V	12 W	0.5 s
532705	12T8/MAS/48-850/MF18/G 10/1	50 to 60 Hz	-	-	120-277 V	12 W	0.5 s
535484	8.5T8/COR/24-850/MF11/G 10/1	50 to 60 Hz	-	-	120-277 V	8.5 W	0.9 s
535492	11.5T8/COR/36-830/MF13/G 10/1	50 to 60 Hz	-	-	120-277 V	11.5 W	0.9 s
535500	11.5T8/COR/36-835/MF13/G 10/1	50 to 60 Hz	-	-	120-277 V	11.5 W	0.9 s
535518	11.5T8/COR/36-840/MF14/G 10/1	50 to 60 Hz	-	-	120-277 V	11.5 W	0.9 s
535526	11.5T8/COR/36-850/MF14/G 10/1	50 to 60 Hz	-	-	120-277 V	11.5 W	0.9 s
535534	15.5T8-6U/COR/24-830/MF20/G 10/1	50 to 60 Hz	-	-	120-277 V	15.5 W	0.9 s
535542	15.5T8-6U/COR/24-835/MF2O/G 10/1	50 to 60 Hz	-	-	120-277 V	15.5 W	0.9 s
535559	15.5T8-6U/COR/24-840/MF21/G 10/1	50 to 60 Hz	-	-	120-277 V	15.5 W	0.9 s
535567	15.5T8-6U/COR/24-850/MF21/G 10/1	50 to 60 Hz	-	-	120-277 V	15.5 W	0.9 s
539858	8.5T8/MAS/36-830/IF13/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	8.5 W	0.5 s
539874	8.5T8/MAS/36-840/IF14/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	8.5 W	0.5 s
539882	8.5T8/MAS/36-850/IF14/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	8.5 W	0.5 s
539866	8.5T8/MAS/36-835/IF13/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	8.5 W	0.5 s
541813	7T8/MAS/24-830/IF10/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	7 W	0.5 s
541821	7T8/MAS/24-835/IF10/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	7 W	0.5 s
541839	7T8/MAS/24-840/IF11/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	7 W	0.5 s
541847	7T8/MAS/24-850/IF11/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	7 W	0.5 s
541854	13T8-6U/MAS/24-830/IF20/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	13 W	0.5 s
541862	13T8-6U/MAS/24-835/IF2O/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	13 W	0.5 s
541870	13T8-6U/MAS/24-840/IF21/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	13 W	0.5 s
541888	13T8-6U/MAS/24-850/IF21/P 10/1	20K to 120K Hz	-	-	120-277, 347 V	13 W	0.5 s
541986	10T8/COR/48-840/IF16/G 25/1	25000-105000 Hz	-	-	120-277, 347 V	10 W	0.5 s
541994	10T8/COR/48-850/IF16/G 25/1	25000-105000 Hz	-	-	120-277, 347 V	10 W	0.5 s
545269	34T8/COR/96-840/MF42/G/FA8 10/1	50 to 60 Hz	-	-	120-277 V	34 W	0.5 s
545277	34T8/COR/96-850/MF42/G/FA8 10/1	50 to 60 Hz	-	-	120-277 V	34 W	0.5 s
545285	44T8HO/COR/96-840/MF54/G/R17d 10/1	50 to 60 Hz	-	-	120-277 V	44 W	0.5 s
545293	44T8HO/COR/96-850/MF54/G/R17d 10/1	50 to 60 Hz	-	-	120-277 V	44 W	0.5 s

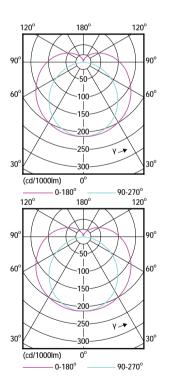
General Information

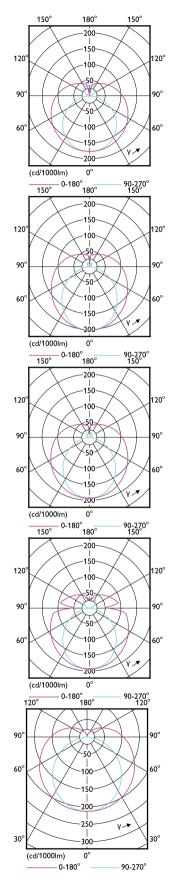
Ochician	momation			
Order		Cap-	Nominal	Rated Lifetime
Code	Full Product Name	Base	Lifetime (Nom)	(Hours)
540807	10T8/MAS/48-840/IF16/P 25/1	G13	70000 h	70000 h
540799	13T8/MAS/48-840/IF21/P/DIM	G13	70000 h	70000 h
	25/1			
473974	9.5T8/MAS/48-830/IF15/P10/1	G13	70000 h	70000 h
473982	9.5T8/MAS/48-835/IF15/P 10/1	G13	70000 h	70000 h
473990	9.5T8/MAS/48-840/IF16/P	G13	70000 h	70000 h
	10/1			
540807		G13	70000 h	70000 h
474007	9.5T8/MAS/48-850/IF16/P	G13	70000 h	70000 h
	10/1			
532671	12T8/MAS/48-830/MF17/G	G13	50000 h	50000 h
	10/1			
532689	12T8/MAS/48-835/MF17/G	G13	50000 h	50000 h
	10/1			
532697	12T8/MAS/48-840/MF18/G	G13	50000 h	50000 h
	10/1			
532705	12T8/PER/48-850/BB18/G 10/1	G13	50000 h	50000 h
	FB			
532705	12T8/MAS/48-850/MF18/G	G13	50000 h	50000 h
	10/1			
535484	8.5T8/COR/24-850/MF11/G	G13	50000 h	50000 h
	10/1			
535492	11.5T8/COR/36-830/MF13/G	G13	50000 h	50000 h
	10/1			
535500	11.5T8/COR/36-835/MF13/G	G13	50000 h	50000 h
	10/1			
535518	11.5T8/COR/36-840/MF14/G	G13	50000 h	50000 h
	10/1			
535526	11.5T8/COR/36-850/MF14/G	G13	50000 h	50000 h
	10/1			
535534	15.5T8-6U/COR/24-830/	2G13	50000 h	50000 h
	MF20/G 10/1			
535542	15.5T8-6U/COR/24-835/	2G13	50000 h	50000 h
	MF20/G 10/1			

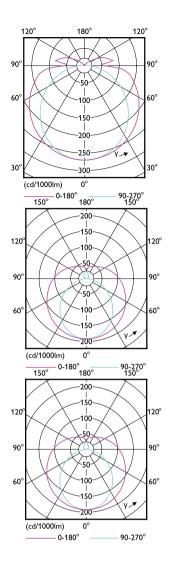
Order		Cap-	Nominal	Rated Lifetime
Code	Full Product Name	Base	Lifetime (Nom)	(Hours)
535559	15.5T8-6U/COR/24-840/	2G13	50000 h	50000 h
	MF21/G 10/1			
535567	15.5T8-6U/COR/24-850/	2G13	50000 h	50000 h
	MF21/G 10/1			
539858	8.5T8/MAS/36-830/IF13/P 10/1	G13	70000 h	70000 h
539874	8.5T8/MAS/36-840/IF14/P	G13	70000 h	70000 h
	10/1			
539882	8.5T8/MAS/36-850/IF14/P10/1	G13	70000 h	70000 h
539866	8.5T8/MAS/36-835/IF13/P 10/1	G13	70000 h	70000 h
541813	7T8/MAS/24-830/IF10/P 10/1	G13	70000 h	70000 h
541821	7T8/MAS/24-835/IF10/P 10/1	G13	70000 h	70000 h
541839	7T8/MAS/24-840/IF11/P 10/1	G13	70000 h	70000 h
541847	7T8/MAS/24-850/IF11/P 10/1	G13	70000 h	70000 h
541854	13T8-6U/MAS/24-830/IF20/P	G13	70000 h	70000 h
	10/1			
541862	13T8-6U/MAS/24-835/IF2O/P	G13	70000 h	70000 h
	10/1			
541870	13T8-6U/MAS/24-840/IF21/P	G13	70000 h	70000 h
	10/1			
541888	13T8-6U/MAS/24-850/IF21/P	G13	70000 h	70000 h
	10/1			
541986	10T8/COR/48-840/IF16/G 25/1	G13	50000 h	50000 h
541994	10T8/COR/48-850/IF16/G 25/1	G13	50000 h	50000 h
545269	34T8/COR/96-840/	FA8	50000 h	50000 h
	MF42/G/FA8 10/1			
545277	34T8/COR/96-850/	FA8	50000 h	50000 h
	MF42/G/FA8 10/1			
545285	44T8HO/COR/96-840/	R17D	50000 h	50000 h
	MF54/G/R17d 10/1			
545293	44T8HO/COR/96-850/	R17D	50000 h	50000 h
	MF54/G/R17d 10/1			

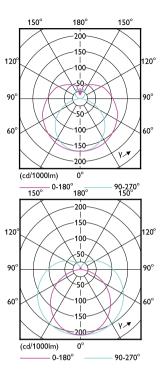
Light Technical

0								
					Color			
		Beam Angle	Color	Correlated Color	Rendering	Luminous Flux	Luminous Flux	Rated Beam
Order Cod	e Full Product Name	(Nom)	Code	Temperature (Nom)	Index (Nom)	(Nom)	(Rated) (Nom)	Angle
540807	10T8/MAS/48-840/IF16/P 25/1	-	841	4000 K	82	1600 lm	1600 lm	-
540799	13T8/MAS/48-840/IF21/P/DIM 25/1	-	841	4000 K	82	2100 lm	2100 lm	-
473974	9.5T8/MAS/48-830/IF15/P 10/1	180 °	830	3000 K	80	1500 lm	1500 lm	180 °
473982	9.5T8/MAS/48-835/IF15/P 10/1	180 °	835	3500 K	80	1500 lm	1500 lm	180 °
473990	9.5T8/MAS/48-840/IF16/P 10/1	180 °	841	4000 K	80	1600 lm	1600 lm	180 °
540807		180 °	841	4000 K	80	1500 lm	1500 lm	180 °
474007	9.5T8/MAS/48-850/IF16/P 10/1	180 °	850	5000 K	80	1600 lm	1600 lm	180 °
532671	12T8/MAS/48-830/MF17/G 10/1	240 °	830	3000 K	80	1700 lm	1700 lm	240°
532689	12T8/MAS/48-835/MF17/G 10/1	240 °	835	3500 K	80	1700 lm	1700 lm	240°


Order Code Full Product Name (Nom) Code Temperature (Nom) Index (Nom) (Nom) Rate (Nom) Angle 532697 12T8/MAS/48-860/MFIB/G 10/1 240° 81 4000 K 80 1800 Im 1800 Im 240° 532705 12T8/MAS/48-850/MFIB/G 10/1 240° 850 5000 K 80 1800 Im 1800 Im 240° 535484 85T8/COR/34-850/MFIB/G 10/1 180° 830 5000 K 82 1150 Im 1150 Im 180° Im 180° 535492 115TB/COR/36-830/MFIB/G 10/1 180° 830 3000 K 82 1300 Im 1300 Im 180° 535500 115TB/COR/36-835/MFIB/G 10/1 180° 831 3500 K 82 1400 Im 1400 Im 180° 535518 115TB/COR/36-830/MFIB/G 10/1 180° 830 5000 K 82 1400 Im 1400 Im 180° 535520 15TB/-6U/COR/24-840/MF2/G 10/1 180° 830 3000 K 82 2000 Im 2000 Im 80°						Color			
S22697 12T8/MAS/48-840/MF18/G 10/1 240			Beam Angle	Color	Correlated Color	Rendering	Luminous Flux	Luminous Flux	Rated Beam
S22705 1781/PER/48-850/BBI8/G 10/1 FB 240° 850 5000 K 80 1800 lm 1800 lm 240° 24	Order Code	Full Product Name	(Nom)	Code	Temperature (Nom)	Index (Nom)	(Nom)	(Rated) (Nom)	Angle
532705 \$1278/MAS/48-850/MF18/G10/1 \$240* \$50 \$5000 K \$80 \$1800 lm \$1800 lm \$240* \$35484 \$8.518/COR/24-850/MF11/G10/1 \$80* \$850 \$5000 K \$82 \$150 lm \$150 lm \$180* \$180* \$35492 \$11518/COR/36-830/MF13/G10/1 \$80* \$830 \$3000 K \$82 \$1300 lm \$1300 lm \$180* \$180* \$35500 \$11518/COR/36-830/MF13/G10/1 \$80* \$835 \$3500 K \$82 \$1300 lm \$1300 lm \$180* \$180* \$180* \$1518/COR/36-8850/MF13/G10/1 \$180* \$811 \$4000 K \$82 \$1400 lm \$1400 lm \$180* \$180* \$1518/COR/36-850/MF14/G10/1 \$180* \$850 \$5000 K \$82 \$1400 lm \$1400 lm \$180* \$185526 \$11518/COR/36-850/MF14/G10/1 \$180* \$850 \$5000 K \$82 \$1400 lm \$1400 lm \$180* \$185526 \$1518-61/COR/24-830/MF20/G10/1 \$180* \$830 \$3000 K \$82 \$2000 lm \$2000 lm \$180* \$185524 \$15518-61/COR/24-830/MF20/G10/1 \$180* \$830 \$3000 K \$82 \$2000 lm \$2000 lm \$180* \$185524 \$15518-61/COR/24-830/MF20/G10/1 \$180* \$830 \$3000 K \$82 \$2000 lm \$2000 lm \$180* \$185526 \$15518-61/COR/24-830/MF20/G10/1 \$180* \$831 \$3000 K \$82 \$2000 lm \$2000 lm \$180* \$185526 \$15518-61/COR/24-850/MF21/G10/1 \$180* \$850 \$5000 K \$82 \$2100 lm \$1300 lm \$180*	532697	12T8/MAS/48-840/MF18/G 10/1	240 °	841	4000 K	80	1800 lm	1800 lm	240 °
S58484 S.TB/COR/24-BSO/MF1I/G 10/1 180° 850 5000 K 82 1150 lm 1150 lm 180° 180° 155492 11.5TB/COR/36-BSO/MF13/G 10/1 180° 830 3000 K 82 1300 lm 1300 lm 180° 180° 1555500 11.5TB/COR/36-BSO/MF13/G 10/1 180° 831 3500 K 82 1300 lm 1300 lm 180° 180° 1555518 11.5TB/COR/36-BSO/MF13/G 10/1 180° 831 4000 K 82 1400 lm 1400 lm 180° 180° 155520 11.5TB/COR/36-BSO/MF13/G 10/1 180° 830 3000 K 82 1400 lm 1400 lm 180° 180° 15578-6U/COR/24-BSO/MF12/G 10/1 180° 830 3000 K 82 2000 lm 2000 lm 180° 15578-6U/COR/24-B30/MF2/G 10/1 180° 831 3500 K 82 2000 lm 2000 lm 180° 180° 15578-6U/COR/24-B30/MF2/G 10/1 180° 835 3500 K 82 2100 lm 2100 lm 180° 180° 15578-6U/COR/24-B30/MF2/G 10/1 180° 830 3000 K 82 2100 lm 2100 lm 180° 180° 15578-6U/COR/24-B30/MF2/G 10/1 180° 830° 3000 K 82 2100 lm 2100 lm 180° 180° 15578-6U/COR/24-B30/MF2/G 10/1 180° 830° 3000 K 82 2100 lm 2100 lm 180° 180° 15578-6U/COR/24-B30/MF2/G 10/1 180° 830° 3000 K 80° 1300 lm 1300 lm 180° 180	532705	12T8/PER/48-850/BB18/G 10/1 FB	240 °	850	5000 K	80	1800 lm	1800 lm	240 °
1.518/COR/36-830/MF13/G10/1 180° 830 3000 K 82 1300 lm 1300 lm 180° 185500 11.518/COR/36-835/MF13/G10/1 180° 835 3500 K 82 1300 lm 1300 lm 180° 135510 11.518/COR/36-830/MF14/G10/1 180° 841 4000 K 82 1400 lm 1400 lm 180° 135512 11.518/COR/36-850/MF14/G10/1 180° 850 5000 K 82 1400 lm 1400 lm 180° 135534 15.518-6U/COR/24-830/MF20/G10/1 180° 830 3000 K 82 2000 lm 2000 lm 180° 135534 15.518-6U/COR/24-830/MF20/G10/1 180° 835 3500 K 82 2000 lm 2000 lm 180° 135554 15.518-6U/COR/24-830/MF20/G10/1 180° 835 3500 K 82 2000 lm 2000 lm 180° 135559 15.518-6U/COR/24-830/MF21/G10/1 180° 830 3000 K 82 2100 lm 2100 lm 180° 135559 15.518-6U/COR/24-850/MF21/G10/1 180° 830 3000 K 82 2100 lm 2100 lm 180° 135559 15.518-6U/COR/24-850/MF21/G10/1 180° 830 3000 K 82 2100 lm 2100 lm 180° 135569 15.518-6U/COR/24-850/MF21/G10/1 180° 830 3000 K 82 2100 lm 2100 lm 180° 1359858 8.518/MAS/36-830/IF13/P10/1 180° 830 3000 K 80 1400 lm 1400 lm 180° 135986 8.518/MAS/36-830/IF13/P10/1 180° 830 3000 K 80 1400 lm 1400 lm 180° 135986 8.518/MAS/36-830/IF13/P10/1 180° 835 3500 K 80 1100 lm 1100 lm 180° 135986 135985858 1359858 1359858 1359858 1359858 1359858 1359858	532705	12T8/MAS/48-850/MF18/G 10/1	240 °	850	5000 K	80	1800 lm	1800 lm	240 °
1.5TB/COR/36-835/MF13/G 10/1 180	535484	8.5T8/COR/24-850/MF11/G 10/1	180 °	850	5000 K	82	1150 lm	1150 lm	180 °
1.5TB/COR/36-840/MF14/G10/1 180° 841 4000 K 82 1400 lm 1400 lm 180° 180° 1535526 11.5TB/COR/36-850/MF14/G10/1 180° 850 5000 K 82 1400 lm 1400 lm 180° 180° 153554 15.5TB-6U/COR/24-830/MF20/G10/1 180° 835 3500 K 82 2000 lm 2000 lm 180° 180° 153554 15.5TB-6U/COR/24-840/MF21/G10/1 180° 835 3500 K 82 2100 lm 2100 lm 180° 180° 1535559 15.5TB-6U/COR/24-850/MF21/G10/1 180° 836 5000 K 82 2100 lm 2100 lm 180° 180° 1535559 15.5TB-6U/COR/24-850/MF21/G10/1 180° 830 3000 K 82 2100 lm 2100 lm 180° 180° 1535569 15.5TB-6U/COR/24-850/MF21/G10/1 180° 830 3000 K 82 2100 lm 2100 lm 180° 180° 1539858 8.5TB/MAS/36-830/F13/P10/1 180° 830 3000 K 80 1300 lm 1300 lm 180° 180° 1539868 8.5TB/MAS/36-830/F13/P10/1 180° 850 5000 K 80 1400 lm 1400 lm 180° 180° 183986 8.5TB/MAS/36-830/F13/P10/1 180° 850 5000 K 80 1400 lm 1400 lm 180° 180° 183986 8.5TB/MAS/36-830/F13/P10/1 180° 850 5000 K 80 1300 lm 1300 lm 180°	535492	11.5T8/COR/36-830/MF13/G 10/1	180 °	830	3000 K	82	1300 lm	1300 lm	180 °
1.518/COR/36-850/MF14/G10/1 180	535500	11.5T8/COR/36-835/MF13/G 10/1	180 °	835	3500 K	82	1300 lm	1300 lm	180 °
15.518-6U/COR/24-830/MF20/G10/1 180° 830 3000 K 82 2000 lm 2000 lm 180°	535518	11.5T8/COR/36-840/MF14/G 10/1	180 °	841	4000 K	82	1400 lm	1400 lm	180 °
535542 15.5T8-6U/COR/24-835/MF20/G IO/1 1801 835 3500 K 82 2000 Im 2000 Im 1801 535559 15.5T8-6U/COR/24-840/MF21/G IO/1 1801 841 4000 K 82 2100 Im 2100 Im 1801 535559 15.5T8-6U/COR/24-850/MF21/G IO/1 1801 850 5000 K 82 2100 Im 2100 Im 1801 539858 8.5T8/MAS/36-830/IF13/P IO/1 1801 830 3000 K 80 1300 Im 1300 Im 1801 539884 8.5T8/MAS/36-850/IF14/P IO/1 1801 850 5000 K 80 1400 Im 1400 Im 1801 539886 8.5T8/MAS/36-850/IF14/P IO/1 1801 850 5000 K 80 1400 Im 1400 Im 1801 539886 8.5T8/MAS/36-850/IF14/P IO/1 1801 835 3500 K 80 1300 Im 1300 Im 1801 539866 8.5T8/MAS/36-850/IF14/P IO/1 1801 835 3500 K 80 100 Im 1100 Im 1801 541813 7T8/	535526	11.5T8/COR/36-850/MF14/G 10/1	180 °	850	5000 K	82	1400 lm	1400 lm	180 °
535559 15.5T8-6U/COR/24-840/MF21/G 10/1 180 * 841 4000 K 82 2100 lm 2100 lm 180 * 535567 15.5T8-6U/COR/24-850/MF21/G 10/1 180 * 850 5000 K 82 2100 lm 2100 lm 180 * 539858 8.5T8/MAS/36-830/IF13/P 10/1 180 * 830 3000 K 80 1300 lm 1300 lm 180 * 539874 8.5T8/MAS/36-840/IF14/P 10/1 180 * 841 4000 K 80 1400 lm 1400 lm 180 * 539882 8.5T8/MAS/36-850/IF14/P 10/1 180 * 850 5000 K 80 1400 lm 1400 lm 180 * 539868 8.5T8/MAS/36-850/IF14/P 10/1 180 * 850 5000 K 80 1400 lm 1400 lm 180 * 539866 8.5T8/MAS/36-850/IF13/P 10/1 180 * 835 3500 K 80 1300 lm 1300 lm 180 * 541813 7T8/MAS/24-830/IF10/P 10/1 180 * 835 3500 K 80 1100 lm 1100 lm 180 * 541821 7T8/MAS/24-830/IF10/P 10/1 180 * 835 3500 K 80 1100 lm 1100 lm 180 * 541839 7T8/MAS/24-840/IF11/P 10/1 180 * 841 4000 K 80 1150 lm 1150 lm 180 * 541847 7T8/MAS/24-850/IF11/P 10/1 180 * 850 5000 K 80 1150 lm 1150 lm 180 * 541847 7T8/MAS/24-830/IF20/P 10/1 180 * 850 5000 K 80 100 lm 2000 lm 180 * 541862 13T8-6U/MAS/24-830/IF20/P 10/1 180 * 830 3000 K 80 2000 lm 2000 lm 180 * 541862 13T8-6U/MAS/24-830/IF20/P 10/1 180 * 835 3500 K 80 2000 lm 2000 lm 180 * 541862 13T8-6U/MAS/24-830/IF20/P 10/1 180 * 835 3500 K 80 2000 lm 2000 lm 180 * 541862 13T8-6U/MAS/24-850/IF21/P 10/1 180 * 835 3500 K 80 2000 lm 2000 lm 180 * 541888 13T8-6U/MAS/24-850/IF21/P 10/1 180 * 835 3500 K 80 2000 lm 2000 lm 180 * 541886 13T8-6U/MAS/24-850/IF21/P 10/1 180 * 850 5000 K 80 2100 lm 2100 lm 180 * 541886 13T8-6U/MAS/24-850/IF21/P 10/1 180 * 850 5000 K 80 2100 lm 2100 lm 180 * 541896 1078/COR/48-850/IF21/P 10/1 180 * 850 5000 K 82 1600 lm 1600 lm - 541896 1078/COR/48-850/IF21/P 10/1 180 * 850 5000 K 82 1600 lm 4200 lm 240 * 541896 1078/COR/48-850/IF21/G 25/1 - 850 5000 K 82 1600 lm 4200 lm 240 * 541896 1078/COR/48-850/IF21/G 25/1 - 850 5000 K 82 4200 lm 4200 lm 240 * 541896 1078/COR/48-850/IF21/G 25/1 - 850 5000 K 82 4200 lm 4200 lm 240 * 541896 1078/COR/48-850/IF21/G 25/1 - 850 5000 K 82 4200 lm 4200 lm 240 * 541896 1071/G 25/1 - 850 5000 K 82 4200 lm 4200 lm 240 * 541896 1071/G 25/1 - 850 5000 K 82 4200 lm 4200 lm 240	535534	15.5T8-6U/COR/24-830/MF20/G 10/1	180 °	830	3000 K	82	2000 lm	2000 lm	180 °
535567 15.518-6U/COR/24-850/MF2I/G 10/1 180 ° 850 5000 K 82 2100 Im 2100 Im 180 ° 539858 8.518/MAS/36-830/IF13/P 10/1 180 ° 830 3000 K 80 1300 Im 1300 Im 180 ° 539874 8.518/MAS/36-840/IF14/P 10/1 180 ° 841 4000 K 80 1400 Im 1400 Im 180 ° 539882 8.518/MAS/36-835/IF13/P 10/1 180 ° 850 5000 K 80 1400 Im 1400 Im 180 ° 539866 8.518/MAS/36-835/IF13/P 10/1 180 ° 835 3500 K 80 1100 Im 1300 Im 180 ° 541813 718/MAS/24-830/IF10/P 10/1 180 ° 835 3500 K 80 1100 Im 1100 Im 180 ° 541821 718/MAS/24-830/IF10/P 10/1 180 ° 835 3500 K 80 1100 Im 1100 Im 180 ° 541821 718/MAS/24-830/IF10/P 10/1 180 ° 81 4000 K 80 1150 Im 1150 Im 180 Im 180 ° 54	535542	15.5T8-6U/COR/24-835/MF2O/G 10/1	180 °	835	3500 K	82	2000 lm	2000 lm	180 °
539858 8.5T8/MAS/36-830/IF13/P 10/1 180 ° 830 3000 K 80 1300 Im 1300 Im 180 ° 539874 8.5T8/MAS/36-840/IF14/P 10/1 180 ° 841 4000 K 80 1400 Im 1400 Im 180 ° 539882 8.5T8/MAS/36-850/IF14/P 10/1 180 ° 850 5000 K 80 1400 Im 1400 Im 180 ° 539866 8.5T8/MAS/36-835/IF13/P 10/1 180 ° 835 3500 K 80 1300 Im 1300 Im 180 ° 541813 7T8/MAS/24-830/IF10/P 10/1 180 ° 830 3000 K 80 1100 Im 1100 Im 180 ° 541821 7T8/MAS/24-835/IF10/P 10/1 180 ° 835 3500 K 80 1100 Im 1100 Im 180 ° 541839 7T8/MAS/24-840/IF11/P 10/1 180 ° 841 4000 K 80 1150 Im 1150 Im 180 ° 541847 7T8/MAS/24-850/IF20/P 10/1 180 ° 830 3000 K 80 2000 Im 2000 Im 180 ° 541862 1378-6U	535559	15.5T8-6U/COR/24-840/MF21/G 10/1	180 °	841	4000 K	82	2100 lm	2100 lm	180 °
539874 8.5T8/MAS/36-840/IF14/P 10/1 180° 841 4000 K 80 1400 Im 1400 Im 180° 539828 8.5T8/MAS/36-850/IF14/P 10/1 180° 850 5000 K 80 1400 Im 1400 Im 180° 539866 8.5T8/MAS/36-835/IF13/P 10/1 180° 835 3500 K 80 1300 Im 1300 Im 180° 541813 7T8/MAS/24-830/IF10/P 10/1 180° 835 3500 K 80 1100 Im 1100 Im 180° 541821 7T8/MAS/24-835/IF10/P 10/1 180° 835 3500 K 80 1100 Im 1100 Im 180° 541839 7T8/MAS/24-840/IF11/P 10/1 180° 841 4000 K 80 1150 Im 1150 Im 180° 541847 7T8/MAS/24-830/IF20/P 10/1 180° 830 3000 K 80 2000 Im 2000 Im 180° 541862 1378-6U/MAS/24-840/IF21/P 10/1 180° 835 3500 K 80 2000 Im 200 Im 180° 541898 1378-6U/MAS/24-850/IF2	535567	15.5T8-6U/COR/24-850/MF21/G 10/1	180 °	850	5000 K	82	2100 lm	2100 lm	180 °
539882 8.5T8/MAS/36-850/IF14/P 10/1 180° 850 5000 K 80 1400 Im 1400 Im 180° 539866 8.5T8/MAS/36-835/IF13/P 10/1 180° 835 3500 K 80 1300 Im 1300 Im 180° 541813 7T8/MAS/24-830/IF10/P 10/1 180° 830 3000 K 80 1100 Im 1100 Im 180° 541821 7T8/MAS/24-835/IF10/P 10/1 180° 835 3500 K 80 1100 Im 1100 Im 180° 541839 7T8/MAS/24-840/IF1/P 10/1 180° 841 4000 K 80 1150 Im 1150 Im 180° 541847 7T8/MAS/24-850/IF1/P 10/1 180° 850 5000 K 80 150 Im 1150 Im 180° 541854 13T8-6U/MAS/24-830/IF20/P 10/1 180° 830 3000 K 80 2000 Im 2000 Im 180° 541862 13T8-6U/MAS/24-840/IF21/P 10/1 180° 841 4000 K 80 2100 Im 2100 Im 180° 541888 13T8-6U/MAS/24-850/IF2	539858	8.5T8/MAS/36-830/IF13/P 10/1	180 °	830	3000 K	80	1300 lm	1300 lm	180 °
539866 8.5T8/MAS/36-835/IF13/P 10/1 180 ° 835 3500 K 80 1300 Im 1300 Im 180 ° 541813 7T8/MAS/24-830/IF10/P 10/1 180 ° 830 3000 K 80 1100 Im 1100 Im 180 ° 541821 7T8/MAS/24-835/IF10/P 10/1 180 ° 835 3500 K 80 1100 Im 1100 Im 180 ° 541839 7T8/MAS/24-840/IF11/P 10/1 180 ° 841 4000 K 80 1150 Im 1150 Im 180 ° 541847 7T8/MAS/24-850/IF11/P 10/1 180 ° 850 5000 K 80 1150 Im 150 Im 180 ° 541854 13T8-6U/MAS/24-830/IF20/P 10/1 180 ° 830 3000 K 80 2000 Im 2000 Im 180 ° 541862 13T8-6U/MAS/24-840/IF21/P 10/1 180 ° 81 4000 K 80 2100 Im 2100 Im 180 ° 541888 13T8-6U/MAS/24-850/IF21/P 10/1 180 ° 850 5000 K 80 2100 Im 2100 Im 180 ° 541994 10T	539874	8.5T8/MAS/36-840/IF14/P10/1	180 °	841	4000 K	80	1400 lm	1400 lm	180 °
541813 7T8/MAS/24-830/IF10/P 10/1 180° 830 3000 K 80 1100 Im 1100 Im 180° 541821 7T8/MAS/24-835/IF10/P 10/1 180° 835 3500 K 80 1100 Im 1100 Im 180° 541839 7T8/MAS/24-840/IF11/P 10/1 180° 841 4000 K 80 1150 Im 1150 Im 180° 541847 7T8/MAS/24-850/IF11/P 10/1 180° 850 5000 K 80 1150 Im 1150 Im 180° 541854 13T8-6U/MAS/24-850/IF20/P 10/1 180° 830 3000 K 80 2000 Im 2000 Im 180° 541862 13T8-6U/MAS/24-850/IF21/P 10/1 180° 835 3500 K 80 2000 Im 2000 Im 180° 541870 13T8-6U/MAS/24-850/IF21/P 10/1 180° 841 4000 K 80 2100 Im 2100 Im 180° 541888 13T8-6U/MAS/24-850/IF21/P 10/1 180° 850 5000 K 80 2100 Im 2100 Im 180° 541986 10T8/COR/48-840	539882	8.5T8/MAS/36-850/IF14/P10/1	180 °	850	5000 K	80	1400 lm	1400 lm	180 °
541821 7T8/MAS/24-835/IFIO/P 10/1 180° 835 3500 K 80 1100 Im 1100 Im 180° 541839 7T8/MAS/24-840/IF11/P 10/1 180° 841 4000 K 80 1150 Im 1150 Im 180° 541847 7T8/MAS/24-850/IF11/P 10/1 180° 850 5000 K 80 1150 Im 1150 Im 180° 541854 13T8-6U/MAS/24-830/IF20/P 10/1 180° 830 3000 K 80 2000 Im 2000 Im 180° 541862 13T8-6U/MAS/24-835/IF20/P 10/1 180° 835 3500 K 80 2000 Im 2000 Im 180° 541870 13T8-6U/MAS/24-850/IF21/P 10/1 180° 841 4000 K 80 2100 Im 2100 Im 180° 541888 13T8-6U/MAS/24-850/IF21/P 10/1 180° 850 5000 K 80 2100 Im 2100 Im 180° 541986 10T8/COR/48-840/IF16/G 25/1 - 841 4000 K 82 1600 Im 1600 Im - 545269 34T8/COR/96-840/MF42	539866	8.5T8/MAS/36-835/IF13/P10/1	180 °	835	3500 K	80	1300 lm	1300 lm	180 °
541839 7T8/MAS/24-840/IF1I/P 10/1 180° 841 4000 K 80 1150 Im 1150 Im 180° 541847 7T8/MAS/24-850/IF1I/P 10/1 180° 850 5000 K 80 1150 Im 1150 Im 180° 541854 13T8-6U/MAS/24-830/IF20/P 10/1 180° 830 3000 K 80 2000 Im 2000 Im 180° 541862 13T8-6U/MAS/24-835/IF20/P 10/1 180° 835 3500 K 80 2000 Im 2000 Im 180° 541870 13T8-6U/MAS/24-840/IF21/P 10/1 180° 841 4000 K 80 2100 Im 2100 Im 180° 541888 13T8-6U/MAS/24-850/IF21/P 10/1 180° 850 5000 K 80 2100 Im 2100 Im 180° 541986 10T8/COR/48-840/IF16/G 25/1 - 841 4000 K 82 1600 Im 1600 Im - 541994 10T8/COR/96-840/MF42/G/FA8 10/1 240° 841 4000 K 82 4200 Im 4200 Im 240° 545277 34T8/COR/96-840	541813	7T8/MAS/24-830/IF10/P 10/1	180 °	830	3000 K	80	1100 lm	1100 lm	180 °
541847 7T8/MAS/24-850/IF11/P 10/1 180° 850 5000 K 80 1150 Im 1150 Im 180° 541854 13T8-6U/MAS/24-830/IF20/P 10/1 180° 830 3000 K 80 2000 Im 2000 Im 180° 541862 13T8-6U/MAS/24-835/IF20/P 10/1 180° 835 3500 K 80 2000 Im 2000 Im 180° 541870 13T8-6U/MAS/24-840/IF21/P 10/1 180° 841 4000 K 80 2100 Im 2100 Im 180° 541888 13T8-6U/MAS/24-850/IF21/P 10/1 180° 850 5000 K 80 2100 Im 2100 Im 180° 541986 10T8/COR/48-840/IF16/G 25/1 - 841 4000 K 82 1600 Im 1600 Im - 541994 10T8/COR/48-850/IF16/G 25/1 - 850 5000 K 82 1600 Im 1600 Im - 545269 34T8/COR/96-840/MF42/G/FA8 10/1 240° 841 4000 K 82 4200 Im 4200 Im 240° 545285 44T8H0/COR/96-840/MF	541821	7T8/MAS/24-835/IF10/P 10/1	180 °	835	3500 K	80	1100 lm	1100 lm	180 °
541854 13T8-6U/MAS/24-830/IF20/P 10/1 180° 830 3000 K 80 2000 lm 2000 lm 180° 541862 13T8-6U/MAS/24-835/IF20/P 10/1 180° 835 3500 K 80 2000 lm 2000 lm 180° 541870 13T8-6U/MAS/24-840/IF21/P 10/1 180° 841 4000 K 80 2100 lm 2100 lm 180° 541888 13T8-6U/MAS/24-850/IF21/P 10/1 180° 850 5000 K 80 2100 lm 2100 lm 180° 541986 10T8/COR/48-840/IF16/G 25/1 - 841 4000 K 82 1600 lm 1600 lm - 541994 10T8/COR/48-850/IF16/G 25/1 - 850 5000 K 82 1600 lm 1600 lm - 545269 34T8/COR/96-840/MF42/G/FA8 10/1 240° 841 4000 K 82 4200 lm 4200 lm 240° 545277 34T8/COR/96-850/MF42/G/FA8 10/1 240° 850 5000 K 82 4200 lm 4200 lm 240° 545285 44T8H0/COR/96-840/MF54/G/R17d 240° 841 4000 K 82 5400 lm 5400 l	541839	7T8/MAS/24-840/IF11/P 10/1	180 °	841	4000 K	80	1150 lm	1150 lm	180 °
541862 13T8-6U/MAS/24-835/IF20/P 10/1 180° 835 3500 K 80 2000 Im 2000 Im 180° 541870 13T8-6U/MAS/24-840/IF21/P 10/1 180° 841 4000 K 80 2100 Im 2100 Im 180° 541888 13T8-6U/MAS/24-850/IF21/P 10/1 180° 850 5000 K 80 2100 Im 2100 Im 180° 541986 10T8/COR/48-840/IF16/G 25/1 - 841 4000 K 82 1600 Im 1600 Im - 541994 10T8/COR/48-850/IF16/G 25/1 - 850 5000 K 82 1600 Im 1600 Im - 545269 34T8/COR/96-840/MF42/G/FA8 10/1 240° 841 4000 K 82 4200 Im 4200 Im 240° 545277 34T8/COR/96-850/MF42/G/FA8 10/1 240° 850 5000 K 82 4200 Im 4200 Im 240° 545285 44T8HO/COR/96-840/MF54/G/R17d 240° 841 4000 K 82 5400 Im 5400 Im 240°	541847	7T8/MAS/24-850/IF11/P 10/1	180 °	850	5000 K	80	1150 lm	1150 lm	180 °
541870 13T8-6U/MAS/24-840/IF21/P 10/1 180° 841 4000 K 80 2100 lm 2100 lm 180° 541888 13T8-6U/MAS/24-850/IF21/P 10/1 180° 850 5000 K 80 2100 lm 2100 lm 180° 541986 10T8/COR/48-840/IF16/G 25/1 - 841 4000 K 82 1600 lm 1600 lm - 541994 10T8/COR/48-850/IF16/G 25/1 - 850 5000 K 82 1600 lm 1600 lm - 545269 34T8/COR/96-840/MF42/G/FA8 10/1 240° 841 4000 K 82 4200 lm 4200 lm 240° 545277 34T8/COR/96-850/MF42/G/FA8 10/1 240° 850 5000 K 82 4200 lm 4200 lm 240° 545285 44T8HO/COR/96-840/MF54/G/R17d 240° 841 4000 K 82 5400 lm 5400 lm 240°	541854	13T8-6U/MAS/24-830/IF20/P 10/1	180 °	830	3000 K	80	2000 lm	2000 lm	180 °
541888 13T8-6U/MAS/24-850/IF21/P 10/1 180° 850 5000 K 80 2100 lm 2100 lm 180° 541986 10T8/COR/48-840/IF16/G 25/1 - 841 4000 K 82 1600 lm 1600 lm - 541994 10T8/COR/48-850/IF16/G 25/1 - 850 5000 K 82 1600 lm 1600 lm - 545269 34T8/COR/96-840/MF42/G/FA8 10/1 240° 841 4000 K 82 4200 lm 4200 lm 240° 545277 34T8/COR/96-850/MF42/G/FA8 10/1 240° 850 5000 K 82 4200 lm 4200 lm 240° 545285 44T8H0/COR/96-840/MF54/G/R17d 240° 841 4000 K 82 5400 lm 5400 lm 240° 10/1	541862	13T8-6U/MAS/24-835/IF2O/P 10/1	180 °	835	3500 K	80	2000 lm	2000 lm	180 °
541986 10T8/COR/48-840/IF16/G 25/1 - 841 4000 K 82 1600 Im 1600 Im - 541994 10T8/COR/48-850/IF16/G 25/1 - 850 5000 K 82 1600 Im 1600 Im - 545269 34T8/COR/96-840/MF42/G/FA8 10/1 240° 841 4000 K 82 4200 Im 4200 Im 240° 545277 34T8/COR/96-850/MF42/G/FA8 10/1 240° 850 5000 K 82 4200 Im 4200 Im 240° 545285 44T8HO/COR/96-840/MF54/G/R17d 240° 841 4000 K 82 5400 Im 5400 Im 240°	541870	13T8-6U/MAS/24-840/IF21/P 10/1	180 °	841	4000 K	80	2100 lm	2100 lm	180 °
541994 10T8/COR/48-850/IF16/G 25/1 - 850 5000 K 82 1600 Im 1600 Im - 545269 34T8/COR/96-840/MF42/G/FA8 10/1 240° 841 4000 K 82 4200 Im 4200 Im 240° 545277 34T8/COR/96-850/MF42/G/FA8 10/1 240° 850 5000 K 82 4200 Im 4200 Im 240° 545285 44T8HO/COR/96-840/MF54/G/R17d 240° 841 4000 K 82 5400 Im 5400 Im 240° 10/1	541888	13T8-6U/MAS/24-850/IF21/P 10/1	180 °	850	5000 K	80	2100 lm	2100 lm	180 °
545269 34T8/COR/96-840/MF42/G/FA8 10/1 240° 841 4000 K 82 4200 lm 4200 lm 240° 545277 34T8/COR/96-850/MF42/G/FA8 10/1 240° 850 5000 K 82 4200 lm 4200 lm 240° 545285 44T8HO/COR/96-840/MF54/G/R17d 240° 841 4000 K 82 5400 lm 5400 lm 240° 10/1 <t< td=""><td>541986</td><td>10T8/COR/48-840/IF16/G 25/1</td><td>-</td><td>841</td><td>4000 K</td><td>82</td><td>1600 lm</td><td>1600 lm</td><td>-</td></t<>	541986	10T8/COR/48-840/IF16/G 25/1	-	841	4000 K	82	1600 lm	1600 lm	-
545277 34T8/COR/96-850/MF42/G/FA8 10/1 240 ° 850 5000 K 82 4200 lm 4200 lm 240 ° 545285 44T8HO/COR/96-840/MF54/G/R17d 240 ° 841 4000 K 82 5400 lm 5400 lm 240 ° 10/1	541994	10T8/COR/48-850/IF16/G 25/1	-	850	5000 K	82	1600 lm	1600 lm	-
545285 44T8HO/COR/96-840/MF54/G/R17d 240° 841 4000 K 82 5400 lm 5400 lm 240° 10/1	545269	34T8/COR/96-840/MF42/G/FA8 10/1	240°	841	4000 K	82	4200 lm	4200 lm	240 °
10/1	545277	34T8/COR/96-850/MF42/G/FA8 10/1	240 °	850	5000 K	82	4200 lm	4200 lm	240 °
	545285	44T8HO/COR/96-840/MF54/G/R17d	240°	841	4000 K	82	5400 lm	5400 lm	240 °
545293 44T8HO/COR/96-850/MF54/G/R17d 240° 850 5000 K 82 5400 lm 5400 lm 240°		10/1							
	545293	44T8HO/COR/96-850/MF54/G/R17d	240°	850	5000 K	82	5400 lm	5400 lm	240 °
10/1		10/1							


Temperature


		T-Ambient	T-Case Maximum
Order Code	Full Product Name	(Max)	(Nom)
540807	10T8/MAS/48-840/IF16/P 25/1	45 °C	50 °C
540799	13T8/MAS/48-840/IF21/P/DIM 25/1	45 °C	50 °C
473974	9.5T8/MAS/48-830/IF15/P10/1	55 °C	55 °C
473982	9.5T8/MAS/48-835/IF15/P 10/1	55 °C	55 °C
473990	9.5T8/MAS/48-840/IF16/P10/1	55 ℃	55 °C
540807		55 ℃	55 ℃
474007	9.5T8/MAS/48-850/IF16/P 10/1	55 ℃	55 ℃
532671	12T8/MAS/48-830/MF17/G 10/1	45 °C	70 °C
532689	12T8/MAS/48-835/MF17/G 10/1	45 °C	70 °C
532697	12T8/MAS/48-840/MF18/G 10/1	45 °C	70 °C
532705	12T8/PER/48-850/BB18/G 10/1 FB	45 °C	70 °C
532705	12T8/MAS/48-850/MF18/G 10/1	45 °C	70 °C
535484	8.5T8/COR/24-850/MF11/G 10/1	45 °C	50 °C


		T-Ambient	T-Case Maximum
Order Code	Full Product Name	(Max)	(Nom)
535492	11.5T8/COR/36-830/MF13/G 10/1	45 °C	50 °C
535500	11.5T8/COR/36-835/MF13/G 10/1	45 °C	50 °C
535518	11.5T8/COR/36-840/MF14/G 10/1	45 °C	50 °C
535526	11.5T8/COR/36-850/MF14/G 10/1	45 °C	50 °C
535534	15.5T8-6U/COR/24-830/MF20/G	45 °C	51 °C
	10/1		
535542	15.5T8-6U/COR/24-835/MF2O/G	45 °C	51 °C
	10/1		
535559	15.5T8-6U/COR/24-840/MF21/G	45 °C	51 °C
	10/1		
535567	15.5T8-6U/COR/24-850/MF21/G	45 °C	51 °C
	10/1		
539858	8.5T8/MAS/36-830/IF13/P10/1	45 °C	50 °C

		T-Ambient	T-Case Maximum
Order Code	Full Product Name	(Max)	(Nom)
539874	8.5T8/MAS/36-840/IF14/P10/1	45 °C	50 °C
539882	8.5T8/MAS/36-850/IF14/P 10/1	45 °C	50 °C
539866	8.5T8/MAS/36-835/IF13/P10/1	45 °C	50 °C
541813	7T8/MAS/24-830/IF10/P 10/1	45 °C	50 °C
541821	7T8/MAS/24-835/IF10/P 10/1	45 °C	50 °C
541839	7T8/MAS/24-840/IF11/P 10/1	45 °C	50 °C
541847	7T8/MAS/24-850/IF11/P 10/1	45 °C	50 °C
541854	13T8-6U/MAS/24-830/IF20/P 10/1	45 °C	50 °C
541862	13T8-6U/MAS/24-835/IF2O/P 10/1	45 °C	50 °C
541870	13T8-6U/MAS/24-840/IF21/P 10/1	45 °C	50 °C
541888	13T8-6U/MAS/24-850/IF21/P 10/1	45 °C	50 °C
541986	10T8/COR/48-840/IF16/G 25/1	45 °C	50 °C
541994	10T8/COR/48-850/IF16/G 25/1	45 °C	50 °C
545269	34T8/COR/96-840/MF42/G/FA8	45 °C	45 °C
	10/1		
545277	34T8/COR/96-850/MF42/G/FA8	45 °C	45 °C
	10/1		
545285	44T8HO/COR/96-840/MF54/G/	45 °C	55 °C
	R17d 10/1		
545293	44T8HO/COR/96-850/MF54/G/	45 °C	55 °C
	R17d 10/1		

Project:	Туре:
Prepared By:	Date:

Driver	Info	LED Info	
Type	Constant Current	Watts	12W
120V	0.103A	Color Temp	5000K (Cool)
208V	N/A	Color Accuracy	85 CRI
240V	N/A	L70 Lifespan	50,000 Hours
277V	N/A	Lumens	1,570
Input Wa	atts 12.9W	Efficacy	121.7 lm/W

Technical Specifications

Listings

UL Listed:

Suitable for Wet Locations. Covered Ceiling Mount Only.

IESNA LM-79 & IESNA LM-80 Testing:

RAB LED luminaires and LED components have been tested by an independent laboratory in accordance with IESNA LM-79 and LM-80.

DLC Listed:

This product is on the Design Lights Consortium (DLC) Qualified Products List and is eligible for rebates from DLC Member Utilities. DLC Product Code: P4Y3N513

Electrical

Driver:

AC board, 50/60 Hz., 120V: 103 mA

THD:

11.2% at 120V

Power Factor:

99.4% at 120V

Dimmer Compatibility:

TRIAC/ELV dimming capable. See dimmer compatibility guide here.

Surge Protection:

2.5kV

Construction

Cold Weather Starting:

The minimum starting temperature is -30°C (-22°F)

Ambient Temperature:

Suitable for use in up to 45°C (113°F)

Housing:

Precision steel housing

Mounting:

Ceiling mount to recessed junction with knockout template. Tamperproof screws.

Lens:

Vandalproof, frosted polycarbonate drop lens

Gaskets:

High-temperature silicone gaskets

Technical Specifications (continued)

Construction

Finish:

Our environmentally friendly polyester powder coatings are formulated for high-durability and long-lasting color

Green Technology:

Mercury and UV free. RoHS-compliant components.

Performance

Lifespan:

50,000-Hour LED lifespan based on IES LM-80 results and TM-21 calculations

LED Characteristics

LEDs:

120V long-lfe LEDs

Color Stability:

RAB LEDs exceed industry standards for chromatic stability

Color Uniformity:

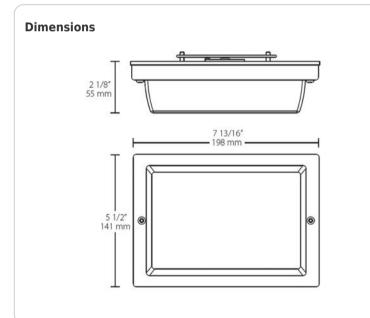
RAB's range of Correlated Color Temperature follows the guidelines of the American National Standard for Specifications for the Chromaticity of Solid State Lighting (SSL) Products, ANSI C78.377-2017.

Other

Optional Sensor:

VAN1LED is compatible with occupancy sensors. Click here to see all occupancy sensor accessories.

Warranty:


RAB warrants that our LED products will be free from defects in materials and workmanship for a period of five (5) years from the date of delivery to the end user, including coverage of light output, color stability, driver performance and fixture finish. RAB's warranty is subject to all terms and conditions found at rablighting.com/warranty.

Equivalency:

Equivalent to 70W Metal Halide

Buy American Act Compliance:

RAB values USA manufacturing! Upon request, RAB may be able to manufacture this product to be compliant with the Buy American Act (BAA). Please contact customer service to request a quote for the product to be made BAA compliant.

Features

Vandalproof polycarbonate drop lens Ultra efficiency Low-profile design

VAN1LED12W

SK9SYYW

Project:	Туре:
Prepared By:	Date:

Driver Inf	fo	LED Info	
Type 120V 208V 240V 277V Input Watts	Constant Current 0.08A N/A N/A N/A 9.40W	Watts Color Temp Color Accuracy L70 Lifespan Lumens Efficacy	9W 2700K (Residential Warm) 85 CRI 100,000 Hours 719 76.5 lm/W

Technical Specifications

Listings

UL Listed:

Suitable for damp locations. For indoor use only.

IESNA LM-79 & LM-80 Testing:

RAB LED luminaires and LED components have been tested by an independent laboratory in accordance with IESNA LM-79 and LM-80.

LED Characteristics

LEDs:

120V long-life LEDs with integrated driver technology and TRIAC and ELV dimming down to 5%. See compatibility guide here. Power Factor 98.9%, 3 kV surge protection

Color Consistency:

3-step MacAdam Ellipse binning to achieve consistent fixture-to-fixture color

Color Stability:

LED color temperature is warrantied to shift no more than 200K in color temperature over a 5year period

Color Uniformity:

RAB's range of Correlated Color Temperature follows the guidelines of the American National Standard for Specifications for the Chromaticity of Solid State Lighting (SSL) Products, ANSI C78.377-2017.

Performance

Lifespan:

100,000-Hour LED lifespan based on IES LM-80 results and TM-21 calculations

Construction

Housing:

Precision die-cast aluminum construction

Mounting:

Simple slide-n-lock mounting bracket mounts to $\stackrel{\cdot}{\text{3 1/2}}$ " and 4" round or octagon boxes with mounting screws 2 3/4" and 3 1/2" on center

Vandal resistant polycarbonate diffusion lens

Finish:

Our environmentally friendly polyester powder coatings are formulated for high-durability and long-lasting color

Green Technology:

Mercury and UV free. RoHS-compliant components.

Other

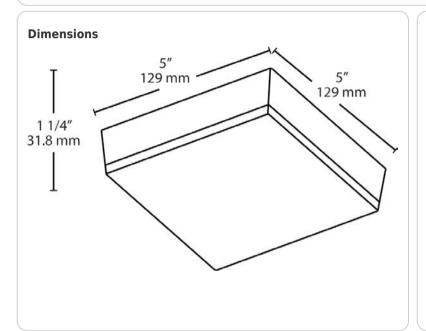
Equivalency:

Equivalent to 60W Incandescent, replaces up to 100W Incandescent

Warranty:

RAB warrants that our LED products will be free from defects in materials and workmanship for a period of five (5) years from the date of delivery to the end user, including coverage of light output, color stability, driver performance and fixture finish. RAB's warranty is subject to all terms and conditions found at rablighting.com/warranty.

Technical Specifications (continued)


Electrical

Buy American Act Compliance:

THD:

RAB values USA manufacturing! Upon request, RAB may be able to manufacture this product to be compliant with the Buy American Act (BAA). Please contact customer service to request a quote for the product to be made BAA compliant.

13.8% at 120V

Features

Contemporary low-profile design

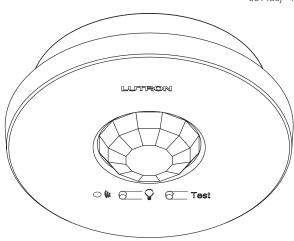
Mounts flush to ceilings or walls

Replaces up to 100W incandescent

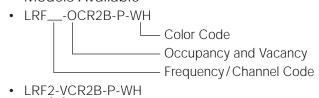
Vandal-resistant diffusion lens provides smooth light with no glare 100,000-Hour LED Lifespan, 5-year, no-compromise warranty

Ord	lering	Matrix
-----	--------	--------

Family	Wattage	Shape	Color Temp	Finish
SK	9	S	YY	W
	9 = 9W	R = Round S = Square	YN = 3500K (Warm Neutral) Y = 3000K (Warm) YY = 2700K (Residential Warm)	W = White


369480j 1 04.23.20

Radio Powr Savr Wireless Occupancy/Vacancy Ceiling Sensor


Lutron Radio Powr Savr occupancy/vacancy sensors are wireless, battery-powered, passive infrared (PIR) sensors that automatically control lights via RF communication to compatible dimming and switching devices. These sensors detect the heat (IR radiation of 9.5 μm) from people moving within an area to determine when the space is occupied. The sensors then wirelessly transmit the appropriate commands to the associated dimming and switching devices to turn the lights on or off automatically. They combine both convenience and exceptional energy savings potential along with ease of installation.

Features

- Wireless occupancy sensor has 3 settings available: Auto-On/Auto-Off, Auto-On Low-Light/Auto-Off, and Manual-On/Auto-Off
- Auto-On Low-Light feature will turn lights on automatically only if there is less than approximately 10 Lux (1 fc) of ambient light
- Vacancy-only model available to meet California (U.S.A.)
 Title 24 requirements
- · Uses Clear Connect technology
- Passive infrared motion detection with exclusive Lutron XCT Technology for fine motion detection
- 360° coverage ranges from 324 ft² (30.2 m²) to 676 ft² (62.4 m²), depending on mounting height
- Simple and intuitive adjustments available for Timeout, Auto-On, and Activity settings
- Supports advanced occupancy features, such as dependent occupancy groups and customizable occupied/unoccupied presets in some systems
- Multiple sensors can be added for extended coverage.
 Refer to product specification submittal of receiving device to determine system limits
- Lens illuminates during test mode to verify ideal locations
- Multiple ceiling-mount methods available for different ceiling materials
- Front accessible test buttons make programming easy
- 10-year battery life design
- · RoHS compliant

Models Available

Vacancy Only Available for Channel Code 2 Only

Frequency/Channel Codes

Available

- 2 = 431.0 437.0 MHz (U.S.A., Canada, Mexico, Brazil)
- 3 = 868.125 869.850 MHz (Europe, U.A.E.)
- 4 = 868.125 868.4755 MHz (China, Singapore)
- 5 = 865.5 866.5 MHz (India)
- 6 = 312.3 314.8 MHz (Japan)
- 7 = 433.05 434.79 MHz (Hong Kong, Macau)

Color Code

WH = White

Compatible RF Devices

- · For use with Lutron products only
- Supports simultaneous association with multiple Lutron Clear Connect devices and/or systems*
- * Contact Lutron Customer Service at www.lutron.com/support for frequency/channel code compatibility with your particular geographic region, and for integrating with other Lutron lighting and shading products.

	\$LUTRON	SPECIFICATION	SUBMITTAL
--	-----------------	---------------	-----------

Job Name:	Model Numbers:
Job Number:	

Specifications

Regulatory

Lutron Quality Systems Registered to ISO 9001:2008

Regulatory Approvals

LRF2- (USA and Canada)

- cULus Listed
- FCC certified
- · IC certified
- Meets CA (U.S.A.) Energy Commission Title 24 requirements
- · COFETEL certified
- · ANATEL certified
- · SUTEL certified

LRF3-

- CE marked (European Union)
- TRA type approval (United Arab Emirates)
- CITC type approval (Saudi Arabia)

LRF4-

- SRRC type approval (Mainland China)
- iDA registered (Singapore)

LRF5-

· WPC Type (India)

LRF6-

• \$\oquan 007YUUL0689

LRF7-

FCC

Power/Performance

- Operating voltage: 3 V-
- Operating current: 14 μA nominal
- Requires one CR 123 lithium battery
- 10-year battery life
- Non-volatile memory (saved changes are stored during power loss)

Environment

- Temperature: 32 °F to 104 °F (0 °C to 40 °C)
- · For indoor use only
- Relative humidity: less than 90% non-condensing

Warranty

 5-Year Limited Warranty. For additional Warranty information, please visit www.lutron.com/ TechnicalDocumentLibrary/Sensor_Warranty.pdf

RF Range

LRF2-, LRF3-, LRF4-, LRF5-, LRF7-

Local load controls must be located within 60 ft (18 m) line-of-sight, or 30 ft (9 m) through walls, of a sensor.

LRF6-

Local load controls must be located within 40 ft (12.2 m) line-of-sight, or 23 ft (7 m) through walls, of a sensor.

Sensor Coverage Test

- · Front accessible test button
- Lens illuminates orange in response to motion during test mode and is visible from 60 ft (18 m)

Wireless Communication Test

- Front accessible test button
- Turn associated loads on and off

Timeout Options

- 1 minute*
- 5 minutes
- 15 minutes (default setting)
- · 30 minutes

Auto-On Options (Occupancy Versions Only)

- *Enabled*: Sensor turns lights ON and OFF automatically (default setting).
- Low Light: Sensor turns lights ON automatically only in low ambient light conditions; sensor turns lights OFF automatically.
- Disabled**: Lights must be turned ON manually from dimming or switching device; sensor turns lights OFF automatically.

Activity Options

- Low Activity: 3 (default setting)
- Medium Activity:
 ¹/₃
- * Intended for use in high-activity, briefly occupied areas only.
- ** During the 15-second grace period that begins when the lights are automatically turned off, the lights will automatically turn back on in response to motion. This grace period is provided as a safety and convenience feature in the event the lights turn off while the room is still occupied, so that the user does not need to manually turn the lights back on. After 15 seconds, the grace period expires and the lights must be manually turned on.

LUTRON SPECIFICATION SUBMITTAL

Job Name:	Model Numbers:
Job Number:	

Installation Overview

Sensor Setup

 Sensor setup is available as a service by Lutron. For more information see the Sensor Layout and Tuning service document (Lutron P/N 3601235).

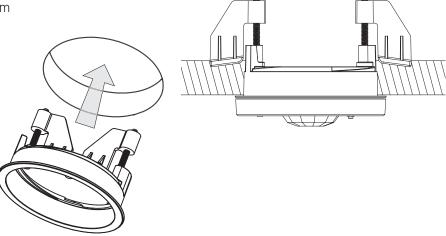
Sensor Placement

- To detect motion, the sensor requires line-of-sight of room occupants. The sensor must have an unobstructed view of the room. DO NOT mount behind or near tall cabinets, shelves, hanging fixtures, ceiling fans, etc. The sensor cannot see through glass objects such as patio- or shower doors.
- Hot objects and moving air currents can affect the performance of the sensor. To ensure proper operation, the sensor should be mounted at least 4 ft (1.2 m) away from HVAC vents and halogen or incandescent bulbs that are below the ceiling line.
- The performance of the sensor depends on a temperature differential between the ambient room temperature and that of room occupants. Warmer rooms may reduce the ability of the sensor to detect occupants.
- Devices emitting Radio Frequency (RF) energy can affect the performance of sensors. To ensure proper operation, sensors should be mounted at least 4 ft (1.2 m) away from devices that emit radio waves (e.g., microwave ovens, wireless routers, or other non-Clear Connect wireless devices). When using Clear Connect - Type X lamps or fixtures, ensure sensor is mounted at a distance of 2 ft (0.6 m) or greater from the lamp or fixture.
- For additional information on placing sensors, please see the Occupancy/Vacancy Sensor Design and Application Guide (P/N 368-3197) located at www.lutron.com

Mounting

Temporary mounting is optional to test sensor coverage and wireless communication before permanently installing the sensor.

Drop Ceiling (Compressed Fiber Ceiling Tile)

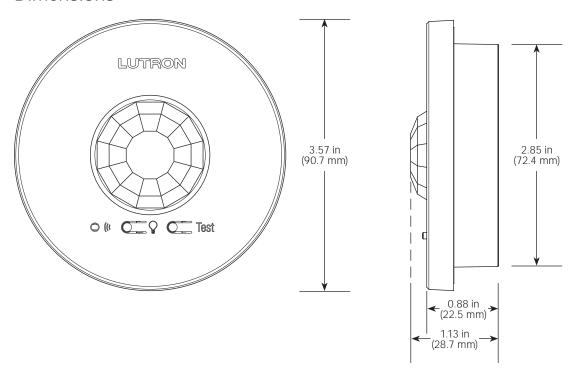

The mounting wire is provided for both temporary and permanent mounting of the sensor to ceiling tiles. It is designed to allow temporary mounting, testing, and repositioning (if necessary) of the sensor without damaging a ceiling tile. Once the final position of the sensor has been chosen, the mounting wire should be twisted together to permanently secure the sensor in place.

Solid Ceiling (Drywall, Plaster, Concrete, or Wood)

- Temporary mounting: Ten (10) temporary mounting strips can be purchased in the kit, L-CMDPIRKIT, for temporarily mounting and testing the sensor.
- Permanent mounting: Screws and anchors (for drywall or plaster) provided to mount the sensor.

Recess-Mount

- Do not recess-mount sensor in a metal surface.
- Recess-mounting ring requires an opening of 3 in (76 mm) in diameter.
- Recess-mounting ring secures internally to ceiling. Sensor twists into the recess mounting ring and sits flush with ceiling (see image below).
- Recess-mounting ring purchased as a separate kit: L-CRMK-WH.

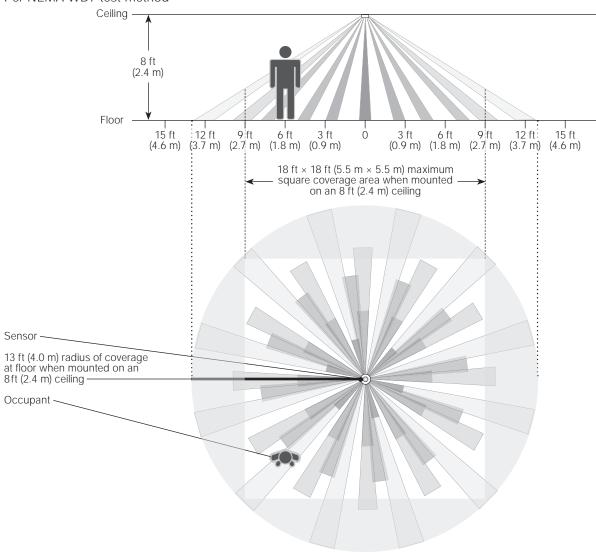


WILLITRON	SPECIFICATION	SIIRMITTAL

Job Name:	Model Numbers:
Job Number:	

369480j 4 04.23.20

Dimensions


LUTRON SPECIFICATION SUBMITTAL

Job Name:	Model Numbers:
Job Number:	

369480j 5 04.23.20

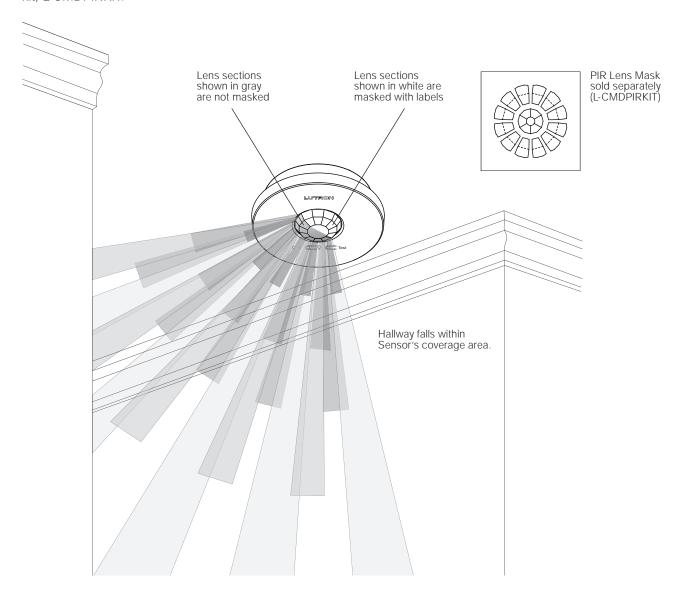
Coverage Diagrams

Per NEMA WD7 test method

Sensor Coverage Chart (for sensor mounted in center of room)

Ceiling Height	Maximum Square Coverag	je Area*
8 ft (2.4 m)	18 ft × 18 ft (5.5 m × 5.5 m)	324 ft ² (30.2 m ²)
9 ft (2.7 m)	20 ft × 20 ft (6.1 m × 6.1 m)	400 ft ² (37.2 m ²)
10 ft (3.0 m)	22 ft × 22 ft (6.7 m × 6.7 m)	484 ft ² (44.9 m ²)
12 ft (3.7 m)	26 ft × 26 ft (7.9 m × 7.9 m)	676 ft ² (62.4 m ²)

^{* 12} ft (3.7 m) is the recommended maximum mounting height


LUTRON SPECIFICATION SUBMITTAL

Job Name:	Model Numbers:
Job Number:	

369480j 6 04.23.20

Lens Masking

Whenever possible, the sensor should be installed in a location where it cannot view areas outside the intended space, such as hallways or adjacent rooms. If this situation cannot be avoided, portions of the lens may be masked to block the view of the sensor into undesired areas. Ten (10) PIR Lens Masks may be purchased in the kit, L-CMDPIRKIT.

CDECIEICATION CHDMITTAL

SPECIFICATION SUBMITTAL							
Job Name:	Model Numbers:						
Job Number:							

⁾ Lutron, Lutron, Clear Connect, Radio Powr Savr and XCT are trademarks or registered trademarks of Lutron Electronics Co., Inc. in the US and/or other countries.

369666f 1 09.05.19

Maestro sensor switch

The Lutron Maestro occupancy sensor switch combines a Maestro switch with a passive infrared occupancy or vacancy sensor. The sensor detects the heat from occupants moving within an area to determine whether the space is occupied. Based on the feedback from the sensor, the occupancy sensor switch will adjust the load accordingly.

Features

- Passive infrared sensors with exclusive Lutron XCT Technology for fine motion detection
- 180° sensor field-of-view
- Up to 30 ft x 30 ft (9 m x 9 m) [900 ft² (81 m²)] major motion coverage and 20 ft x 20 ft (6 m x 6 m) [400 ft² (36 m²)] minor motion coverage
- Occupancy version can be set to Auto-ON / Auto-OFF or Manual-ON / Auto-OFF
- Vacancy version available to meet CA Title 24 requirements
- Adjustable timeout (1, 5, 15, or 30 minutes) and high/low sensitivity adjustment
- Load types: incandescent, halogen, ELV, MLV, CFL, LED, magnetic fluorescent, electronic fluorescent, and fan.

Note: "XX" in model number represents color/finish code.

Models available

MS-OPS2-XX1

MS-OPS2H-XX-C2

MS-OPS5M-XX3

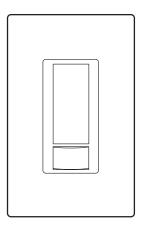
MS-OPS5MH-XX-C²

MS-OPS6M2-DV-XX

MS-OPS6M2U-DV-XX

UMS-OPS6M2-DV-XX

MS-VPS2-XX1


MS-VPS5M-XX³

Job Number:

MS-VPS6M2-DV-XX

MS-VPS6M2U-DV-XX

UMS-VPS6M2-DV-XX

MS-OPS2 MS-OPS2H-XX-C MS-OPS5M MS-OPS5MH-XX-C MS-OPS6M2-DV UMS-OPS6M2U-DV UMS-OPS6M2-DV MS-VPS2 MS-VPS5M MS-VPS6M2-DV MS-VPS6M2U-DV UMS-VPS6M2-DV

CDECIEICATION CHDMITTAI

3	派LO I NOI4	SPECIFICATIO	N SUBMITTAL
	Job Name:		Model Numbers:

¹ For clamshell packaging, add an "H" after the "2". Available in AL, IV, LA, and WH.

² Clamshell packaged product for Canada. Available in AL, IV, LA, and WH.

³ For clamshell packaging, add an "H" after the "M". Available in AL, IV, LA, and WH.

369666f 2 09.05.19

Specifications

Regulatory Approvals

- UL_® Listed to U.S. and Canadian safety requirements.
- NOM Certification (MS- models only).

Power

- 120 V~ 50/60 Hz*
- 120-277 V~ 50/60 Hz*

Key Design Features

- · All lighting loads
- · Crush/tamper resistant lens
- Smart ambient light detection
- · Adaptive switching algorithm for extended relay life
- XCT Technology for fine motion detection
- · Lutron patented Softswitch

Environment

 Ambient operating temperature: 32 °F to 104 °F (0 °C to 40 °C), 0%-90% humidity, non-condensing. Indoor use only.

Warranty

 5-Year Limited Warranty. For additional Warranty information, please visit www.lutron.com/TechnicalDocumentLibrary/Sensor_ Warranty.pdf

Additional Information

- When using MS-OPS2, MS-OPS5M, MS-OPS6M2-DV, MS-VPS2, MS-VPS5M, or MS-VPS6M2-DV on GFI-controlled circuits, please see Lutron P/N 048440 on www.lutron.com
- For Maestro Occupancy sensing dimmer models, please see Lutron P/N 369270 on www.lutron.com
- For use with MA-AS, MSC-AS, MA-AS-277, or MSC-AS-277 to control the load from more than two locations, please see Lutron P/N 048435 on www.lutron.com

LITEON CDECITION CHEMITTAL

- For more information, please see www.lutron.com/occvacsensors
- Lutron Customer Assistance: 1.844.LUTRON1

Advanced Features

Switching

- Standard zero cross—maximizes relay life by switching at the point of minimum energy on the AC power curve
- Adaptive zero cross—maximizes relay life by switching at the point of minimum energy on the AC power curve. Actively adapts to variations in relay timing
- Lutron Patented Softswitch circuit—eliminates arcing at mechanical contacts when loads are switched.
 Extends relay life to an average of 1,000,000 cycles (on/off) for resistive, capacitive, or inductive sources

XCT Technology

Advanced sensing technology for fine motion detection ensures that the lights stay on while the room is occupied, and that the sensor does not turn on falsely when there is no occupancy in the room. For more information, see www.lutron.com/TechnicalDocumentLibrary/white%20paper%20XCT%204-23-09%20B.pdf

•	SPECIFICATION SUDMITTAL							
	Job Name:	Model Numbers:						
	Job Number:							

^{*} Maximum current ratings for individual models are provided in the Selection Matrix on page 4.

369666f 3 09.05.19

Custom Settings

Ambient Light Detection

Lights turn on only if natural light in room is low.

 Smart—Ambient light threshold adjusts precisely to the user's preference.

Instructions: If switch turns on when there is enough natural light, or if switch does not turn on when there is not enough natural light, press the large button within 5 seconds of entering the room. Over time, this interaction will "teach" the switch your preferred setting.

· Presets—high, medium, low, and disabled.

Sensor Operation

- Occupancy/Vacancy: Auto-ON / Auto-OFF or Manual-ON / Auto-OFF
- · Vacancy only: Manual-ON / Auto-OFF only

Timeout Options

(See Additional Features on page 5 for default settings)

- 1 Minute
- 5 Minutes
- 15 Minutes
- 30 Minutes

Sensitivity Options

- High sensitivity (default)
- Low sensitivity

Auto-ON Options

(MS-OPS and UMS-OPS only)

- Occupancy (default): Auto-ON / Auto-OFF
- Vacancy*: Manual-ON / Auto-OFF
- Low Light: Lights turn on only if needed (if ambient light is below threshold)
 - * There is a 15-second grace period that begins when the lights are automatically turned off, during which the lights will automatically turn back on in response to motion. This grace period is provided as a safety and convenience feature in the event that the lights turn off while the room is still occupied, so that the user does not need to manually turn the lights back on. After 15 seconds, the grace period expires and the lights must be manually turned on.

Manual Off-While-Occupied Options

(MS-OPS and UMS-OPS only—see **Additional Features** on page 5 for default setting)

Enabled

- When the occupancy sensor switch is manually turned off, the occupancy sensor switch will not turn the lights back on automatically while the room is occupied.
- Once the room is vacated, the Auto-ON feature returns to normal operation after the timeout period has expired.
- This may be the preference in conference rooms or classrooms while viewing presentations. This feature requires motion to keep the lights off.

Disabled

- When the occupancy sensor switch is manually turned off, the Auto-ON feature will return to normal operation after 25 seconds.
- This may be the preference if the user always wants the lights to turn on upon entering and the lights to turn off when the room is vacant.

\$LUTRON	SPECIFICATION	SUBMITTAL
-----------------	---------------	-----------

	P	a	g	е
-				

Job Name:	Model Numbers:
Job Number:	

369666f 4 09.05.19

Selection Matrix

	Vaca	ancy	only ²	(Title	24 c	ompl	iant)					
	Single-pole only											
			Wor	ks wi	th sta	ndar	d me	chan	ical 3	-way s	witch ³	Single-pole / 3-way capability
				Wor	ks wi	th co	mpar	nion s	witch	3, 4		Capability
					All li	ghtin	g loa	ds (1:	20 V~	only)		
						_					√V~ only)	
								(120				Max current rating
								·		an (120	V~)	
											e optional*	
											um load required	Off-state power
											Relevant wiring diagram	
Model Number ¹				ı			ı					_
MS-OPS2-XX		√			2 A				√		1	
MS-OPS2H-XX-C		✓			2 A				√		1	
MS-OPS5M-XX			√	√	5 A		3 A	3 A	√		2, 3, 5	
MS-OPS5MH-XX-C			✓	√	5 A		3 A	3 A	√		2, 3, 5	
MS-OPS6M2-DV-XX			✓	√		6 A	3 A	3 A	√		2-6	
MS-OPS6M2U-DV-XX			√	√		6 A	3 A	3 A	√		7-11	
UMS-OPS6M2-DV-XX ⁵			✓	√		6 A	3 A	3 A	√		2-6	
MS-VPS2-XX	✓	√			2 A				✓		1	
MS-VPS5M-XX	√		✓	√	5 A		3 A	3 A	√		2, 3, 5	
MS-VPS6M2-DV-XX	√		✓	√		6 A	3 A	3 A	√		2-6	
MS-VPS6M2U-DV-XX	√		√	√		6 A	3 A	3 A	✓		7-11	1
UMS-VPS6M2-DV-XX ⁵	√		√	√		6 A	3 A	3 A	√		2-6	

¹ XX in model number represents color/finish code.

LUTRON SPECIFICATION SUBMITTAL

Job Name:	Model Numbers:
Job Number:	

Occupancy sensors can be configured as Auto-ON / Auto-OFF or Manual-ON / Auto-OFF. Vacancy sensors are configured as Manual-ON / Auto-OFF only.

³ Standard mechanical 3-way switch cannot be combined with companion switch.

⁴ Companion switch MA-AS, MSC-AS, MA-AS-277, or MSC-AS-277 is required for multi-location installations (more than two locations controlling the same lighting circuit). Up to nine companion switches may be connected.

⁵ BAA-compliant models.

^{*} Note: Neutral is optional only for retrofit or replacement applications when ground connection is available. Connect green-sleeve wire to ground when a neutral connection is not available. When a neutral connection is available, remove the green sleeve and connect the white wire to neutral. Please note that a ground or neutral wire is required for product to function. If neither wire is present, consult a licensed electrician.

369666f 5 09.05.19

Additional Features

	Crush/tamper-resistant lens							
		Ambient light detection						
			Switching					
				XC	Γ technology			
					Manual off-while	e-occupied default setting		
						Default timeout (minutes)		
Model Number ¹								
MS-OPS2-XX	✓	Smart	Adaptive	✓	Disabled	5		
MS-OPS2H-XX-C	✓	Smart	Adaptive	✓	Disabled	5		
MS-OPS5M-XX	✓	Smart	Adaptive	✓	Disabled	5		
MS-OPS5MH-XX-C	✓	Smart	Adaptive	✓	Disabled	5		
MS-OPS6M2-DV-XX	✓	Smart	Adaptive	✓	Enabled	15		
MS-OPS6M2U-DV-XX	✓	Smart	Adaptive	✓	Enabled	15		
UMS-OPS6M2-DV-XX		Presets	Adaptive	✓	Enabled	5		
MS-VPS2-XX	✓	Smart	Adaptive	✓		5		
MS-VPS5M-XX	✓	Smart	Adaptive	✓		5		
MS-VPS6M2-DV-XX	✓	Smart	Adaptive	✓		15		
MS-VPS6M2U-DV-XX	✓	Smart	Adaptive	✓		15		
UMS-VPS6M2-DV-XX		Presets	Adaptive	✓		5		

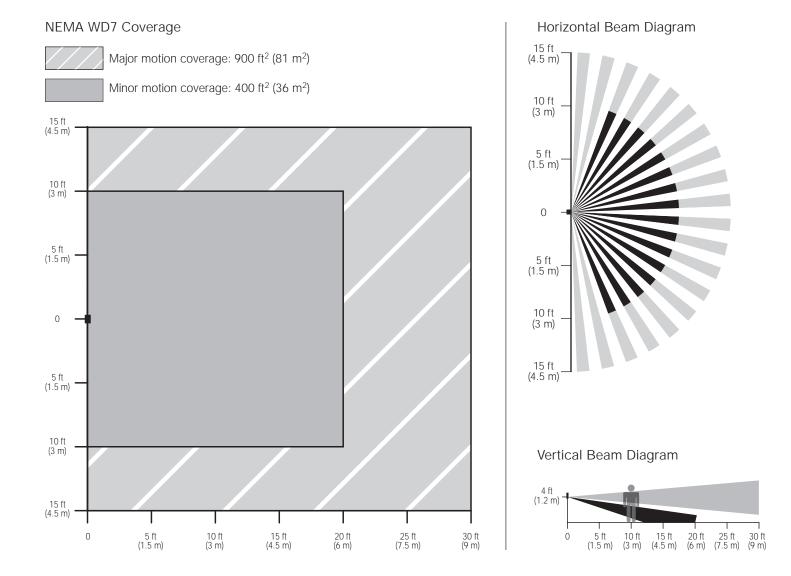
¹ XX in model number represents color/finish code.

\$LUTRON	SPECIFICATION	SUBMITTAL

Job Name:	Model Numbers:
Job Number:	

369666f 6 09.05.19

Placement and Operation


- The ability of the occupancy sensor switch to detect motion requires line-of-sight of room occupants. The occupancy sensor switch must have an unobstructed view of the room.
- · Hot objects and moving air currents can affect the performance of the occupancy sensor switch.
- The performance of the occupancy sensor switch depends on a temperature differential between the ambient room temperature and that of room occupants. Warmer rooms may reduce the ability of the occupancy sensor switch to detect occupants.

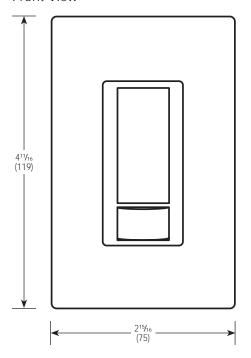
Definitions

Maestro

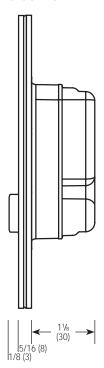
Major motion: movement of a person entering or passing through an area.

Minor motion: movement of a person occupying an area and engaging in small activities (e.g., reaching for a telephone, turning the pages of a book, opening a file folder, picking up a coffee cup).

LUTRON SPECIFICATION SUBMITTAL

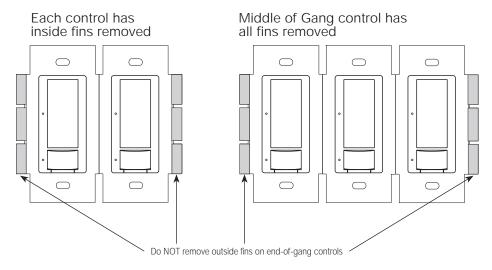

Job Name:	Model Numbers:
Job Number:	

369666f 7 09.05.19


Dimensions

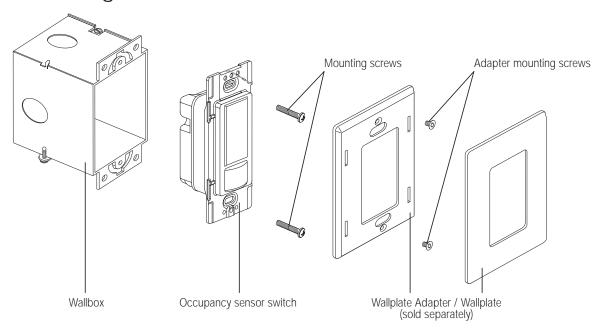
Measurements shown as: in (mm).

Front View

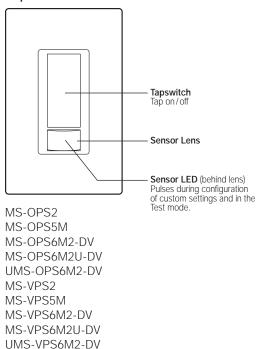


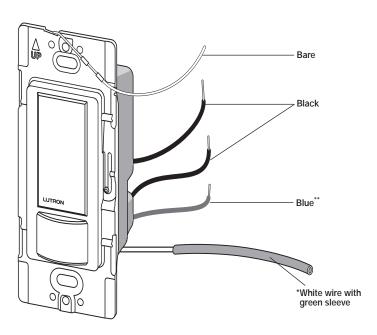
Ganging

When ganging with other controls in the same wallbox, remove inside fins (UMS-OPS6M-DV and UMS-VPS6M-DV only).



LUTRON SPECIFICATION SUBMITTAL

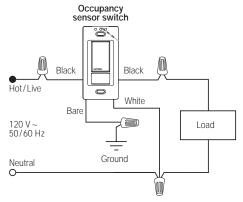

Job Name:	Model Numbers:
Job Number:	


369666f 8 09.05.19

Mounting

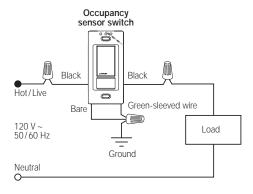
Operation

- *Note: For MS-OPS6M2U-DV-XX and MS-VPS6M2U-DV-XX wire will be green wire covered by white sleeve.
- * *Note: Blue wire not on models: MS-OPS2, MS- VPS2.


LUTRON SPECIFICATION SUBMITTAL

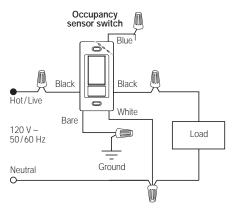
Job Name:	Model Numbers:
Job Number:	

369666f 9 09.05.19


Wiring Diagrams Wiring Diagram 1- with Neutral Single Legation Installation (120 V

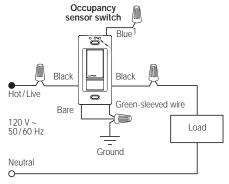
Single Location Installation (120 V~) -OPS2 and -VPS2

Note: When a neutral connection is available, remove the green sleeve and connect the white wire to neutral.


Wiring Diagram 1- without Neutral Single Location Installation (120 V~) -OPS2 and -VPS2

Note: Connect green-sleeved wire to ground only in retrofit and replacement applications.

Wiring Diagram 2 - with Neutral


Single Location Installation (120 V ~)¹ -OPS5M, -OPS6M2-DV, -VPS5M, -VPS6M2-DV

Note: When a neutral connection is available, remove the green sleeve and connect the white wire to neutral.

Wiring Diagram 2 - without Neutral Single Location Installation (120 V \sim)¹

Single Location Installation (120 V ~)¹
-OPS5M, -OPS6M2-DV, -VPS5M, -VPS6M2-DV

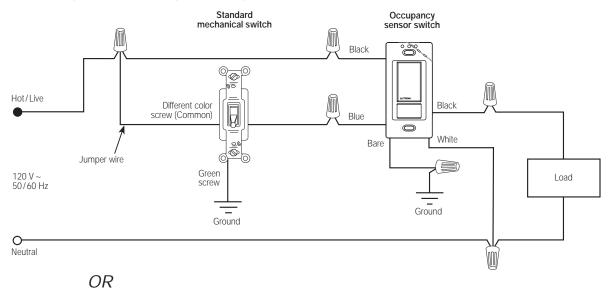
Note: Connect green-sleeved wire to ground only in retrofit and replacement applications.

- When using controls in single location installations, tighten the blue terminal or cap blue wire. Do not connect the blue terminal/wire to any other wire or to ground.
- ² Only one occupancy sensor switch can be used per multi-location circuit.
- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).

Continued on next page...

LUTRON SPECIFICATION SUBMITTAL

4	9-	
Job Name:	Model Numbers:	
Job Number:		


369666f 10 09.05.19


Wiring Diagrams (continued)

Wiring Diagram 3 - with Neutral

3-way Installation with Standard Mechanical Switch (120 V \sim)^{2, 3}

-OPS5M, -OPS6M2-DV, -VPS5M, -VPS6M2-DV

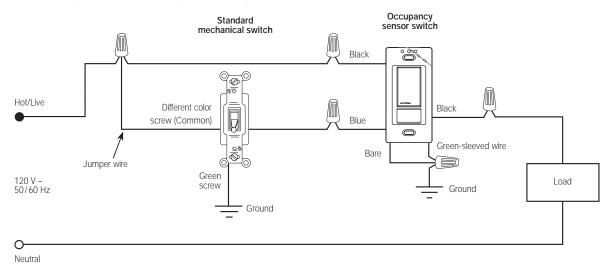
Note: When a neutral connection is available, remove the green sleeve and connect the white wire to neutral.

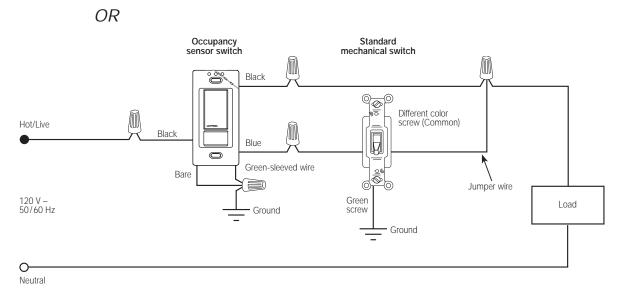
- 1 When using controls in single location installations, tighten the blue terminal or cap blue wire. Do not connect the blue terminal/wire to any other wire or to ground.
- ² Only one occupancy sensor switch can be used per multi-location circuit.

CDECIFICATION CUDANTAN

A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).

•	WEO I HOIN	SPECIFICATIO	1 SUBMITTAL	Page
	Job Name:		Model Numbers:	
	Job Number:			


369666f 11 09.05.19


Wiring Diagrams (continued)

Wiring Diagram 3 - without Neutral

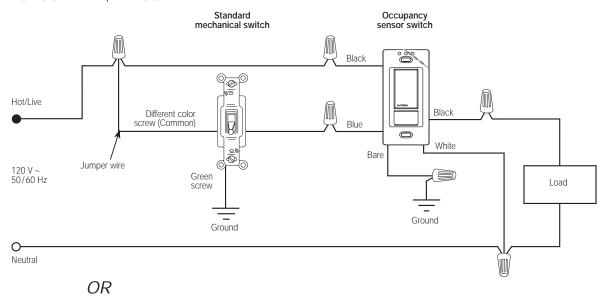
3-way Installation with Standard Mechanical Switch (120 V~)^{2, 3}

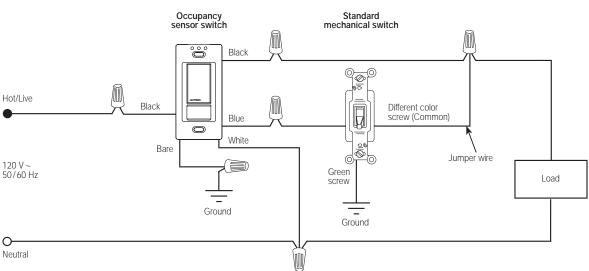
-OPS5M, -OPS6M2-DV, -VPS5M, -VPS6M2-DV

Note: Connect green-sleeved wire to ground only in retrofit and replacement applications.

- When using controls in single location installations, tighten the blue terminal or cap blue wire. Do not connect the blue terminal/wire to any other wire or to ground.
- ² Only one occupancy sensor switch can be used per multi-location circuit.
- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).

7	ELUTRUN	SPECIFICATIO	N SUBMITTAL	Page
	Job Name:		Model Numbers:	
	Joh Number			


369666f 12 09.05.19


Wiring Diagrams (continued)

Wiring Diagram 4 - with Neutral

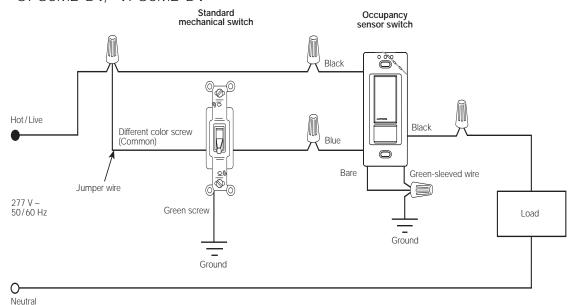
3-way Installation with Standard Mechanical Switch (277 V~)^{1, 2, 3}

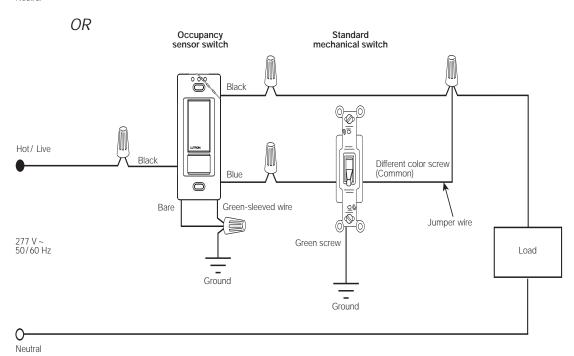
-OPS6M2-DV, -VPS6M2-DV

Note: When a neutral connection is available, remove the green sleeve and connect the white wire to neutral.

- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).
- Only one occupancy sensor switch can be used per multi-location circuit.
- Fan load applies to 120 $V \sim$ only (not for 277 $V \sim$).
- Occupancy sensor switch can be installed in any location.

416	ELUTRON	SPECIFICATIO	N SUBMITTAL	Page
	Job Name:		Model Numbers:	
	Job Number:			


369666f 13 09.05.19


Wiring Diagrams (continued)

Wiring Diagram 4 - without Neutral

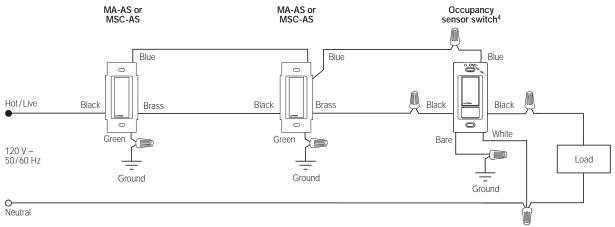
3-way Installation with Standard Mechanical Switch (277 V~)1, 2, 3

-OPS6M2-DV, -VPS6M2-DV

Note: Connect green-sleeved wire to ground only in retrofit and replacement applications.

- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).
- Only one occupancy sensor switch can be used per multi-location circuit.
- Fan load applies to 120 $V \sim$ only (not for 277 $V \sim$).
- Occupancy sensor switch can be installed in any location.

	LUTRON	SPECIFICATIO	N SUBMITTAL	Page
Γ	Job Name:		Model Numbers:	
L				
	Job Number:			

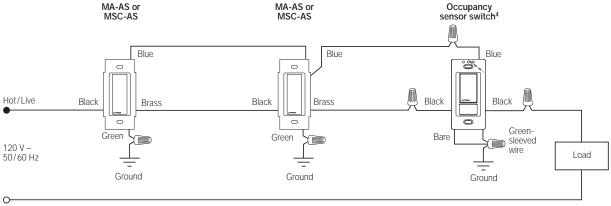

369666f 14 09.05.19

Wiring Diagrams (continued)

Wiring Diagram 5 - with Neutral

Multi-Location Installation (120 V~)^{1, 2, 4}

-OPS5M, -OPS6M2-DV, -VPS5M, -VPS6M2-DV with MA-AS or MSC-AS



Note: When a neutral connection is available, remove the green sleeve and connect the white wire to neutral.

Wiring Diagram 5 - without Neutral

Multi-Location Installation (120 V~)^{1, 2, 4}

-OPS5M, -OPS6M2-DV, -VPS5M, -VPS6M2-DV with MA-AS or MSC-AS

Neutral

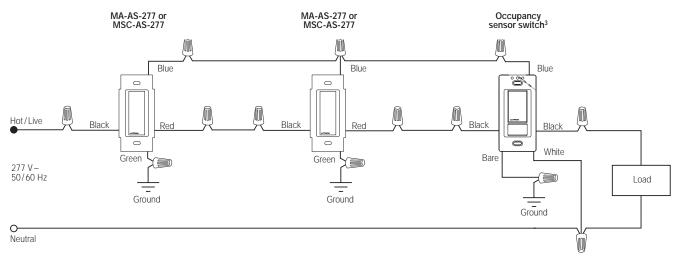
MI LITEON

Note: Connect green-sleeved wire to ground only in retrofit and replacement applications.

- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).
- Only one occupancy sensor switch can be used per multi-location circuit.
- Fan load applies to 120 V~ only (not for 277 V~).
- Occupancy sensor switch can be installed in any location.

Continued on next page...

LUTRON SPECIFICATI	ON SUBMITTAL	Page
Job Name:	Model Numbers:	
Job Number:		

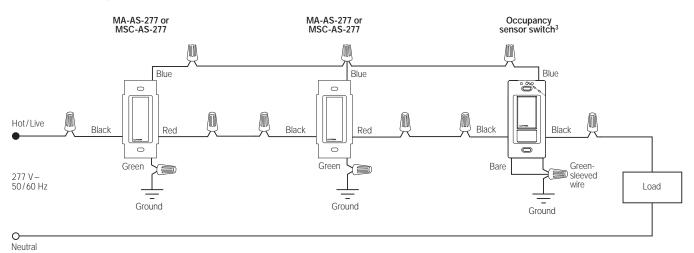

369666f 15 09.05.19

Wiring Diagrams (continued)

Wiring Diagram 6 - with Neutral

Multi-Location Installation (277 V~)^{1, 2, 3, 4}

-OPS6M2-DV, -VPS6M2-DV with MA-AS-277 or MSC-AS-277



Note: When a neutral connection is available, remove the green sleeve and connect the white wire to neutral.

Wiring Diagram 6 - without Neutral

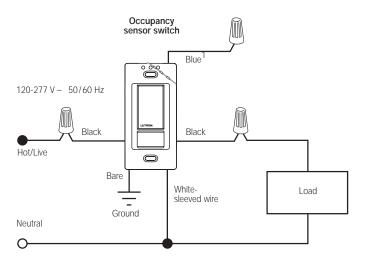
Multi-Location Installation (277 V~)1, 2, 3, 4

-OPS6M2-DV, -VPS6M2-DV with MA-AS-277 or MSC-AS-277

Note: Connect green-sleeved wire to ground only in retrofit and replacement applications.

- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).
- ² Only one occupancy sensor switch can be used per multi-location circuit.
- Fan load applies to 120 V~ only (not for 277 V~).

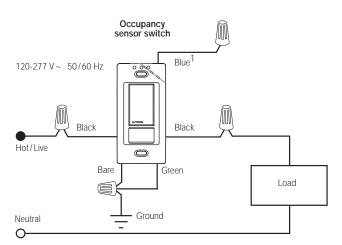
Occupancy sensor switch can be installed in any location.


-	LUTRON	SPECIFICATIO	N SUBMITTAL	Page
	Job Name:		Model Numbers:	
	Job Number:			

369666f 16 09.05.19

Wiring Diagrams (continued)

Wiring Diagram 7 - with Neutral


Single Location Installation (120-277 $V \sim$)^{1, 2}-OPS6M2U-DV, -VPS6M2U-DV

Note: When a neutral connection is available, connect the white-sleeved wire to neutral.

Wiring Diagram 7 - without Neutral

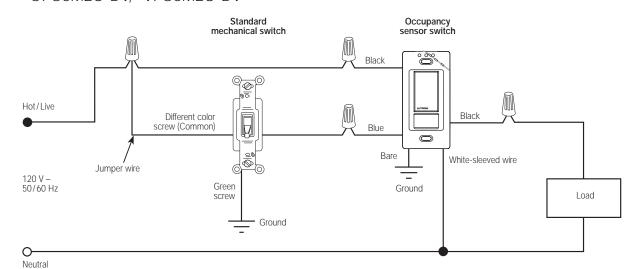
Single Location Installation (120-277 V~)^{1, 2}-OPS6M2U-DV, -VPS6M2U-DV

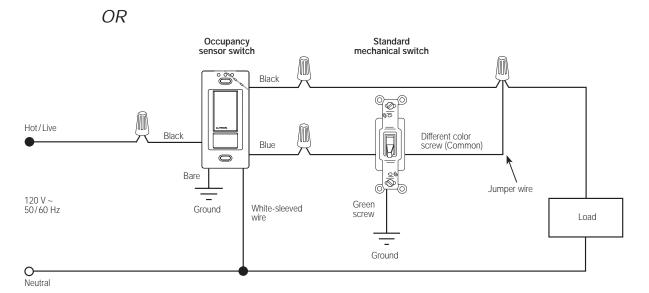
Note: Remove white sleeve and connect green wire to ground only in retrofit and replacement applications.

- When using controls in single location installations, tighten the blue terminal or cap blue wire. Do NOT connect the blue terminal/wire to any other wire or to ground.
- Fan load applies to 120 V \sim only (not for 277 V \sim).
- Only one occupancy sensor switch can be used per multi-location circuit.
- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).

Continued on next page...

LUTRON SPECIFICATION SUBMITTAL


Job Name:	Model Numbers:
Job Number:	


369666f 17 09.05.19

Wiring Diagrams (continued)

Wiring Diagram 8 - with Neutral

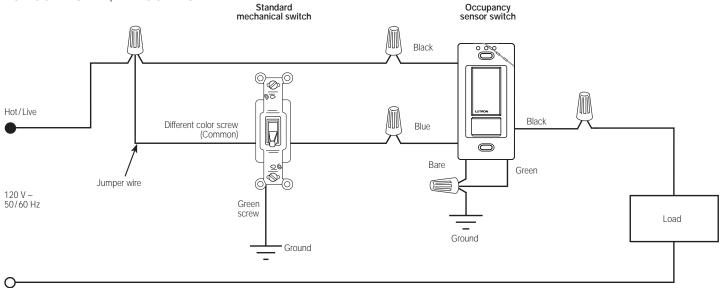
3-way Installation with Standard Mechanical Switch (120 V \sim)^{3, 4} -OPS6M2U-DV, -VPS6M2U-DV

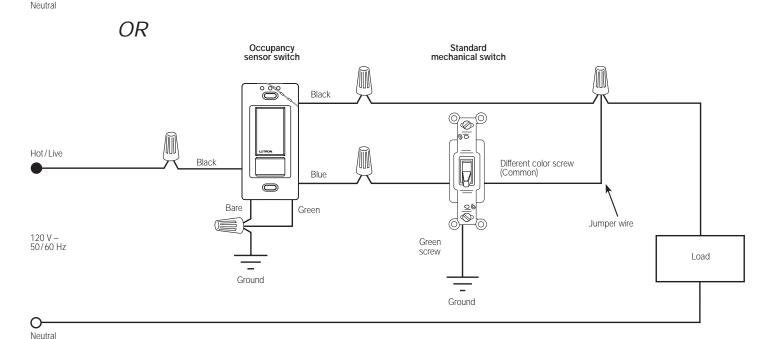
Note: When a neutral connection is available, connect the white-sleeved wire to neutral.

- When using controls in single location installations, tighten the blue terminal or cap blue wire. Do **NOT** connect the blue terminal/wire to any other wire or to ground.
- Fan load applies to 120 V~ only (not for 277 V~).
- Only one occupancy sensor switch can be used per multi-location circuit.
- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).

Continued on next page...

Job Number: Page Job Number:


369666f 18 09.05.19


Wiring Diagrams (continued)

Wiring Diagram 8 - without Neutral

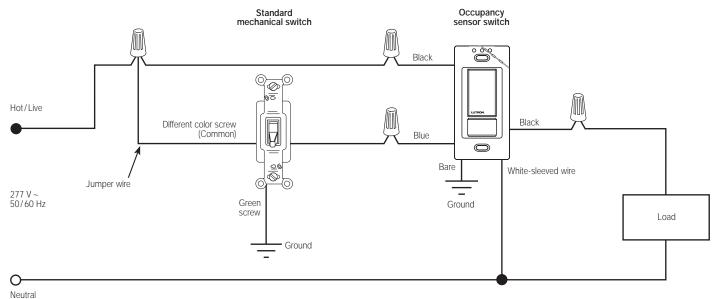
3-way Installation with Standard Mechanical Switch (120 V~)^{3, 4}

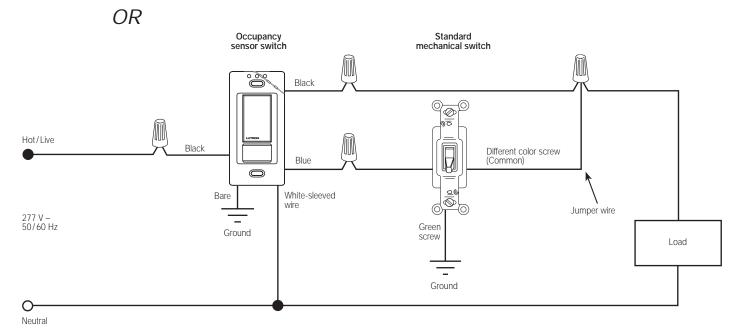
-OPS6M2U-DV, -VPS6M2U-DV

Note: Remove white sleeve and connect green wire to ground only in retrofit and replacement applications.

- When using controls in single location installations, tighten the blue terminal or cap blue wire. Do **NOT** connect the blue terminal/wire to any other wire or to ground.
- Fan load applies to 120 $V \sim$ only (not for 277 $V \sim$).
- Only one occupancy sensor switch can be used per multi-location circuit.
- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).

•	ELUTRON SPECIFICATION SUBMITTAL		Page	
	Job Name:		Model Numbers:	
	Job Number			


369666f 19 09.05.19


Wiring Diagrams (continued)

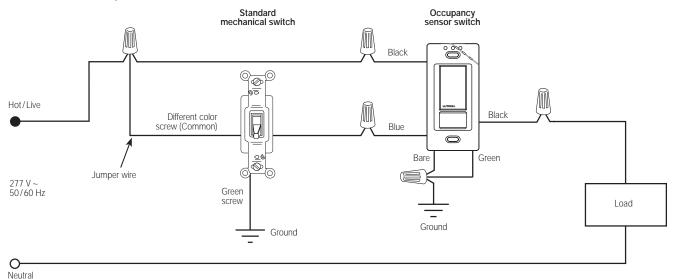
Wiring Diagram 9 - with Neutral

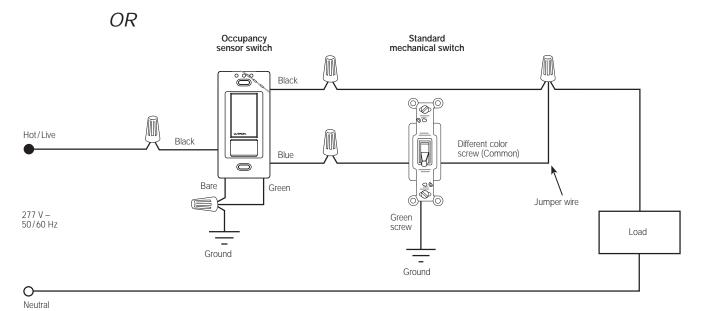
3-way Installation with Standard Mechanical Switch (277 $V \sim$)^{1, 2, 3}

-OPS6M2U-DV, -VPS6M2U-DV

Note: When a neutral connection is available, connect the white-sleeved wire to neutral.

- Only one occupancy sensor switch can be used per multi-location circuit.
- ² A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).
- Fan load applies to 120 $V \sim$ only (not for 277 $V \sim$).


LUTRON SPECIFI	CATION SUBMITTAL	Page
Job Name:	Model Numbers:	
Job Number:		
·		Page 388


369666f 20 09.05.19

Wiring Diagrams (continued)

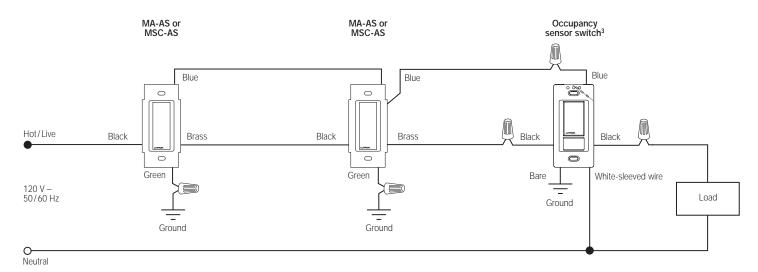
Wiring Diagram 9 - without Neutral

3-way Installation with Standard Mechanical Switch (277 V \sim) $^{1,\ 2,\ 3}$ -OPS6M2U-DV, -VPS6M2U-DV

Note: Remove white sleeve and connect green wire to ground only in retrofit and replacement applications.

- Only one occupancy sensor switch can be used per multi-location circuit.
- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).
- Fan load applies to 120 V~ only (not for 277 V~).

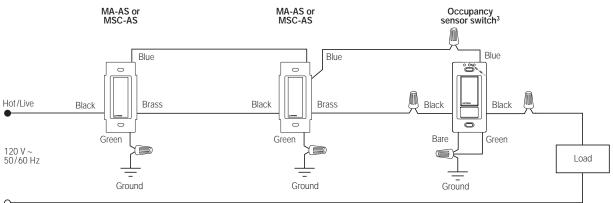
7	INCIN	SPECIFICATIO	N SUBMITTAL	Page
	Job Name:		Model Numbers:	
ı	Job Number:			


369666f 21 09.05.19

Wiring Diagrams (continued)

Wiring Diagram 10 - with Neutral

Multi-Location Installation (120 V~)1, 2, 3


-OPS6M2U-DV, -VPS6M2U-DV with MA-AS or MSC-AS

Note: When a neutral connection is available, connect the white-sleeved wire to neutral.

Wiring Diagram 10 - without Neutral Multi-Location Installation (120 V~)1, 2, 3

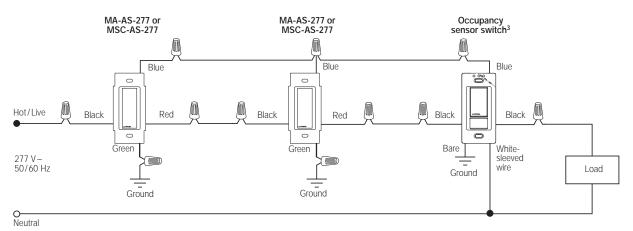
-OPS6M2U-DV, -VPS6M2U-DV with MA-AS or MSC-AS

Neutral

Note: Remove white sleeve and connect green wire to ground only in retrofit and replacement applications.

- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).
- Only one occupancy sensor switch can be used per multi-location circuit.
- Occupancy sensor switch can be installed in any location.
- Fan load applies to 120 V~ only (not for 277 V~).

LUTRON SPECIFICATION SUBMITTAL		N SUBMITTAL	Page	
	Job Name:		Model Numbers:	
	Job Number:			

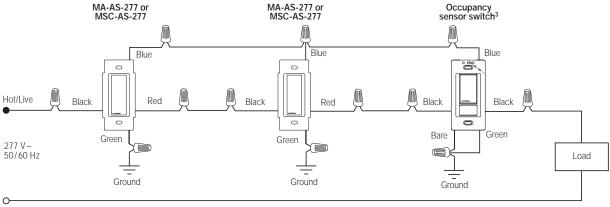

369666f 22 09.05.19

Wiring Diagrams (continued)

Wiring Diagram 11 - with Neutral

Multi-Location Installation (277 V~)1, 2, 3, 4

-OPS6M2U-DV, -VPS6M2U-DV with MA-AS-277 or MSC-AS-277



Note: When a neutral connection is available, connect the white-sleeved wire to neutral.

Wiring Diagram 11 - without Neutral

Multi-Location Installation (277 $V \sim$)^{1, 2, 3, 4}

-OPS6M2U-DV, -VPS6M2U-DV with MA-AS-277 or MSC-AS-277

Neutral

Note: Remove white sleeve and connect green wire to ground only in retrofit and replacement applications.

- A single standard mechanical 3-way switch or up to 9 companion switches may be connected to most occupancy sensor switches. Standard mechanical 3-way switch cannot be combined with companion switch. Total blue terminal wire length may be up to 150 ft (46 m).
- Only one occupancy sensor switch can be used per multi-location circuit.
- Occupancy sensor switch can be installed in any location.
- Fan load applies to 120 V~ only (not for 277 V~).

LUTRON SPECIFICATION SUBMITTAL		N SUBMITTAL	Page	
	Job Name:		Model Numbers:	
	Job Number:			

369666f 23 09.05.19

Colors and Finishes

Gloss Finishes

WH

AL

Ivory

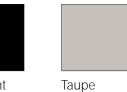
IV

Light Almond Almond

LA

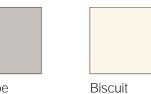
BR

Brown


Black BL

Satin Finishes

SW



TΡ

Hot

HT

ΒI

Snow MN

Palladium

PD

Eggshell ES

Plum

PL

Terracotta

TC

MR

BG

Sienna

SI

Greenbrian GB

Goldstone GS

Mocha Stone MS

Stone ST

Desert Stone Limestone

LS

For the latest color offerings please see our website: http://www.lutron.com/satincolors

• Due to printing limitations, colors and finishes shown cannot be guaranteed to match actual product colors perfectly.

DS

• Color chip keychains are available for more precise color matching: Gloss Finishes: DG-CK-1

Satin Finishes: SC-CK-1

) Lutron, Lutron, Maestro, FASS, XCT, and Softswitch are trademarks or registered trademarks of Lutron Electronics Co., Inc. in the US and/or other countries. UL is a trademark of UL LLC.

LUTRON SPECIFICATION SUBMITTAL

TO THE STEET TO ATTOM SO DWITTING			rage
	Job Name:	Model Numbers:	
	Job Number:		

Technical Appendix 2

Lab Airflow Optimization ECM

Calculations (Savings Summary & Calculation)

- Kornberg
- Del Monte
- BMEO

Scope of Work (Cost Estimate & Scope of Work)

- Kornberg
- Del Monte
- BMEO

Technical Appendix 2

Lab Airflow Optimization ECM

Calculations (Savings Summary & Calculation)

- Kornberg
- Del Monte
- BMEO

UNIVERSITY OF ROCHESTER

Laboratory Air Flow Optimization

BMEO

Option A

Building Utility Impact				
Building Level Energy Savings				
Electrical Energy Savings	200	mmBtu/Year		
Chilled Water Savings	398	mmBtu/Year		
Steam Savings	509	mmBtu/Year		
Total Energy Savings	1,107	mmBtu/Year		
Building Level Utility Savings				
Electrical Energy Savings	58,553	kWh/Year		
Chilled Water Savings	33,136	Ton-Hour/Year		
Steam Savings	509	klbs/Year		
Water Savings	-	kGal/Year		
Annual O&M Savings (\$)				
Operational & Maintenance Savings	\$0	Per Year		

UNIVERSITY OF ROCHESTER

Laboratory Air Flow Optimization

BMEO

Option B

Building Utility Impact				
Building Level Energy Savings				
Electrical Energy Savings	302	mmBtu/Year		
Chilled Water Savings	626	mmBtu/Year		
Steam Savings	884	mmBtu/Year		
Total Energy Savings	1,811	mmBtu/Year		
Building Level Utility Savings				
Electrical Energy Savings	88,370	kWh/Year		
Chilled Water Savings	52,157	Ton-Hour/Year		
Steam Savings	884	klbs/Year		
Water Savings	-	kGal/Year		
Annual O&M Savings (\$)				
Operational & Maintenance Savings	\$0	Per Year		

Existing Conditio	ns							Fume Hoo	d		Downdra	aft		Snorkel					Summary				1
Room Number	Room Type	Sq. Ft	Assumed Ceiling Height	Volume (cubic feet)		Supply CFM	Opening Area (sf)	Measured Face Velocity	OCC. MIN CFM	Opening Area (sf)	Measured Face Velocity	OCC. MIN CFM	Opening Area (sf)	Measured Face Velocity	OCC. MIN CFM		Min. General Exhaust CFM		Gammary	Calculated ACH		Pressurization SP	CFM/Sqft
B103	Lab	105	9.5	998		170			-			-			50			170		10	-	-	1.6
Suite B109	Lab	1,209	9.5	11,486		1,550			575			-			200					10	375	(375)	
Suite 110	Lab	1,408	9.5	13,376		2,010			575			-			300					10	225	(225)	1.4
103	Lab	310	9.5	2,945	1&2	345			575			-			-	575				10	150	(150)	1.1
104	Lab	1,654	9.5	15,713	1&2	2,395						-			-	-	2,620			10	225	(225)	
222	Lab	789	9.5	7,496	1&2	950			575			-			-	575	675	1,250		10	300	(300)	1.2
Suite 224	Lab	559	9.5	5,311	1&2	665			-			-			-	-	890	890		10	225	(225)	1.2
226	Lab	425	9.5	4,038	1&2	525			575			-			150	725	(50	675		10	150	(150)	1.2
227	Lab	278	9.5	2,641	1&2	220			575			-			-	575	(130) 445		10	225	(225)	0.8
228	Lab	422	9.5	4,009	1&2	520						-			100	100	570	670		10	150	(150)	1.2
230	Lab	425	9.5	4,038	1&2	525						-			100	100	575	675		10	150	(150)	1.2
Suite 232	Lab	1,101	9.5	10,460	1&2	1,530			575			-			-	575	1,180	1,755		10	225	(225)	1.4
Suite 237	Lab	1,100	9.5	10,450	1&2	1,530			575			-			-	575	1,180	1,755		10	225	(225)	1.4
239	Lab	402	9.5	3.819	1&2	640			-			-			-	-	640	640		10	-	-	1.6
Suite 321	Lab	1,119	9.5	10,631	1&2	1,330						-			200	200	1,580	1,780		10	450	(450)	1.2
324	Lab	565	9.5	5,368		745			575			-			-	575				10	150	(150)	
326	Lab	425	9.5	4,038		525						-			100					10	150	(150)	1.2
Suite 329	Lab	1.102	9.5	10,469		1,530			1,350			750			-	2.100				10	225	(225)	
Suite 333	Lab	1.105	9.5	10,498		1,535			575			-			-	575				10	225	(225)	1.4
Suite 336	Lab	1,094	9.5	10,393		1,520			575			-			100			1,745		10	225	(225)	
339	Lab	415	9.5	3,943		510			575			-			-	575				10	150	(150)	
420	Lab	555	9.5	5,273		730			575						100					10	150	(150)	
422	Lab	568	9.5	5,396		750						-			100			900		10	150	(150)	1.3
Suite 425	Lab	1,125	9.5	10,688		1,265			575			_			200					10	525	(525)	
428	Lab	425	9.5	4.038		525			-			_			100					10	150	(150)	1.2
429	Lab	425	9.5	4,038		525			575			-			-	575				10	150	(150)	1.2
431	Lab	568	9.5	5,396		900			-							313	900			10	-	(150)	1.6
Suite 434	Lab	1,126	9.5	10,697	1&2	1,265			575						200	775				10	525	(525)	
Suite 438	Lab	1,116	9.5	10,602		1,250			575			-			200			1,775		10	525	(525)	
Suite 436 Suite 521	Lab	1,110	9.5	10,602		1,230			575	-	1	-	1	1	200					10	450	(450)	
Suite 521	Lab	1,120	9.5	12,084		1,570			575		+	-	-	1	200					10	450	(450)	
528	Lab	422	9.5	4,009		520			5/5		+	-	-	-	100					10	150	(450)	
528	Lab	422	9.5	4,009		520			575		+		-	-	100			675		10	150	(150)	
530	Lab	425	9.5	4,038		525			5/5			-			100					10	150	(150)	1.2
		1.129		, , , , ,							+	-	-	-									
Suite 534	Lab		9.5	10,726		1,345			575			-			200		, , ,	, , , ,		10	450	(450)	
Suite 538	Lab	1,116	9.5	10,602	1&2	1,325	1	1	-		1	-	1	1	200	200	1,575	1,775		10	450	(450)	1.2
											-	-	1					1					
		07.000	0.10	004070	1	05.000			40.405			-				4= 4==	00 770			000	0.005	(0.005)	46
		27,829	342	264,376	-	35,620	-	-	13,425	-	-	750	-	-	3,300	17,475	26,770	44,245	-	362	8,625	(8,625)	

Project Name: University of Rochester Energy Conservation MP Support

Building: Biomedical Engineering - Optics Building

Date: 4/1/2021

EEM: Lab Airflow Optimization Scenario: Exisitng and Proposed

Scenario: Exisitng an Calculated By: CLF

Reviewed By: GHB

Desired Face Velocity 85 FPM Desired CFM/Sqft 1.00 CFM/SQFT Desired Lab ACH New Fume Hood Face Velocity or Lab ACH Scenario Fume Hood Downdraft Snorkel Summary Desired New Actual New Total Assumed Calculated l ab Exhaust New Face Calculated New Face Calculated New Face Total Hood Ceiling Volume Associated Supply Onening Opening Opening Calculated New General Total Lah Pressurization Exhaust CFM Area (sf) Exhaust CFM Area (sf) Exhaust CFM Exhaust CFM Exhaust CFM Exhaust CFM CFM / SF SP CFM/Sqft Room Number Room Type Sq. Ft Height (cubic feet) AHU CFM Area (sf) Velocity Velocity Velocity CFM New ACH B103 Lab 105 998 1&2 133 50 50 83 133 133 1.3 1.3 1,209 11,486 1&2 1,209 200 775 1,584 1.0 Suite B109 Lab 9.5 809 1,584 1.0 (375) 1,408 9.5 13,376 1&2 1,558 575 300 875 908 1,783 1,783 1.1 (225) 1.1 Suite 110 Lab 310 9.5 2,945 1&2 425 575 575 12 1.4 1.4 103 Lab 1,654 9.5 15,713 1&2 1,870 2,095 2,095 2,095 1.1 1.1 104 8 Lab (225)575 575 1,089 Lab 789 9.5 7.496 1&2 789 514 1,089 1.0 (300) 1.0 559 5 311 1&2 784 1.0 Suite 224 Lah 95 559 784 784 9 1.0 (225)575 150 226 Lab 425 9.5 4,038 1&2 575 725 575 725 11 1.4 (150) 1.4 227 Lab 278 9.5 2.641 1&2 220 575 575 (130)445 445 10 0.8 (225) 0.8 228 Lab 422 9.5 4,009 1&2 422 100 100 472 572 572 1.0 (150) 1.0 425 4,038 1&2 425 100 100 475 575 575 1.0 (150) 1.0 Lab 9.5 1,170 575 575 1,395 Suite 232 1,101 10,460 1&2 820 1,395 1.1 (225) 1.1 Lab 9.5 10,450 1&2 575 575 1,393 1.1 1.100 1.168 818 Suite 237 Lab 1.393 1.1 (225) Lab 402 9.5 3.819 1&2 509 509 509 509 1.3 1.3 1 119 10.631 1&2 200 200 (450) 1.0 Suite 321 Lah 95 1 1 1 9 1 369 1 569 1 569 9 1.0 575 324 Lab 565 9.5 5.368 1&2 566 575 141 716 716 1.0 (150) 1.0 326 Lab 425 9.5 4,038 1&2 425 100 100 475 575 575 9 1.0 (150) 1.0 Suite 329 Lab 1,102 10,469 1&2 1,875 1,350 750 2,100 1,396 2,100 12 1.7 1.7 Suite 333 1,105 9.5 10,498 1&2 1,175 575 575 825 1,400 1,400 1.1 (225) 1.1 Lab Suite 336 1,094 9.5 10,393 1&2 1,161 575 100 675 711 1,386 1,386 1.1 (225) 1.1 Lab 415 9.5 3,943 1&2 575 575 565 575 1.0 (150) 1.0 339 Lab 425 9 1.0 420 Lab 555 9.5 5.273 1&2 555 575 100 675 30 705 705 1.0 568 100 719 1.0 422 Lah 95 5 396 182 569 100 619 719 8 1.0 (150)Suite 425 Lab 1,125 9.5 10,688 1&2 1,125 575 200 775 875 1,650 1,650 9 1.0 (525)1.0 428 Lab 425 9.5 4.038 1&2 425 100 100 475 575 575 9 1.0 (150) 1.0 429 Lab 425 9.5 4,038 1&2 425 575 575 575 575 1.0 (150) 1.0 Lab 568 9.5 5,396 1&2 719 719 719 1.3 1.3 1,126 9.5 10,697 1&2 575 200 775 Suite 434 1,126 876 1,651 1,651 1.0 (525) 1.0 Lab 9.5 200 775 1.0 1.116 10.602 1&2 575 866 1.641 1.641 1.0 (525) Suite 438 Lab 1.116 1,120 9.5 10.640 182 575 200 775 795 1.570 1.0 (450) 1.0 Suite 521 Lab 1,120 1,570 9 Suite 525 Lab 1.272 9.5 12.084 1&2 1,272 575 200 775 947 1,722 1,722 1.0 (450)1.0 Lab 422 9.5 4.009 1&2 422 100 100 472 572 572 1.0 (150)1.0 575 575 Lab 425 9.5 4,038 1&2 525 100 675 675 10 1.2 (150) 1.2 531 Lab 425 9.5 4.038 1&2 425 100 100 475 575 575 9 1.0 (150) 1.0 Suite 534 Lab 1,129 9.5 10,726 1&2 1,129 575 200 775 804 1,579 1,579 1.0 (450) 1.0 Suite 538 Lab 1,116 9.5 10,602 1&2 1,116 200 200 1,366 1,566 1.566 1.0 (450) 1.0 264,376 29,848 13,425 3,300 17,475 20,998 37,394 38,473 317 38.8 (8,625) 39

Existing Condition	ons							Fume Ho	od		Downdra	ıft		Snorkel					Summary				1
Room Number	Room Type	Sq. Ft	Assumed Ceiling Height	Volume (cubic feet)	Associated AHU	Supply CFM	Opening Area (sf)	Measured Face Velocity	OCC. MIN CFM	Opening Area (sf)	Measured Face Velocity	OCC. MIN CFM	Opening Area (sf)	Measured Face Velocity	OCC. MIN CFM		Min. General Exhaust CFM			Calculated ACH		Pressurization SP	CFM/Sqft
B103	Lab	105	9.5	998		170			-			-			50					10	-	-	1.6
Suite B109	Lab	1,209	9.5	11,486					575			-			200					10	375	(375)	
Suite 110	Lab	1,408	9.5	13,376		2,010			575			-			300					10	225	(225)	1.4
103	Lab	310	9.5	2,945	1&2	345			575			-			-	575				10	150	(150)	1.1
104	Lab	1,654	9.5	15,713					-			-			-	-	2,620			10	225	(225)	1.4
222	Lab	789	9.5	7,496	1&2	950			575			-			-	575	675	1,250		10	300	(300)	1.2
Suite 224	Lab	559	9.5	5,311	1&2	665			-			-			-	-	890			10	225	(225)	1.2
226	Lab	425	9.5	4,038	1&2				575			-			150					10	150	(150)	1.2
227	Lab	278	9.5	2,641	1&2	220			575			-			-	575				10	225	(225)	3.0
228	Lab	422	9.5	4,009		520			-			-			100					10	150	(150)	1.2
230	Lab	425	9.5	4,038					-			-			100					10	150	(150)	1.2
Suite 232	Lab	1,101	9.5	10,460		1,530			575			-			-	575				10	225	(225)	1.4
Suite 237	Lab	1,100	9.5	10,450		, , , , ,			575			-			-	575		1,755		10	225	(225)	1.4
239	Lab	402	9.5	3,819					-			-			-	-	640			10	-	-	1.6
Suite 321	Lab	1,119	9.5	10,631	1&2	1,330			-			-			200	200		1,780		10	450	(450)	1.3
324	Lab	565	9.5	5,368					575			-			-	575				10	150	(150)	1.3
326	Lab	425	9.5	4,038	1&2	525			-			-			100	100	575	675		10	150	(150)	1.2
Suite 329	Lab	1,102	9.5	10,469		1,530			1,350			750			-	2,100				10	225	(225)	1.4
Suite 333	Lab	1,105	9.5	10,498		1,535			575			-			-	575		1,760		10	225	(225)	1.4
Suite 336	Lab	1,094	9.5	10,393	1&2	1,520			575			-			100					10	225	(225)	1.4
339	Lab	415	9.5	3,943	1&2	510			575			-			-	575				10	150	(150)	1.2
420	Lab	555	9.5	5,273		730			575			-			100					10	150	(150)	1.3
422	Lab	568	9.5	5,396		750			-			-			100					10	150	(150)	1.3
Suite 425	Lab	1,125	9.5	10,688					575			-			200					10	525	(525)	
428	Lab	425	9.5	4,038	1&2	525			-			-			100					10	150	(150)	1.2
429	Lab	425	9.5	4,038	1&2	525			575			-			-	575				10	150	(150)	1.3
431	Lab	568	9.5	5,396					-			-			-	-	900			10	-	-	1.6
Suite 434	Lab	1,126	9.5	10,697	1&2	1,265			575			-			200			1,790		10	525	(525)	1.3
Suite 438	Lab	1,116	9.5	10,602	1&2	1,250			575			-			200			1,775		10	525	(525)	1.3
Suite 521	Lab	1,120	9.5	10,640		1,330			575			-			200			1,780		10	450	(450)	1.2
Suite 525	Lab	1,272	9.5	12,084	1&2	1,570			575			-			200					10	450	(450)	1.2
528	Lab	422	9.5	4,009					-			-			100					10	150	(150)	1.2
530	Lab	425	9.5	4,038	1&2				575			-			100	675		675		10	150	(150)	1.2
531	Lab	425	9.5	4,038	1&2	525			-			-			100	100	575	675		10	150	(150)	1.2
Suite 534	Lab	1,129	9.5	10,726	1&2	1,345			575			-			200	775	1,020	1,795		10	450	(450)	1.2
Suite 538	Lab	1,116	9.5	10,602	1&2	1,325			-			-			200	200	1,575	1,775		10	450	(450)	1.3
												-											
												-											
		27,829	342	264,376	-	35,620	-	-	13,425	-	-	750	-	-	3,300	17,475	26,770	44,245	-	362	8,625	(8,625)	46

Project Name: University of Rochester Energy Conservation MP Support

264,376

28,919

13,425

Building: Biomedical Engineering - Optics Building

Date: 4/1/2021

EEM: Lab Airflow Optimization Scenario: Exisitng and Proposed

Calculated By: CLF
Reviewed By: GHB

Desired Face Velocity 85 FPM Desired CFM/Sqft 1.00 CFM/SQFT Desired Lab ACH New Fume Hood Face Velocity or Lab ACH Scenario Fume Hood Downdraft Snorkel Summary Desired New Actual New Total Assumed Calculated l ab Exhaust New Face Calculated New Face Calculated New Face Total Hood Ceiling Volume Associated VlaguZ Onening Opening Opening Calculated New General Total Lah Pressurization Exhaust CFM Area (sf) Exhaust CFM Area (sf) Exhaust CFM Exhaust CFM Exhaust CFM Exhaust CFM CFM / SF SP CFM/Sqft Room Number Room Type Sq. Ft (cubic feet) AHU CFM Area (sf) Velocity Velocity Velocity CFM New ACH B103 Lab 105 998 1&2 105 50 50 105 105 1.0 1.0 1,209 11,486 1&2 200 775 1,584 1.0 Suite B109 Lab 9.5 1,209 809 1,584 1.0 (375) 1,408 9.5 13,376 1&2 1,408 575 300 875 758 1,633 1,633 1.0 (225) 1.0 Suite 110 Lab 310 9.5 2,945 1&2 425 575 575 12 1.4 1.4 103 Lab 1,654 9.5 15,713 1&2 1,654 1,879 1,879 1,879 1.0 1.0 104 Lab (225)575 575 1.0 Lab 789 9.5 7.496 1&2 789 514 1,089 1,089 1.0 (300) 559 5 311 1&2 784 (225) 1.0 Suite 224 Lah 95 559 784 784 9 1.0 575 150 725 226 Lab 425 9.5 4,038 1&2 575 575 725 11 1.4 (150) 1.4 227 Lab 278 9.5 2.641 1&2 220 575 575 (130)445 445 10 0.8 (225) 0.8 228 Lab 422 9.5 4,009 1&2 422 100 100 472 572 572 1.0 (150) 1.0 425 4,038 1&2 425 100 100 475 575 575 1.0 (150) 1.0 Lab 9.5 575 575 751 1,326 Suite 232 1,101 10,460 1&2 1,101 1,326 1.0 (225) 1.0 Lab 9.5 10,450 1&2 575 575 750 1.0 1.100 1.100 1.325 1.0 Suite 237 Lab 1.325 (225) Lab 402 9.5 3.819 1&2 402 402 402 402 1.0 1.0 1 119 10.631 1&2 1 1 1 9 200 200 1 369 1 569 1 569 (450) 1.0 Suite 321 Lah 95 9 1.0 575 324 Lab 565 9.5 5.368 1&2 565 575 140 715 715 1.0 (150) 1.0 326 Lab 425 9.5 4,038 1&2 425 100 100 475 575 575 9 1.0 (150) 1.0 Suite 329 Lab 1,102 10,469 1&2 1,875 1,350 750 2,100 1,327 2,100 12 1.7 1.7 Suite 333 1,105 9.5 10,498 1&2 1,105 575 575 755 1,330 1,330 1.0 (225) 1.0 Lab Suite 336 1,094 9.5 10,393 1&2 1,094 575 100 675 644 1,319 1,319 1.0 (225) 1.0 Lab 415 9.5 3,943 1&2 425 575 575 575 1.0 (150) 1.0 339 Lab 565 9 420 Lab 555 9.5 5.273 1&2 555 575 100 675 30 705 705 1.0 1.0 568 568 100 718 1.0 422 Lah 95 5 396 182 100 618 718 8 1.0 (150)Suite 425 Lab 1,125 9.5 10,688 1&2 1,125 575 200 775 875 1,650 1,650 9 1.0 (525) 1.0 428 Lab 425 9.5 4.038 1&2 425 100 100 475 575 575 9 1.0 (150) 1.0 429 Lab 425 9.5 4,038 1&2 425 575 575 575 575 1.0 (150) 1.0 Lab 568 9.5 5,396 1&2 568 568 568 568 1.0 1.0 1,126 9.5 10,697 1&2 1,126 575 200 775 1,651 Suite 434 876 1,651 1.0 (525) 1.0 Lab 9.5 200 775 1.0 1.116 10.602 1&2 575 866 1.641 1.641 1.0 (525) Suite 438 Lab 1.116 1,120 9.5 10.640 182 575 200 775 795 1.570 1.0 (450) 1.0 Suite 521 Lab 1,120 1,570 9 Suite 525 Lab 1.272 9.5 12.084 1&2 1,272 575 200 775 947 1,722 1,722 1.0 (450)1.0 Lab 422 9.5 4.009 1&2 422 100 100 472 572 572 1.0 (150)1.0 575 575 Lab 425 9.5 4,038 1&2 525 100 675 675 10 1.2 (150) 1.2 531 Lab 425 9.5 4.038 1&2 425 100 100 475 575 575 9 1.0 (150) 1.0 Suite 534 Lab 1,129 9.5 10,726 1&2 1,129 575 200 775 804 1,579 1,579 1.0 (450) 1.0 1,116 9.5 10,602 1&2 1,116 200 200 1,366 1,566 1.566 (450) 1.0

3,300

20,069

36,396

37,544

309

37.5

(8,625)

37

Existing Condition	ons							Fume Ho	od		Downdra	ıft		Snorkel					Summary				1
Room Number	Room Type	Sq. Ft	Assumed Ceiling Height	Volume (cubic feet)	AHU	Supply CFM	Opening Area (sf)	Measured Face Velocity	UNOCC. MIN CFM	Opening Area (sf)	Measured Face Velocity	UNOCC. MIN CFM	Opening Area (sf)	Measured Face Velocity	UNOCC. MIN CFM		Min. General Exhaust CFM			Calculated ACH		Pressurization SP	CFM/Sqft
B103	Lab	105	9.5	998		100			-			-			50	50				6	-	-	1.0
Suite B109	Lab	1,209	9.5	11,486	1&2	780			350			-			200	550		1,155		6	375	(375)	
Suite 110	Lab	1,408	9.5	13,376	1&2	1,125			350			-			300	650				6	225	(225)	0.8
103	Lab	310	9.5	2,945	1&2	145			350			-			-	350	(55)			6	150	(150)	
104	Lab	1,654	9.5	15,713		1,350			-			-			-	-	1,575	1,575		6	225	(225)	
222	Lab	789	9.5	7,496	1&2	450			350			-			-	350	400			6	300	(300)	
Suite 224	Lab	559	9.5	5,311	1&2	310			-			-			-	-	535	535		6	225	(225)	
226	Lab	425	9.5	4,038		255			350			-			150	500				6	150	(150)	
227	Lab	278	9.5	2,641	1&2	40			350			-			-	350				6	225	(225)	0.1
228	Lab	422	9.5	4,009		255			-			-			100	100				6	150	(150)	
230	Lab	425	9.5	4,038		255			-			-			100	100		405		6	150	(150)	0.6
Suite 232	Lab	1,101	9.5	10,460	1&2	830			350			-			-	350	705	1,055		6	225	(225)	
Suite 237	Lab	1,100	9.5	10,450	1&2	830			350			-			-	350	705	1,055		6	225	(225)	0.8
239	Lab	402	9.5	3,819	1&2	385			-			-			-	-	385	385		6	-	-	1.0
Suite 321	Lab	1,119	9.5	10,631	1&2	620			-			-			200	200	870	1,070		6	450	(450)	
324	Lab	565	9.5	5,368	1&2	390			350			-			-	350	190	540		6	150	(150)	0.7
326	Lab	425	9.5	4,038	1&2	255			-			-			100	100	305	405		6	150	(150)	
Suite 329	Lab	1,102	9.5	10,469	1&2	835			400			750			-	1,150	(90)	1,060		6	225	(225)	
Suite 333	Lab	1,105	9.5	10,498	1&2	835			350			-			-	350	710	1,060		6	225	(225)	0.8
Suite 336	Lab	1,094	9.5	10,393	1&2	825			350			-			100	450	600	1,050		6	225	(225)	0.8
339	Lab	415	9.5	3,943	1&2	245			350			-			-	350	45	395		6	150	(150)	0.6
420	Lab	555	9.5	5,273	1&2	380			350			-			100	450	80	530		6	150	(150)	0.7
422	Lab	568	9.5	5,396	1&2	390			-			-			100	100	440	540		6	150	(150)	0.7
Suite 425	Lab	1,125	9.5	10,688	1&2	550			350			-			200	550	525	1,075		6	525	(525)	0.5
428	Lab	425	9.5	4,038	1&2	255			-			-			100	100	305	405		6	150	(150)	0.6
429	Lab	425	9.5	4,038	1&2	255			350			-			-	350	55	405		6	150	(150)	0.6
431	Lab	568	9.5	5,396	1&2	540			-			-			-	-	540	540		6	-		1.0
Suite 434	Lab	1,126	9.5	10,697	1&2	555			350			-			200	550	530	1,080		6	525	(525)	0.5
Suite 438	Lab	1,116	9.5	10,602	1&2	545			350			-			200	550	520	1,070		6	525	(525)	0.5
Suite 521	Lab	1,120	9.5	10,640	1&2	625			350			-			200	550	525	1,075		6	450	(450)	0.6
Suite 525	Lab	1,272	9.5	12,084	1&2	765			350			-			200	550	665	1,215		6	450	(450)	0.6
528	Lab	422	9.5	4,009	1&2	255			-			-			100	100	305	405		6	150	(150)	0.6
530	Lab	425	9.5	4,038	1&2	255			350			-			100	450	(45)	405		6	150	(150)	0.6
531	Lab	425	9.5	4,038	1&2	255			-			-			100	100	305	405		6	150	(150)	
Suite 534	Lab	1,129	9.5	10,726	1&2	630			350			-			200	550	530	1,080		6	450	(450)	
Suite 538	Lab	1,116	9.5	10,602	1&2	620			-			-			200	200	870	1,070		6	450	(450)	0.6
		27,829	342	264,376	-	17,990	-	-	7,750	-	-	750	-	-	3,300	11,800	14,815	26,615	-	217	8,625	(8,625)	23

										Desired	Face Velocity	100	FPM	De	esired CFM/Sqff	. 1	CFM/SQFT		Desired Lab ACH		4		
New Fume Hood	d Face Velocity or	Lab ACH Sce	enario					Fume Hoo	od		Downdra	ft		Snorkel					Summary				1
			Assumed Ceiling	Volume	Associated	New Calculated Supply	Opening	New Face	Calculated	Opening	New Face	Calculated	Opening	New Face	Calculated	New Total Hood	New General	Desired New Total Lab	Actual New Total			Pressurization	
Room Number	Room Type	Sa. Ft	Height	(cubic feet)	AHU	CFM	Area (sf)	Velocity	Exhaust CFM	Area (sf)	Velocity	Exhaust CFM	Area (sf)	Velocity	Exhaust CFM		Exhaust CFM		CFM	New ACH	CFM / SF		CFM/Sqft
B103	Lab	105	9.5	998	1&2	100	-	-	-	-	-	-	-	-	50	50	50	100	100	6	1.0	-	1.0
Suite B109	Lab	1,209	9.5	11,486	1&2	780	-	-	350	-	-	-	-	-	200	550	605	1,155	1,155	6	0.6	(375)	
Suite 110	Lab	1,408	9.5	13,376	1&2	1,125		-	350	-	-	-	-	-	300	650	700	1,350	1,350	6	0.8	(225)	0.8
103	Lab	310	9.5		1&2	145	-	-	350	-	-	-	-	-	-	350	(55)	295	295	6	0.5	(150)	0.5
104	Lab	1,654	9.5	15,713	1&2	1,350	-	-	-	-	-	-	-	-	-	-	1,575	1,575	1,575	6	0.8	(225)	0.8
222	Lab	789	9.5	7,496	1&2	450	-	-	350	-	-	-	-	-	-	350	400	750		6		(300)	
Suite 224	Lab	559	9.5	5,311		310	-	-	-	-	-	-	-	-	-	-	535	535	535	6		(225)	
226	Lab	425	9.5	4,038		255	-	-	350	-	-	-	-	-	150	500			405	6		(150)	0.6
227	Lab	278	9.5		1&2	40	-	-	350	-	-	-	-	-	-	350	(85)	265	265	6		(225)	0.1
228	Lab	422	9.5	4,009		255	-	-	-	-	-	-	-	-	100	100	305	405		6		(150)	0.6
230	Lab	425	9.5	4,038		255	-	-	-	-	-	-	-	-	100	100	305	405	405	6		(150)	
Suite 232	Lab	1,101	9.5	10,460		830	-	-	350	-	-	-	-	-	-	350	705	1,055	1,055	6		(225)	
Suite 237	Lab	1,100	9.5	10,450		830	-	-	350	-	-	-	-	-	-	350	705	1,055	1,055	6		(225)	
239	Lab	402	9.5	3,819		385	-	-	-	-	-	-	-	-	-	-	385	385	385	6		- (450)	1.0
Suite 321	Lab	1,119	9.5	10,631		620	-	-	-	-	-	-	-	-	200	200		1,070	1,070	6		(450)	
324	Lab	565 425	9.5 9.5		1&2	390 255	-	-	350	-	-	-	-	-	100	350 100	190 305	540 405	540 405	6		(150)	0.7
326	Lab	1,102	9.5	4,038 10,469		255 835	-	-	400	-	-	750	-	-		1.150		1.060	1.060			(150)	
Suite 329 Suite 333	Lab	1,102	9.5	10,469		835	-	-	350	-	-		-	-	-	350	(90) 710	1,060	1,060	6		(225)	0.8
Suite 336	Lab	1,105	9.5	10,498		825	-	-	350	-	-	-	-	-	100	450	600	1,060	1,060	6		(225)	
339	Lab	415	9.5	3,943		245	-		350	-	-	-			100	350	45		395	6		(150)	0.6
420	Lab	555	9.5	5,273		380	-	-	350	-	-	-	-		100	450	80		530	6		(150)	0.6
422	Lab	568	9.5	5,273		390			330		-	-		-	100	100	440	540	540	6		(150)	0.7
Suite 425	Lab	1.125	9.5	10.688		550			350			-			200	550	525	1.075	1.075	6		(525)	
428	Lab	425	9.5	4,038		255		-	-	-	-	-	-	-	100	100	305	405		6		(150)	0.6
429	Lab	425	9.5	4,038		255			350			-			- 100	350	55	405	405	6		(150)	0.6
431	Lab	568	9.5	5,396		540	-	-	-	-		-	-	-	-	-	540	540	540	6		- (200)	1.0
Suite 434	Lab	1.126	9.5	10,697		555	-	-	350	-		-	-	-	200	550	530	1.080	1.080	6		(525)	
Suite 438	Lab	1,116	9.5	10,602	_	545	-	-	350	-	-	-	-	-	200	550		1,070	1,070	6		(525)	
Suite 521	Lab	1,120	9.5	10,640	1&2	625	-	-	350	-	-	-	-	-	200	550	525	1,075	1,075	6	0.6	(450)	0.6
Suite 525	Lab	1,272	9.5	12,084		765	-	-	350	-	-	-	-	-	200	550	665	1,215		6		(450)	
528	Lab	422	9.5	4,009	1&2	255	-	-	-	-		-		-	100	100	305	405	405	6		(150)	0.6
530	Lab	425	9.5	4,038	1&2	255		-	350	-	-	-	-	-	100	450	(45)	405	405	6	0.6	(150)	
531	Lab	425	9.5	4,038	1&2	255		-	-	-	-	-	-	-	100	100		405	405	6	0.6	(150)	0.6
Suite 534	Lab	1,129	9.5	10,726	1&2	630		-	350	-	-	-	-	-	200	550	530	1,080	1,080	6	0.6	(450)	0.6
Suite 538	Lab	1,116	9.5	10,602	1&2	620		-	-	-	-	-	-	-	200	200	870	1,070	1,070	6		(450)	0.6
		27,829		264,376		17,990		-	7,750	-	-	750	-	-	3,300	11,800	14,815	26,615	26,615	217	23	(8,625)	23

Existing Condition	ane							Fume Hoo	nd		Downdra	6		Snorkel		1			Summary				1
LAISUNG CONDIDE	JIIS		Assumed					Measured	Ju .		Measured	T.		Measured		<u> </u>	I		Juninary				
Room Number	Room Type	Sq. Ft	Ceiling	Volume		Supply	Opening	Face	UNOCC. MIN	Opening	Face	UNOCC. MIN	Opening	Face	UNOCC. MIN	Total Hood	Min. General	Total Lab		Calculated		Pressurization	CFM/Sqft
			Height	(cubic feet)	AHU	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Exhaust CFIV	Exhaust CFM	Exhaust CFM		ACH		SP	
B103	Lab	105	9.5	998	1&2	100			-			-			50	50	50	100		6	-	-	1.0
Suite B109	Lab	1,209	9.5	11,486	1&2	780			350			-			200	550	605	1,155		6	375	(375)	0.6
Suite 110	Lab	1,408	9.5		1&2				350			-			300	650	700			6	225	(225)	0.8
103	Lab	310	9.5	2,945	1&2	145			350			-			-	350	(55)	295		6	150	(150)	0.5
104	Lab	1,654	9.5						-			-			-	-	1,575	1,575		6	225	(225)	0.8
222	Lab	789	9.5	7,496	1&2	450			350			-			-	350	400			6	300	(300)	0.6
Suite 224	Lab	559	9.5	5,311	1&2	310			-			-			-	-	535	535		6	225	(225)	0.6
226	Lab	425	9.5			255			350			-			150	500	(95)			6	150	(150)	0.6
227	Lab	278	9.5	2,641	1&2	40			350			-			-	350	(85)	265		6	225	(225)	0.1
228	Lab	422	9.5	4,009	1&2	255			-			-			100	100	305	405		6	150	(150)	0.6
230	Lab	425	9.5	4,038	1&2	255			-			-			100	100	305	405		6	150	(150)	0.6
Suite 232	Lab	1,101	9.5						350			-			-	350		1,055		6	225	(225)	0.8
Suite 237	Lab	1,100	9.5		1&2	830			350			-			-	350	705	1,055		6	225	(225)	0.8
239	Lab	402	9.5	3,819	1&2	385			-			-			-	-	385	385		6	-	-	1.0
Suite 321	Lab	1,119	9.5	10,631	1&2	620			-			-			200	200	870	1,070		6	450	(450)	0.6
324	Lab	565	9.5	5,368	1&2	390			350			-			-	350	190	540		6	150	(150)	0.7
326	Lab	425	9.5	4,038	1&2	255			-			-			100	100	305	405		6	150	(150)	0.6
Suite 329	Lab	1,102	9.5	10,469	1&2	835			400			750			-	1,150	(90)	1,060		6	225	(225)	0.8
Suite 333	Lab	1,105	9.5	10,498	1&2	835			350			-			-	350	710	1,060		6	225	(225)	0.8
Suite 336	Lab	1,094	9.5	10,393	1&2	825			350			-			100	450	600	1,050		6	225	(225)	0.8
339	Lab	415	9.5	3,943	1&2	245			350			-			-	350	45	395		6	150	(150)	0.6
420	Lab	555	9.5	5,273	1&2	380			350			-			100	450	80	530		6	150	(150)	0.7
422	Lab	568	9.5	5,396	1&2	390			-			-			100	100	440	540		6	150	(150)	0.7
Suite 425	Lab	1,125	9.5	10,688	1&2	550			350			-			200	550	525	1,075		6	525	(525)	0.5
428	Lab	425	9.5	4,038	1&2	255			-			-			100	100	305	405		6	150	(150)	0.6
429	Lab	425	9.5	4,038	1&2	255			350			-			-	350	55	405		6	150	(150)	0.6
431	Lab	568	9.5	5,396	1&2	540			-			-			-	-	540	540		6	-	-	1.0
Suite 434	Lab	1,126	9.5	10,697	1&2	555			350			-			200	550	530	1,080		6	525	(525)	0.5
Suite 438	Lab	1,116	9.5	10,602	1&2	545			350			-			200	550	520	1,070		6	525	(525)	0.5
Suite 521	Lab	1,120	9.5	10,640	1&2	625			350			-			200	550	525	1,075		6	450	(450)	0.6
Suite 525	Lab	1,272	9.5	12,084	1&2	765			350			-			200	550	665	1,215		6	450	(450)	0.6
528	Lab	422	9.5	4,009	1&2	255			-			-			100	100	305	405		6	150	(150)	0.6
530	Lab	425	9.5	4,038	1&2				350			-			100	450	(45)	405		6	150	(150)	0.6
531	Lab	425	9.5	4,038	1&2	255			-			-			100	100	305	405		6	150	(150)	0.6
Suite 534	Lab	1,129	9.5	10,726	1&2	630			350			-			200	550	530	1,080		6	450	(450)	0.6
Suite 538	Lab	1,116	9.5	10,602	1&2	620			-			-			200	200	870	1,070		6	450	(450)	0.6
		27,829	342	264,376	-	17,990		-	7.750	-	-	750	-	-	3,300	11,800	14,815	26,615	-	217	8,625	(8,625)	23

										Desired	Face Velocity	100	FPM	D	esired CFM/Sqff	0.5	CFM/SQFT		Desired Lab ACH		4		
New Fume Hoo	d Face Velocity or	Lab ACH Sce	nario					Fume Ho	od		Downdra	ft		Snorke					Summary				
			Assumed Ceiling	Volume	Associated		Opening	New Face		Opening	New Face	Calculated	Opening	New Face	Calculated	New Total Hood	New General		Actual New Total			Pressurization	
Room Number	Room Type	Sq. Ft	Height	(cubic feet)	AHU	CFM	Area (sf)	Velocity	Exhaust CFM	Area (sf)	Velocity	Exhaust CFM	Area (sf)	Velocity			Exhaust CFM	Exhaust CFM	CFM	New ACH	CFM / SF	SP	CFM/Sqft
B103	Lab	105	9.5			67	-	-	-	-	-	-	-	-	50	50	17	67	67	4	0.6	-	0.6
Suite B109	Lab	1,209	9.5	, , , ,		605	-	-	350	-	-	-	-	-	200	550				5		(375)	
Suite 110	Lab	1,408	9.5			704		-	350	-	-	-	-	-	300	650				4		(225)	0.5
103	Lab	310	9.5			145	-	-	350	-	-	-	-	-	-	350	(55)	295		6		(150)	0.5
104	Lab	1,654	9.5			827	-	-	-	-	-	-	-	-	-	-	1,052	1,052		4		(225)	0.5
222	Lab	789	9.5			395	-	-	350	-	-	-	-	-	-	350	345	695		6		(300)	0.5
Suite 224	Lab	559	9.5			280	-	-	-	-	-	-	-	-	-	-	505	505		6		(225)	0.5
226	Lab	425	9.5			350	-	-	350	-	-	-	-	-	150	500	-	363		7	0.0	(150)	0.8
227	Lab	278	9.5		1&2	40	-	-	350	-	-	-	-	-	-	350	(85)			6		(225)	0.1
228	Lab	422	9.5	4,009		211	-	-	-	-	-	-	-	-	100	100	261	361	361	5		(150)	0.5
230	Lab	425	9.5			213	-	-	-	-	-	-	-	-	100	100	263	363		5		(150)	0.5
Suite 232	Lab	1,101	9.5			551	-	-	350	-	-	-	-	-	-	350	426			4		(225)	0.5
Suite 237	Lab	1,100	9.5			550	-	-	350	-	-	-	-	-	-	350	425	775		4	0.0	(225)	0.5
239	Lab	402	9.5			255	-	-	-	-	-	-	-	-	-	-	255	255		4	0.0	-	0.6
Suite 321	Lab	1,119	9.5			560		-	-	-	-	-	-	-	200	200				6		(450)	0.5
324	Lab	565	9.5			283		-	350	-	-	-	-	-	-	350	83			5		(150)	0.5
326	Lab	425	9.5	, , , , ,		213		-	-	-	-	-	-	-	100	100	263	363		5		(150)	0.5
Suite 329	Lab	1,102	9.5	10,469		925		-	400	-	-	750	-	-	-	1,150	-	776		7	0.8	(225)	0.8
Suite 333	Lab	1,105	9.5			553		-	350	-	-	-	-	-	-	350	428	778		4		(225)	0.5
Suite 336	Lab	1,094	9.5			547		-	350	-	-	-	-	-	100	450	322	772		4		(225)	0.5
339	Lab	415	9.5			208		-	350	-	-	-	-	-	-	350	8			5		(150)	0.5
420	Lab	555	9.5			300	-	-	350	-	-	-	-	-	100	450	-	428		5		(150)	0.5
422	Lab	568	9.5	5,396		284		-	-	-	-	-	-	-	100	100	334	434		5		(150)	0.5
Suite 425	Lab	1,125	9.5			550	-	-	350	-	-	-	-	-	200	550	525	1,075		6		(525)	0.5
428	Lab	425	9.5			213	-	-	-	-	-	-	-	-	100	100	263	363		5		(150)	0.5
429	Lab	425	9.5	4,038		213	-	-	350	-	-	-	-	-	-	350	13	363		5		(150)	0.5
431	Lab	568	9.5			360	-	-	-	-	-	-	-	-	-	-	360	360		4	0.0	- (505)	0.6
Suite 434	Lab	1,126	9.5			555	-	-	350	-	-	-	-	-	200	550	530	1,080		6		(525)	0.5
Suite 438	Lab	1,116	9.5			545	-	-	350	-	-	-	-	-	200	550		1,070		6		(525)	0.5
Suite 521	Lab	1,120	9.5			560	-	-	350	-	-	-	-	-	200	550	460	1,010		6		(450)	0.5
Suite 525	Lab	1,272	9.5			636	-	-	350	-	-	-	-	-	200	550	536	1,086		5		(450)	0.5
528	Lab	422 425	9.5 9.5			211 300	-	-	350	-	-	-	-	-	100 100	100 450		361 363	361 450	5		(150)	0.5
530	Lab			, , , , ,			-	-		-	-	-	-	-								(150)	0.7
531	Lab	425 1.129	9.5			213	-	-	-	-	-	-	-	-	100	100	263	363		5		(150)	0.5
Suite 534	Lab		9.5			565	-	-	350	-	-	-	-	-	200	550	465	1,015		6		(450)	0.5
Suite 538	Lab	1,116	9.5			558	-	-	7.750	-	-	- 750	-	-	200	200	808	1,008		6		(450)	0.5 19
		27,829		264,376		14,537	-	-	7,750	-	-	750	-	-	3,300	11,800	11,362	22,540	23,162	191	. 19	(8,625)	19

ECM - 3 - Lab Airflow Optimization - AHU-1 & 2

Project Name: University of Rochester Energy Conservation MP Support

Building: Biomedical Engineering - Optics Building

Date: 4/1/2021

ECM Lab Airflow Optimization

Calculated By: CLF
Reviewed By: GHB

Summary of Existing System

Measured Data and Data Limitations

ECMs Implemented

DAT Reset Schedulex Lab CFM AdjustmentNight Setbacks

Summary of Systems Used for Calculation

Existing Usage (10 / 6 ACM)

Preheat Usage 1,798 mmBtu
Cooling Usage 3,310 mmBtu
Reheat Usage 2,870 mmBtu
Supply Fan Usage 327,696 kWh

Proposed Usage - Option A (8 / 4 ACH)

Preheat Usage 1,604 mmBtu
Cooling Usage 2,912 mmBtu
Reheat Usage 2,555 mmBtu
Supply Fan Usage 269,142 kWh

Proposed Usage - Option B (6 / 4 ACH)

Preheat Usage 1,457 mmBtu
Cooling Usage 2,684 mmBtu
Reheat Usage 2,327 mmBtu
Supply Fan Usage 239,326 kWh

Summary of EEM Savings - Option A (8 / 4 ACH)

Proposed Savings

Preheat Usage 194 mmBtu
Cooling Usage 398 mmBtu
Reheat Usage 316 mmBtu
Supply Fan Usage 58,553 kWh

Summary of EEM Savings - Option A (6 / 4 ACH)

Proposed Savings

Preheat Usage 340 mmBtu
Cooling Usage 626 mmBtu
Reheat Usage 543 mmBtu
Supply Fan Usage 88,370 kWh

Project Name: University of Rochester Energy Conservation MP Support

Building: Biomedical Engineering - Optics Building

Date: 4/1/2021 Calculated By: CLF Reviewed By: GHB

System: AHU-1 & 2 Scenario: Existing

Fan Label Fan HP: 125.0 Fan QTY: 2.0 Calculated Load Factor: 75% Fan Motor Eff: 90%

Fan kW: 155.4 Max Fan Flow: 73,000

1.5

Fan Affinity Law Adjsut: Lab Airflow CFM Reduction Occupied Design Ariflow 35,620 CFM Unoccupied Design Airflow 17,990 CFM

Occupied Airflow Reduction 0 Unoccupied Airflow Reduction

mary of Use Preheat Usage 1,798 mmBtu Cooling Usage Reheat Usage 2870 mmBtu Supply Fan Usage 327696 kWh

Misc System Info Cooling Shutoff 55 degF 5 May Cooling Shutoff Cooling Shutoff 10 October OAT Unocc Load % Occ 68.0 68.0 0.00% 0 10 68.0 68.0 0.00% 20 68.0 68.0 0.00% 30 68.0 68.0 0.00% 40 68.0 0.00% 68.0 50 68.0 68.0 0.00% 55 68.0 68.0 0.00% 60 69.2 69.2 0.00% 70 71.6 71.6 0.00% 80 74.0 74.0 0.00% 100 74.0 74.0 0.00%

uling/	Population lo	ad (1=0cc 0=	UnOcc)	
	Schedule	Population	Schedule	Population
	Days1-5	Days1-5	Days6,7,8	Days6,7,8
1	0	100%	0	100%
2	0	100%	0	100%
3	0	100%	0	100%
4	0	100%	0	100%
5	0	100%	0	100%
6	0	100%	0	100%
7	1	100%	1	100%
8	1	100%	1	100%
9	1	100%	1	100%
10	1	100%	1	100%
11	1	100%	1	100%
12	1	100%	1	100%
13	1	100%	1	100%
14	1	100%	1	100%
15	1	100%	1	100%
16	1	100%	1	100%
17	1	100%	1	100%
18	1	100%	1	100%
19	1	100%	1	100%
20	0	100%	0	100%
21	0	100%	0	100%
22	0	100%	0	100%
23	0	100%	0	100%
24	0	100%	0	100%

System Setpoint Si	mulations			
OAT	PHT STP	DAT STP	DAH STP	
0	55.0	65.0	25.6	
10	55.0	63.6	25.3	
20	55.0	62.1	24.9	
30	55.0	60.7	24.6	
40	55.0	59.3	24.2	
50	55.0	57.9	23.9	
55	55.0	57.1	23.7	
60	55.0	56.4	23.5	
70	55.0	55.0	23.2	
80	55.0	55.0	23.2	
100	55.0	55.0	23.2	
	1.585E-05	-0.001483	-0.109225	64.903594
	X=	28.00	Y=	61.03
	0	0	0	55
	X=	28.00	Y=	55.00
	3.861E-06	-0.000361	-0.026601	25.589599
	X=	90.00	Y=	23.08

Reheat Load	ing			
OAT	DAT	Occ	Unocc	
0	85.0	85.0%	85.0%	
10	85.0	76.8%	76.8%	
20	85.0	68.5%	68.5%	
30	85.0	60.3%	60.3%	
40	85.0	52.0%	52.0%	
50	85.0	43.8%	43.8%	
55	85.0	39.6%	39.6%	
60	85.0	35.5%	35.5%	
70	85.0	27.3%	27.3%	
80	85.0	19.0%	19.0%	
100	85.0	2.5%	2.5%	
	0	0	0	85
	X=	0.00	Y=	85.00
	2.195E-21	-2.61E-19	-0.00825	0.85
	X=	0.00	Y=	0.85
	2.195E-21	-2.61E-19	-0.00825	0.85
	χ=	55.00	Y=	0.40
	% of CF	M to Reheat	100.0%	

1/2/17 19:00

50.0

19.3

55.0

23.8

17990

Date: 44287.465
Calculated By: CLF

Building: Biomedical Engineering - Optics Building

Formulas

D: Based on Simulation

E: Design CFM x Fan Simulation

F: ((E / Fan CFM Output) Fan Affinity) x Fan Kw

G: 1.08 x (D - B) x E / 1,000,000

H: 4.5 x (C - Coil Enthalpy) x E / 1,000,000

J: Based on Simulation

Calculated By	: CLF				J: I	Based on Sin	nulation																
Reviewed By	: GHB				K: I	Based on Sin	nulation																
System	: AHU-1 & 2				L: 1	1.08 x (K - I)	x E x % CFM t	o Reheat / 1,0	000,000														
Scenario	: Existing																						
FORMULA INDE																							W
MA	X 8.0	93.9	40.8	55.0	64.5	25.5	35620.0	53.0	1.9	2.7	75.9	85.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IIM			1.8	55.0	54.6	23.1		19.0	0.0	0.0		85.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUN	M 36600		194424	481800	501243	207772	241246750	327696	1798	3310	489054	744600	2870	0	0	0	0	0	0	0	0	0	0
Time Stamp	Туре	Outside dry- buib temp (F)	Specific Enthalpy (Btu/ib)	Preheat Setpoint	SAT STP (degF)	Enthalpy Setpoint	Supply Air CFM	Supply Fan Usage (kWh)	Preheat Usage (mmBtu)	Cooling Usage (mmBtu)	DAT (degF)	Reheat DAT (degF)	Reheat Usage (mmBtu)										
1/1/17 0:00			14.4	55.0	59.0	24.2		19	0.3	0.0		85.0	0.3										
1/1/17 1:00			12.6	55.0	59.5	24.3		19	0.3	0.0		85.0	0.3										
1/1/17 2:00			11.9	55.0	59.6	24.3		19	0.3	0.0		85.0	0.3										
1/1/17 3:00			11.2	55.0	60.1	24.4		19	0.4	0.0		85.0	0.3										
1/1/17 4:00			11.0	55.0	60.2	24.5		19	0.4	0.0		85.0	0.3										
1/1/17 5:00			9.8	55.0	60.9	24.6		19	0.5	0.0		85.0	0.4										
1/1/17 6:00			10.5	55.0	60.6	24.5		53	0.9	0.0		85.0	0.7										
1/1/17 7:00			10.7	55.0	60.4	24.5		53	0.9	0.0		85.0	0.7										
1/1/17 8:00			11.0	55.0	60.4	24.5		53	0.9	0.0		85.0	0.7										
1/1/17 9:00			11.7	55.0	59.9	24.4		53	0.8	0.0	55.0	85.0	0.6										
1/1/17 10:00			12.3	55.0	59.6	24.3		53	0.7	0.0		85.0	0.6										
1/1/17 11:00			13.3	55.0	59.0	24.2		53	0.5	0.0		85.0	0.6										
1/1/17 12:00			13.9	55.0	58.7	24.1		53	0.5	0.0		85.0	0.6										
1/1/17 13:00			14.6	55.0	58.4	24.0		53	0.4	0.0		85.0	0.6										
1/1/17 14:00			14.6	55.0	58.3	24.0		53	0.3	0.0		85.0	0.5										
1/1/17 15:00			15.0	55.0	58.2	23.9		53	0.3	0.0		85.0	0.5										
1/1/17 16:00			15.0	55.0	58.2	23.9		53	0.3	0.0		85.0	0.5										
1/1/17 17:00			14.5	55.0	58.6	24.0		53	0.4	0.0		85.0	0.6										
1/1/17 18:00			14.2	55.0	58.7	24.1		53	0.5	0.0		85.0	0.6										
1/1/17 19:00			14.0	55.0	58.9	24.1		19	0.3	0.0		85.0	0.3										
1/1/17 20:00			13.6	55.0	59.2	24.2		19	0.3	0.0		85.0	0.3										
1/1/17 21:00			13.4	55.0	59.2	24.2		19	0.3	0.0		85.0	0.3										
1/1/17 22:00			14.1	55.0	59.0	24.2		19	0.3	0.0		85.0	0.3										
1/1/17 23:00			14.8	55.0	58.6	24.0		19	0.2	0.0		85.0	0.3										
1/2/17 0:00			15.2	55.0	58.4	24.0		19	0.2	0.0		85.0	0.3										
1/2/17 1:00			15.0	55.0	58.6	24.0		19	0.2	0.0		85.0	0.3										
1/2/17 2:00			15.1	55.0	58.7	24.1		19	0.2	0.0		85.0	0.3										
1/2/17 3:00			15.2	55.0	58.9	24.1		19	0.3	0.0		85.0	0.3										
1/2/17 4:00			15.5	55.0	58.9	24.1		19	0.3	0.0		85.0	0.3										
1/2/17 5:00			15.5	55.0	58.9	24.1		19	0.3	0.0		85.0	0.3										
1/2/17 6:00			15.5	55.0	58.9	24.1		53	0.5	0.0		85.0	0.6 0.6										
1/2/17 7:00			15.5	55.0	58.9	24.1		53	0.5	0.0		85.0											
1/2/17 8:00			15.7	55.0	58.9	24.1		53	0.5	0.0		85.0	0.6										
1/2/17 9:00			15.9	55.0	58.7	24.1		53	0.5	0.0		85.0	0.6										
1/2/17 10:00			16.4	55.0	58.6	24.0		53	0.4	0.0		85.0	0.6										
1/2/17 11:00			17.3	55.0	58.3	24.0		53	0.3	0.0		85.0	0.5										
1/2/17 12:00			17.5	55.0	58.2	23.9		53	0.3	0.0		85.0	0.5										
1/2/17 13:00			18.5	55.0	57.9	23.9		53	0.2	0.0		85.0	0.5										
1/2/17 14:00			19.1	55.0	57.7	23.8		53	0.2	0.0		85.0	0.5										
1/2/17 15:00			19.4	55.0	57.6	23.8		53	0.2	0.0		85.0	0.5										
1/2/17 16:00			19.4	55.0	57.6	23.8		53	0.2	0.0		85.0	0.5										
1/2/17 17:00			19.1	55.0	57.7	23.8		53	0.2	0.0		85.0	0.5										
1/2/17 18:00	0.8	50.0	19.1	55.0	57.7	23.8	35620	53	0.2	0.0	55.0	85.0	0.5										

85.0

0.3

Project Name: University of Rochester Energy Conservation MP Support Building: Biomedical Engineering - Optics Building

Date: 4/1/2021
Calculated By: CLF
Reviewed By: GHB

System: AHU-1 & 2 Scenario: Proposed System

Unoccupied Airflow Reduction 0 CFM

Summary of Use
Preheat Usage 1,604 mmBtu
Cooling Usage 2912 mmBtu
Reheat Usage 2555 mmBtu
Supply Fan Usage 269142 kWh

 Misc System Info
 Cooling Shutoff
 55
 degF

 Cooling Shutoff
 5
 May

 Cooling Shutoff
 10
 October

ctive Space Set	points (Avera	ge)		
OAT	Осс	Unocc	Load %	
0	68.0	68.0	0.00%	
10	68.0	68.0	0.00%	
20	68.0	68.0	0.00%	
30	68.0	68.0	0.00%	
40	68.0	68.0	0.00%	
50	68.0	68.0	0.00%	
55	68.0	68.0	0.00%	
60	69.2	69.2	0.00%	
70	71.6	71.6	0.00%	
80	74.0	74.0	0.00%	
90	74.0	74.0	0.00%	

duling/	Population io	ad (1=0cc 0=	UnOcc)	
	Schedule	Population	Schedule	Population
	Days1-5	Days1-5	Days6,7,8	Days6,7,8
1	0	100%	0	100%
2	0	100%	0	100%
3	0	100%	0	100%
4	0	100%	0	100%
5	0	100%	0	100%
6	0	100%	0	100%
7	1	100%	1	100%
8	1	100%	1	100%
9	1	100%	1	100%
10	1	100%	1	100%
11	1	100%	1	100%
12	1	100%	1	100%
13	1	100%	1	100%
14	1	100%	1	100%
15	1	100%	1	100%
16	1	100%	1	100%
17	1	100%	1	100%
18	1	100%	1	100%
19	1	100%	1	100%
20	0	100%	0	100%
21	0	100%	0	100%
22	0	100%	0	100%
23	0	100%	0	100%
24	0	100%	0	100%

System Setpoint Si	mulations			
OAT	PHT STP	DAT STP	DAH STP	
0	55.0	65.0	25.6	
10	55.0	63.6	25.3	
20	55.0	62.1	24.9	
30	55.0	60.7	24.6	
40	55.0	59.3	24.2	
50	55.0	57.9	23.9	
55	55.0	57.1	23.7	
60	55.0	56.4	23.5	
70	55.0	55.0	23.2	
80	55.0	55.0	23.2	
100	55.0	55.0	23.2	
	1.585E-05	-0.001483	-0.109225	64.903594
	X=	28.00	Y=	61.03
	0	0	0	55
	X=	28.00	Y=	55.00
	3.861E-06	-0.000361	-0.026601	25.589599
	X=	90.00	Y=	23.08

Reheat Load	ing			
OAT	DAT	Occ	Unocc	
0	85.0	85.0%	85.0%	
10	85.0	76.8%	76.8%	
20	85.0	68.5%	68.5%	
30	85.0	60.3%	60.3%	
40	85.0	52.0%	52.0%	
50	85.0	43.8%	43.8%	
55	85.0	39.6%	39.6%	
60	85.0	35.5%	35.5%	
70	85.0	27.3%	27.3%	
80	85.0	19.0%	19.0%	
100	85.0	2.5%	2.5%	
	0	0	0	85
	X=	0.00	Y=	85.00
	2.195E-21	-2.61E-19	-0.00825	0.85
	X=	0.00	Y=	0.85
	2.195E-21	-2.61E-19	-0.00825	0.85
	χ=	55.00	Y=	0.40
	% of CF	M to Reheat	100.0%	

Date: 44287.465
Calculated By: CLF

System: AHU-1 & 2

Scenario: Proposed System

Reviewed By: GHB

Building: Biomedical Engineering - Optics Building

Formulas

D: Based on Simulation

E: Design CFM x Fan Simulation
F: ((E / Fan CFM Output) Fan Affinity) x Fan Kw

G: 1.08 x (D - B) x E / 1,000,000

H: 4.5 x (C - Coil Enthalpy) x E / 1,000,000

J: Based on Simulation K: Based on Simulation

L: 1.08 x (K - I) x E x % CFM to Reheat / 1,000,000

FORMULA INDEX	A	В	С	D	E	F	G	н		J _	K	L	М	N	0	P	Q	R	S	Т	U	٧	W
MAX	8.0	93.9	40.8	55.0	64.5	25.5	29847.7	40.6	1.6	2.2	75.9	85.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MIN	1.0	3.9	1.8	55.0	54.6	23.1	17990.0	19.0	0.0	0.0	54.6	85.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUM	36600	496470	194424	481800	501243	207772	213857028	269142	1604	2912	489054	744600	2555	0	0	0	0	0	0	0	0	0	0
Time Stamp	Туре	Outside dry- buib temp (F)	Specific Enthalpy (Btu/lb)	Preheat Setpoint	SAT STP (degF)	Enthalpy Setpoint	Supply Air CFM	Supply Fan Usage (kWh)	Preheat Usage (mmBtu)	Cooling Usage (mmBtu)	DAT (degF)	Reheat DAT (degF)	Reheat Usage (mmBtu)										
1/1/17 0:00	7.0	41.0	14.4	55.0	59.0	24.2	17990	19	0.3	0.0	55.0	85.0	0.3										
1/1/17 1:00	7.0	37.9	12.6	55.0	59.5	24.3	17990	19	0.3	0.0	55.0	85.0	0.3										
1/1/17 2:00	7.0	37.0	11.9	55.0	59.6	24.3	17990	19	0.3	0.0	55.0	85.0	0.3										
1/1/17 3:00	7.0	34.0	11.2	55.0	60.1	24.4	17990	19	0.4	0.0	55.0	85.0	0.3										
1/1/17 4:00	7.0	33.1	11.0	55.0	60.2	24.5	17990	19	0.4	0.0	55.0	85.0	0.3										
1/1/17 5:00	7.0	28.9	9.8	55.0	60.9	24.6	17990	19	0.5	0.0	55.0	85.0	0.4										
1/1/17 6:00	7.0	30.9	10.5	55.0	60.6	24.5	29848	41	0.8	0.0	55.0	85.0	0.6										
1/1/17 7:00	7.0	32.0	10.7	55.0	60.4	24.5	29848	41	0.7	0.0	55.0	85.0	0.6										
1/1/17 8:00	7.0	32.0	11.0	55.0	60.4	24.5	29848	41	0.7	0.0	55.0	85.0	0.6 0.5										
1/1/17 9:00 1/1/17 10:00	7.0	35.1	11.7	55.0	59.9	24.4	29848	41	0.6	0.0	55.0	85.0 85.0	0.5										
1/1/17 10:00	7.0 7.0	37.0 41.0	12.3 13.3	55.0 55.0	59.6 59.0	24.3	29848 29848	41 41	0.6	0.0	55.0 55.0	85.0 85.0	0.5										
1/1/17 11:00	7.0	43.0	13.3	55.0	58.7	24.2	29848	41	0.5	0.0	55.0	85.0	0.5										
1/1/17 13:00	7.0	45.0	14.6	55.0	58.4	24.1	29848	41	0.4	0.0	55.0	85.0	0.5										
1/1/17 14:00	7.0	46.0	14.6	55.0	58.3	24.0	29848	41	0.3	0.0	55.0	85.0	0.5										
1/1/17 15:00	7.0	46.9	15.0	55.0	58.2	23.9	29848	41	0.3	0.0	55.0	85.0	0.4										
1/1/17 16:00	7.0	46.9	15.0	55.0	58.2	23.9	29848	41	0.3	0.0	55.0	85.0	0.4										
1/1/17 17:00	7.0	44.1	14.5	55.0	58.6	24.0	29848	41	0.4	0.0	55.0	85.0	0.5										
1/1/17 18:00	7.0	43.0	14.2	55.0	58.7	24.1	29848	41	0.4	0.0	55.0	85.0	0.5										
1/1/17 19:00	7.0	42.1	14.0	55.0	58.9	24.1	17990	19	0.3	0.0	55.0	85.0	0.3										
1/1/17 20:00	7.0	39.9	13.6	55.0	59.2	24.2	17990	19	0.3	0.0	55.0	85.0	0.3										
1/1/17 21:00	7.0	39.9	13.4	55.0	59.2	24.2	17990	19	0.3	0.0	55.0	85.0	0.3										
1/1/17 22:00	7.0	41.0	14.1	55.0	59.0	24.2	17990	19	0.3	0.0	55.0	85.0	0.3										
1/1/17 23:00	7.0	44.1	14.8	55.0	58.6	24.0	17990	19	0.2	0.0	55.0	85.0	0.3										
1/2/17 0:00	8.0	45.0	15.2	55.0	58.4	24.0	17990	19	0.2	0.0	55.0	85.0	0.3										
1/2/17 1:00	8.0	44.1	15.0	55.0	58.6	24.0	17990	19	0.2	0.0	55.0	85.0	0.3										
1/2/17 2:00	8.0	43.0	15.1	55.0	58.7	24.1	17990	19	0.2	0.0	55.0	85.0	0.3										
1/2/17 3:00	8.0	42.1	15.2	55.0	58.9	24.1	17990	19	0.3	0.0	55.0	85.0	0.3										
1/2/17 4:00	8.0	42.1	15.5	55.0	58.9	24.1	17990	19	0.3	0.0	55.0	85.0	0.3										
1/2/17 5:00	8.0	42.1	15.5	55.0	58.9	24.1	17990	19	0.3	0.0	55.0	85.0	0.3										
1/2/17 6:00	8.0	42.1	15.5	55.0	58.9	24.1	29848	41	0.4	0.0	55.0	85.0	0.5										
1/2/17 7:00	8.0	42.1	15.5	55.0	58.9	24.1	29848	41	0.4	0.0	55.0	85.0	0.5										
1/2/17 8:00	8.0	42.1	15.7	55.0	58.9	24.1	29848	41	0.4	0.0	55.0	85.0	0.5										
1/2/17 9:00	8.0	43.0	15.9	55.0	58.7	24.1	29848	41	0.4	0.0	55.0	85.0	0.5										
1/2/17 10:00	8.0	44.1	16.4	55.0	58.6	24.0	29848	41	0.4	0.0	55.0	85.0	0.5										
1/2/17 11:00	8.0	46.0	17.3	55.0	58.3	24.0	29848	41	0.3	0.0	55.0	85.0	0.5										
1/2/17 12:00	8.0	46.9	17.5	55.0	58.2	23.9	29848	41	0.3	0.0	55.0	85.0	0.4										
1/2/17 13:00	8.0	48.9	18.5	55.0	57.9	23.9	29848	41	0.2	0.0	55.0	85.0	0.4										
1/2/17 14:00	8.0	50.0	19.1	55.0	57.7	23.8	29848	41	0.2	0.0	55.0	85.0	0.4										
1/2/17 15:00	8.0	51.1	19.4	55.0	57.6	23.8	29848	41	0.1	0.0	55.0	85.0	0.4										
1/2/17 16:00	8.0	51.1	19.4	55.0	57.6	23.8	29848	41	0.1	0.0	55.0	85.0	0.4										
1/2/17 17:00	8.0	50.0	19.1	55.0	57.7	23.8	29848	41	0.2	0.0	55.0	85.0	0.4										
1/2/17 18:00	8.0	50.0	19.1	55.0	57.7	23.8	29848	41	0.2	0.0	55.0	85.0	0.4										
1/2/17 19:00	8.0	50.0	19.3	55.0	57.7	23.8	17990	19	0.1	0.0	55.0	85.0	0.3										

Project Name: University of Rochester Energy Conservation MP Support Building: Biomedical Engineering - Optics Building

Date: 4/1/2021
Calculated By: CLF
Reviewed By: GHB
System:

Scenario: Proposed System

 Summary of Use

Preheat Usage 1,457 mmBtu
Cooling Usage 2684 mmBtu
Reheat Usage 2327 mmBtu
Supply Fan Usage 239326 kWh

 Mise System Info
 55 degF

 Cooling Shutoff
 5 May

 Cooling Shutoff
 10 October

ctive Space S	Setpoints (Avei	age)		
OAT	Occ	Unocc	Load %	
0	68.0	68.0	0.00%	
10	68.0	68.0	0.00%	
20	68.0	68.0	0.00%	
30	68.0	68.0	0.00%	
40	68.0	68.0	0.00%	
50	68.0	68.0	0.00%	
55	68.0	68.0	0.00%	
60	69.2	69.2	0.00%	
70	71.6	71.6	0.00%	
80	74.0	74.0	0.00%	
90	74.0	74.0	0.00%	

duling/	Population lo	ad (1=0cc 0=	UnOcc)	
	Schedule	Population	Schedule	Population
	Days1-5	Days1-5	Days6,7,8	Days6,7,8
1	0	100%	0	100%
2	0	100%	0	100%
3	0	100%	0	100%
4	0	100%	0	100%
5	0	100%	0	100%
6	0	100%	0	100%
7	1	100%	1	100%
8	1	100%	1	100%
9	1	100%	1	100%
10	1	100%	1	100%
11	1	100%	1	100%
12	1	100%	1	100%
13	1	100%	1	100%
14	1	100%	1	100%
15	1	100%	1	100%
16	1	100%	1	100%
17	1	100%	1	100%
18	1	100%	1	100%
19	1	100%	1	100%
20	0	100%	0	100%
21	0	100%	0	100%
22	0	100%	0	100%
23	0	100%	0	100%
24	0	100%	0	100%

System Setpoint Si	mulations			
OAT	PHT STP	DAT STP	DAH STP	
0	55.0	65.0	25.6	
10	55.0	63.6	25.3	
20	55.0	62.1	24.9	
30	55.0	60.7	24.6	
40	55.0	59.3	24.2	
50	55.0	57.9	23.9	
55	55.0	57.1	23.7	
60	55.0	56.4	23.5	
70	55.0	55.0	23.2	
80	55.0	55.0	23.2	
100	55.0	55.0	23.2	
	1.585E-05	-0.001483	-0.109225	64.903594
	X=	28.00	Y=	61.03
	0	0	0	55
	X=	28.00	Y=	55.00
	3.861E-06	-0.000361	-0.026601	25.589599
	X=	90.00	Y=	23.08

neat Load	ing			
OAT	DAT	Occ	Unocc	
0	85.0	85.0%	85.0%	
10	85.0	76.8%	76.8%	
20	85.0	68.5%	68.5%	
30	85.0	60.3%	60.3%	
40	85.0	52.0%	52.0%	
50	85.0	43.8%	43.8%	
55	85.0	39.6%	39.6%	
60	85.0	35.5%	35.5%	
70	85.0	27.3%	27.3%	
80	85.0	19.0%	19.0%	
100	85.0	2.5%	2.5%	
	0	0	0	85
	X=	0.00	Y=	85.00
	2.195E-21	-2.61E-19	-0.00825	0.85
	X=	0.00	Y=	0.85
	2.195E-21	-2.61E-19	-0.00825	0.85
	χ=	55.00	Y=	0.40
	% of CF	M to Reheat	100.0%	

Date: 44287.465
Calculated By: CLF

Reviewed By: GHB

System: 0

Scenario: Proposed System

Building: Biomedical Engineering - Optics Building

Formulas

D: Based on Simulation

E: Design CFM x Fan Simulation
F: ((E / Fan CFM Output) Fan Affinity) x Fan Kw

G: 1.08 x (D - B) x E / 1,000,000

H: 4.5 x (C - Coil Enthalpy) x E / 1,000,000

J: Based on Simulation

K: Based on Simulation

L: 1.08 x (K - I) x E x % CFM to Reheat / 1,000,000

FORMULA INDEX	A	В	С	D	F	F	G	н	1 —	1 _	К	1 -	М	Ν	0	Р	0	R _	S -	т _	U .	V	w _
MAX	8.0	93.9	40.8	55.0	64.5	25.5	28919.0	38.8	1.6	2.2	75.9	85.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MIN	1.0	3.9	1.8	55.0	54.6	23.1	14536.8	13.8	0.0	0.0	54.6	85.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUM	36600	496470	194424	481800	501243		195586041	239326	1457	2684	489054		2327	0	0	0	0	0	0	0	0	0	0
		Outside dry-	Specific					Supply Fan	Preheat	Cooling			Reheat										
Time Stamp	Туре	buib temp (F)	Enthalpy (Btu/lb)	Preheat Setpoint	SAT STP (degF)	Enthalpy Setpoint	Supply Air CFM	Usage (kWh)	Usage (mmBtu)	Usage (mmBtu)	DAT (degF)	Reheat DAT (degF)	Usage (mmBtu)										
1/1/17 0:00	7.0	41.0	14.4	55.0	59.0	24.2	14537	14	0.2	0.0	55.0		0.2										
1/1/17 1:00	7.0	37.9	12.6	55.0	59.5	24.3	14537	14	0.3	0.0	55.0		0.3										
1/1/17 2:00	7.0	37.0	11.9	55.0	59.6	24.3	14537	14	0.3	0.0	55.0		0.3										
1/1/17 3:00	7.0	34.0	11.2	55.0	60.1	24.4	14537	14	0.3	0.0	55.0		0.3										
1/1/17 4:00	7.0	33.1	11.0	55.0	60.2	24.5	14537	14	0.3	0.0	55.0		0.3										
1/1/17 5:00	7.0	28.9	9.8	55.0	60.9	24.6	14537	14	0.4	0.0	55.0		0.3										
1/1/17 6:00	7.0	30.9	10.5	55.0	60.6	24.5	28919	39	0.8	0.0	55.0		0.6										
1/1/17 7:00	7.0	32.0	10.7	55.0	60.4	24.5	28919	39	0.7	0.0	55.0		0.5										
1/1/17 8:00	7.0	32.0	11.0	55.0	60.4	24.5	28919	39	0.7	0.0	55.0		0.5										
1/1/17 9:00	7.0	35.1	11.7	55.0	59.9	24.4	28919	39	0.6	0.0	55.0		0.5										
1/1/17 10:00	7.0	37.0	12.3	55.0	59.6	24.3	28919	39	0.6	0.0	55.0		0.5										
1/1/17 11:00	7.0	41.0	13.3	55.0	59.0	24.2	28919	39	0.4	0.0	55.0	85.0	0.5										
1/1/17 12:00	7.0	43.0	13.9	55.0	58.7	24.1	28919	39	0.4	0.0	55.0		0.5										
1/1/17 13:00	7.0	45.0	14.6	55.0	58.4	24.0	28919	39	0.3	0.0	55.0		0.4										
1/1/17 14:00	7.0	46.0	14.6	55.0	58.3	24.0	28919	39	0.3	0.0	55.0		0.4										
1/1/17 15:00	7.0	46.9	15.0	55.0	58.2	23.9	28919	39	0.3	0.0	55.0	85.0	0.4										
1/1/17 16:00	7.0	46.9	15.0	55.0	58.2	23.9	28919	39	0.3	0.0	55.0		0.4										
1/1/17 17:00	7.0	44.1	14.5	55.0	58.6	24.0	28919	39	0.3	0.0	55.0		0.5										
1/1/17 18:00	7.0	43.0	14.2	55.0	58.7	24.1	28919	39	0.4	0.0	55.0		0.5										
1/1/17 19:00	7.0	42.1	14.0	55.0	58.9	24.1	14537	14	0.2	0.0	55.0		0.2										
1/1/17 20:00	7.0	39.9	13.6	55.0	59.2	24.2	14537	14	0.2	0.0	55.0		0.2										
1/1/17 21:00	7.0	39.9	13.4	55.0	59.2	24.2	14537	14	0.2	0.0	55.0		0.2										
1/1/17 22:00	7.0	41.0	14.1	55.0	59.0	24.2	14537	14	0.2	0.0	55.0		0.2										
1/1/17 23:00	7.0	44.1	14.8	55.0	58.6	24.0	14537	14	0.2	0.0	55.0		0.2										
1/2/17 0:00	8.0	45.0	15.2	55.0	58.4	24.0	14537	14	0.2	0.0	55.0		0.2										
1/2/17 1:00	8.0	44.1	15.0	55.0	58.6	24.0	14537	14	0.2	0.0	55.0		0.2										
1/2/17 2:00	8.0	43.0	15.1	55.0	58.7	24.1	14537	14	0.2	0.0	55.0		0.2										
1/2/17 3:00	8.0	42.1	15.2	55.0	58.9	24.1	14537	14	0.2	0.0	55.0		0.2										
1/2/17 4:00	8.0	42.1	15.5	55.0	58.9	24.1	14537	14	0.2	0.0	55.0		0.2										
1/2/17 5:00	8.0	42.1	15.5	55.0	58.9	24.1	14537	14	0.2	0.0	55.0		0.2										
1/2/17 6:00	8.0	42.1	15.5	55.0	58.9	24.1	28919	39	0.4	0.0	55.0		0.5										
1/2/17 7:00	8.0	42.1	15.5	55.0	58.9	24.1	28919	39	0.4	0.0	55.0		0.5										
1/2/17 8:00	8.0	42.1	15.7	55.0	58.9	24.1	28919	39	0.4	0.0	55.0		0.5										
1/2/17 9:00	8.0	43.0	15.9	55.0	58.7	24.1	28919	39	0.4	0.0	55.0		0.5										
1/2/17 10:00	8.0	44.1	16.4	55.0	58.6	24.0	28919	39	0.3	0.0	55.0		0.5										
1/2/17 11:00	8.0	46.0	17.3	55.0	58.3	24.0	28919	39	0.3	0.0	55.0		0.4										
1/2/17 12:00	8.0	46.9	17.5	55.0	58.2	23.9	28919	39	0.3	0.0	55.0		0.4										
1/2/17 13:00	8.0	48.9	18.5	55.0	57.9	23.9	28919	39	0.2	0.0	55.0		0.4										
1/2/17 14:00	8.0	50.0	19.1	55.0	57.7	23.8	28919	39	0.2	0.0	55.0		0.4										
1/2/17 15:00	8.0	51.1	19.4	55.0	57.6	23.8	28919	39	0.1	0.0	55.0		0.4										
1/2/17 16:00	8.0	51.1	19.4	55.0	57.6	23.8	28919	39	0.1	0.0	55.0		0.4										
1/2/17 17:00	8.0	50.0	19.1	55.0	57.7	23.8	28919	39	0.2	0.0	55.0		0.4										
1/2/17 18:00	8.0	50.0	19.1	55.0	57.7	23.8	28919	39	0.2	0.0	55.0		0.4										
1/2/17 19:00	8.0	50.0	19.3	55.0	57.7	23.8	14537	14	0.1	0.0	55.0	85.0	0.2										

UNIVERSITY OF ROCHESTER

Laboratory Air Flow Optimization

Del Monte

Option A

Building U	tility Impact	
Building Level	Energy Savings	
Electrical Energy Savings	419	mmBtu/Year
Chilled Water Savings	2,762	mmBtu/Year
Steam Savings	3,537	mmBtu/Year
Total Energy Savings	6,717	mmBtu/Year
Building Leve	l Utility Savings	
Electrical Energy Savings	122,805	kWh/Year
Chilled Water Savings	230,144	Ton-Hour/Year
Steam Savings	3,537	klbs/Year
Water Savings	-	kGal/Year
Annual 0&N	/I Savings (\$)	
Operational & Maintenance Savings	\$0	Per Year

UNIVERSITY OF ROCHESTER

Laboratory Air Flow Optimization

Del Monte

Option B

Building U	tility Impact									
Building Level	Energy Savings									
Electrical Energy Savings	425	mmBtu/Year								
Chilled Water Savings	2,813	mmBtu/Year								
Steam Savings	3,619	mmBtu/Year								
Total Energy Savings	6,856	mmBtu/Year								
Building Level Utility Savings										
Electrical Energy Savings	124,439	kWh/Year								
Chilled Water Savings	234,395	Ton-Hour/Year								
Steam Savings	3,619	klbs/Year								
Water Savings	-	kGal/Year								
Annual O&N	/I Savings (\$)									
Operational & Maintenance Savings	\$0	Per Year								

Project Name: University of Rochester Energy Conservation MP Support Building: Del Monte

Date: 4/1/2021 EEM: Lab Airflow Optimization

Scenario: Exisiting and Proposed Calculated By: CLF Reviewed By: GHB

Existing Conditions Fume Hood 1 Fume Hood Fume Hood 3 Fume Hood 4 Fume Hood 5 Fume Hood 6 Summary ssumed Measured alculate Measured Calculated Measured Calculated /leasured Calculated Measured alculated Measured Calculated Total Hood General iling Exhaust Opening Face Area (sf) Velocity Exhaust Exhaust Exhaust CFM Exhaust Exhaust Exhaust CFM Exhaust CFM Total Lab Exhaust CFM cubic feet) AHU CFM Area (sf) Velocity CFM/Sqft Height Area (sf) Velocity Area (sf) Velocity Area (sf) Velocity Area (sf) lated ACH Pr 1-11006 1 041 AHS-I-5 28,313 AHS-L-5 1,888 AHS-L-5 21.2 15.3 6.7 103.0 92.0 615 1.6 6.7 109.0 6.7 110.0 21.8 20.6 1-11301 (S) 1615 1597 14,536 AHS-L-5 3,728 1,464 3,825 5,289 (1,561) 4,940 1-11311 3144 28,292 AHS-L-4 7,078 6.7 96.0 642 6.7 100.0 668 1,310 7,396 8,706 18.5 2.3 1.6 1-11304 410 3,688 AHS-L-5 743 1,112 1,112 18.1 (369) 1.8 911 AHS-L-4 1,850 AHS-L-4 140 310 202 202 436 (62) (126) 1.4 1-11353 13.3 1-11308 14.1 1-11320 211 1.903 AHS-L-4 383 530 530 16.7 (147) 1.8 1-11316 1-11314 1,751 AHS-L-4 2,691 AHS-L-4 290 502 446 718 446 718 15.3 1.5 1.7 5.8 6.7 103.0 688 101 911 AHS-L-4 588 688 45.4 (100) 2.2 1-11318 1,902 AHS-L-4 464 496 496 15.6 1-11322 202 1,822 AHS-L-4 314 458 458 15.1 (144) 3156 28,408 AHS-L-5 1,884 AHS-L-5 7 849 101.0 675 8.024 8,699 18.4 (850) (166) 1,884 AHS-L-5 381 14,620 AHS-L-5 3,701 547 4,066 547 4,801 2-11301 (S) 2.3 1601 3160 14,409 AHS-L-4 3,771 28,437 AHS-L-4 7,169 16.3 17.9 (147) 2-11301 (N) 3,918 2.4 2-11311 6.7 94.0 628 628 7,837 911 AHS-L-4 1,825 AHS-L-5 1,850 AHE-L-4 101 150 205 13.5 1.5 391 897 506 512 16.6 4.4 463 1.5 2-11304 300 2,700 AHS-L-5 675 675 15.0 911 AHS-L-5 1,911 AHE-L-4 602 6.7 116.0 775 654 (173) (654) 5.9 2-11350 856 3,799 AHS-L-4 950 15.0 454 660 (119) 1.7 1,821 AHS-L-4 335 454 15.0 2,690 AHS-L-4 2-11314 480 660 14.7 2-11312 101 911 AHS-L-4 609 6.3 90.0 563 563 563 37.0 47 6.0 1,833 AHS-L-4 1,041 AHS-L-5 357 165 16.5 14.2 1.8 2-11320 3-11006 505 247 (148) 3-11001 3147 28.325 AHS-L-5 6.770 6.7 95.0 635 6.7 105.0 702 6.7 94.0 628 6.7 102.0 682 2.647 7.820 10.467 22.2 (3.697) 1,883 AHS-L-5 486 1,775 (1,289) 95.0 635 635 3-11301 14,464 AHS-L-5 3,725 4,358 4,993 20.7 (1,268)2.3 22.4 12.7 18.8 (5,661) (46) (91) 4752 101 42,769 AHS-L-4 10,323 909 AHS-L-4 146 6.7 107.0 99.0 662 95.0 101.0 675 103.0 688 4,057 11,927 - 192 15,984 192 286 2.2 1.4 1.9 911 AHS-L-4 286 3-11308 3-11306 1,848 AHS-L-4 1,750 AHS-L-5 564 305 6.7 107.0 715 715 434 23.2 14.9 (151) 2.7 1.6 1,750 AHS-L-5 1,834 AHS-L-5 1,834 AHS-L-4 3-11304 3-11302 3-11320 570 378 553 98.0 6.7 655 655 655 427 22.5 (85) (49) (50) 2.9 1.9 2.7 427 603 14.0 1,875 AHS-L-4 443 443 14.2 (118) 1.6 425 425 1.6 1.6 3.7 1,751 AHS-L-4 423 818 14.5 3-11314 304 765 423 (119)688 1,858 AHS-L-4 6.7 103.0 688 130 26.4 (53) 9 911 AHS-L-4 587 432 322,150 - 79,486 101 35,794 6.7 94.0 628 113 1,726 11,498 628 -20,889 86,860 5.8 110 4,097 1,952 688 613 292 295 1,972 682 1,001 (28,263)

14890 1489	
Secretary Secret	
Series (1984) (1	
Part	
The proper language of	
Property	
Company Comp	
Control Cont	
No. 19	
No. 19	
Succinition of the property of	
1300 1200	zation
1300 100	(57)
1300 100 200 2 180 200 3 180 200 100	3,438)
13305 190 1468 9 1468 9 1468 9 1468 1469 1 150 1469 1 150 1469 1 1 1 1 1 1 1 1 1	(148)
1311 18	1,561)
13139 120 20 20 30 100 1	1,400)
1358 19	1,628)
1324 19	(215) (145)
1333 10 10 10 10 10 10 10	(369)
11390 00 200 0 1,500 0644 200 0 1,500 0644 201 0 0 0 0,500	(62)
1315 1315	(126)
1314 1315 1316	(147)
1312 de 105 9 911 864 4 588 6 7 100 888	(156)
13192 WB 211 9 1,902 MSL4 222	(216)
1392 Me 202 9 1.822 AS-14 200 1	(100)
1400 1400	(144)
1400 1400	(850)
13051 1306 1,001 9 1,400 805-14 1,774	(166)
11311 LID 3 160 9 28,437 MS-L4 3.160 6.7 94 6.28	1,100)
113106 188 191 9 9 11 ANS-4 101 1 1 1 1 1 1 1 1	(147)
11196 148	1,296) (55)
13396 1369 206 9 1.850 1.8	391
11302 ub	(512)
11150	(212)
11322 Lab 202 9 3.799 AriS-L4 4.22	(173)
13134 ub 202 9 1 1821 485.4 202	(654)
1314 Lab 290 9 9 2,690 ANS-L4 299	(94)
1312 Lab 101 9 911 APS-14 609 6.3 90 563	(119)
11320 Lab 204 9 1.833 AHS-L4 204	47
100 Lib 3.14 9 1.041 MS-L5 1.16	(148)
1002 Lab 1.007 9 1.883 MFsL-5 209 	(82)
1301 Lab 1.607 9 1.4.644 AFSL-5 1.607 6.7	3,697)
1391 Lab 4,752 9 42,769 Ar8-14 4,752 6.7 107 715 7 99 662 7 99 633 7 101 675 7 103 688 7 102 662 4,057 6,356 10,413 10,413 15 11310 Lab 101 9 99 Ar8-14 101	1,289)
11310 Lub 101 9 909 ARS-14 101	1,268) 5,661)
1353 Lab 101 9 911 148-14 101	(46)
1398 Lab 206 9 1.848 MrSt.4 554 6.7 107 7.75	(91)
1304 Lab 194 9 1.750 ARS-L5 570 6.7 98 655	(151)
1302 Lab 204 9 1.834 AHSL-5 204	(129)
1320 Lab 204 9 1.834 A/85.4 204	(85)
1318 Lab 208 9 1.875 APS-L4 208	(49)
1316 Lub 195 9 1.751 AHS-L4 195	(50) (118)
1314 Lab 195 9 1.751 Ar8-14 195	(119)
11312 Lab 206 9 1.858 AHS-L-4 635 6.7 103 688 688 - 260 688 22	(119)
	(53)
1322 Lab 101 9 911 AFS-14 557 6.7 94 628	(41) 8,263) -

Project Name: University of Rochester Energy Conservation MP Support Building: Del Monte Date: 41/2/021
EEM: Lab Arlifon Optimization
Scenario: Esting and Proposed Calculated By: CLF
Reviewed By: GHB

isting Conditio	ons								Fume Hood	11		Fume Hood	2		Fume Hood	3		Fume Hood	4		Fume Hoor	15		Fume Hood	6				Summary		
			Assumed						Measured	Calculate	1	Measured	Calculated		Measured	Calculated		Measured	Calculated		Measured	Calculated		Measured	Calculated	Total Hood	General				
			Ceiling	Volume	Associa	ated Sup	inte	Opening	Face	Exhaust	Opening	Face	Exhaust		Face	Exhaust	Opening	Face	Exhaust	Opening		Exhaust	Opening	Face	Exhaust	Exhaust	Exhaust	Total Lab	Calculated		
m Number	Room Type	Sa. Ft	Height	(cubic feet)	AHU	CFN		Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)		CFM	Area (sf)	Velocity	CFM	CFM		Exhaust CFM	ACH	Pressurization	CFN
.006	Lab	116	neight 9				33	ruea (si)	velocity	CITIVI	Alea (SI)	velocity	CFW	Alea (SI)	velocity	CITIVI	Area (SI)	velocity	CIWI	Alea (SI)	i) velocity	CFM	ALCO (SI)	velocity	Crivi	CIWI	49				CFR
001	Lab	3146	9				1,650			208			208			208			208			1		_	-	832		1,901	4.		
002	Lab	210	9				64			200	_		206	-		200	-	+	206	-		-		_	- 1	632	1,009	1,901	4.		
01 (S)	Lab	1615		14,536	AHS-L-		851			208			208	-		1	-	+	1	-		+ - :		_	_	416		975	4.		
301 (N)	Lab	1597	9				839			208			208									-		_		416		898	3.		
311	Lab	3144		28,292			1.615			208			208			-						-	_	-		416					
10	Lab	102	9				2,020			200			200														48				
06	Lab	195	9				73			-						-			-			-			-		130				
04	Lab	410	9				182			_												-		_			328	328	5.		
53	Lab	101	9				35			_												-		_			45				
108	Lab	206	9				81															-		_			134				
320	Lab	211		1,903			84			-	1	1						1				1	1			-	174				
316	Lab	195	9				75			-	1	1				-		1	-			1	1			-	122	122			
14	Lab	299	9		AHS-L-		116			_	1	1		1			1	t —		t —		-	t	+	-	-	234				
12	Lab	101	9				52			208	1	 					1	t		!		-	 	+		208		208	13.		
18	Lab	211	9				131			-	+	 					1	t		!		-	 	+	-	-	153				
22	Lab	202	9				71			T .	1			1				1		1		-	1		-		115	115			
01	Lab	3156	9		AHS-L-		1.790			208																208		3,600	7.		
02	Lab	209		1.884			95			-						-			-						-	-	172				
01 (S)	Lab	1624		14,620	AHS-L-		880			208						-			-						-	208		1,126	4.		
01 (N)	Lab	1601	9				916			-						-			-						-	-	1.340		5.		
11	Lab	3160		28,437			1.688			208						-			-			-			-	208		2,381			
10	Lah	101	9				36			-						-			-			-			-	-	49				
06 (S)	Lab	203	9				212			-			-			-			-			-			-		162				
06 (N)	Lab	206	9	1,850	AHE-L-	4	-			-			-			-			-			-			-		165	165	5.		
04	Lab	300	9	2,700	AHS-L-	-5	103			-			-			-			-			-			-	-	162	162	3.	6 (59)	
302	Lab	101	g			-5	59			208			-			-			-			-			-	208	-	208	13.	7 (149)	
350	Lab	212	9	1.911	AHE-L-	4	-			-						-			-			-			-		114	114	3.	6 (114)	
322	Lab	422	9	3,799	AHS-L-	-4	147			-			-			-			-			-			-	-	226	226			
318	Lab	202	9	1,821	AHS-L-	-4	65			-			-			-			-			-			-	-	110	110	3.	6 (45)	
14	Lab	299	9	2,690	AHS-L-	-4	120			-			-			-			-			-			-	-	159	159	3.	5 (39)	
312	Lab	101	9	911	AHS-L-	-4	54			208						-			-			-			-	208	-	208	13.	7 (154)	
20	Lab	204	9	1,833	AHS-L-	-4	82			-						-			-			-			-	-	172	172	5.	6 (90)	
06	Lab	116	9	1,041	AHS-L-	-5	47			-			-			-			-			-			-	-	76	76	4.	4 (29)	
01	Lab	3147	9	28,325	AHS-L-	-5	1,586			208			208			208			208			-			-	832	2,137	2,969	6.	3 (1,383)	
02	Lab	209	9	1,883	AHS-L-	-5	105			-			-			-			-			-			-	-	277	277	8.	B (172)	
01	Lab	1607	g	14,464	AHS-L-	-5	941			208			-			-			-			-			-	208	1,028	1,236	5.	1 (295)	
11	Lab	4752	g	42,769	AHS-L-	-4	2,332			208			208			208			208			208			208	1,248	1,614	2,862	4.	0 (530)	
10	Lab	101	9	909	AHS-L-	-4	41			-			-			-			-			-			-	-	53	53			
53	Lab	101	9	911	AHS-L-	-4	42			-			-			-			-			-			-	-	57	57	3.	8 (15)	
08	Lab	205	9	1,848	AHS-L-	-4	68			208			-			-			-			-			-	208	-	208	6.	8 (140)	
06	Lab	194	9				79						-			-						-					131				
)4	Lab	194	9				115			208			-													208		208			
)2	Lab	204	9	1,834	AHS-L-	-5	80		1	-			-	1		-	1		-			-			-	-	124	124	4.	1 (44)	
20	Lab	204			AHS-L-		108												-			-				-	134	134			
L8	Lab	208	9	1,875	AHS-L-	-4	72			-			-			-			-			-			-	-	120	120	3.		
.6	Lab	195	9	1,751	AHS-L-	-4	76			-			-			-			-			-			-	-	129	129	4.	4 (53)	
4	Lab	195	g	1,751	AHS-L-	-4	72			-			-			-			-			-			-	-	120	120	4.	1 (48)	
L2	Lab	206	9	1,858	AHS-L-	-4	87			208			-			-			-			-			-	208	130	338	10.	9 (251)	
22	Lab	101	9	911	AHS-L-	-4	69			208			-			-			-			-			-	208	-	208	13.	7 (139)	
	1	35.794	4 432	322,150	1	- 1	18,119			3,536			1,248			624			624	1		208			208	6.448	20,856	27.304	- 27	3 (9.185)	-

Project Name: University of Rochester Energy Conservation MP Support Building: Del Monte Date: 41/2/021
EEM: Lab Alrikov Optimization
Scenario: Disting and Proposed
Calculated By: CLF
Reviewed By: GHB

																			Desired	d Face Velocity	80	FPM		:	1 CFM/SQFT		Desired Lab ACH	4		
New Fume Hoo	d Face Velocity or L	Lab ACH Scer	nario					Fume Hood	1	Fume Hood	2		Fume Hood	3		Fume Hood	4		Fume Hood	5		Fume Hood	6				Summary			
			Assumed Ceiling	Volume	Associated	New Calculated Supply	Opening	New Face	Calculated Exhaust Open	ing New Face	Calculated Exhaust	Opening	New Face	Calculated Exhaust	Opening	New Face	Calculated Exhaust	Opening	New Face	Calculated Exhaust	Opening	New Face	Calculated Exhaust	New Total Hood Exhaust	New General Exhaust	Desired New Total Lab	Actual New Total Lab Exhaust			
Room Number	Room Type	Sq. Ft	Height	(cubic feet)	AHU	CFM	Area (sf)	Velocity	CFM Area	(sf) Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	CFM	CFM	Exhaust CFM	CFM	New ACH	Pressurization	CFM/Sqft
1-11006	Lab	116	9		AHS-L-5	33			-											-				-	49				(16)	0.3
1-11001	Lab	3,146	9		AHS-L-5	1,650			208		208			208			208			-			-	832		1,901		4.0	(251)	0.5
1-11002	Lab	210	9		AHS-L-5	64			-		-			-						-			-	-	108	108		3.4	(44)	0.3
1-11301 (S)	Lab	1,615	9		AHS-L-5	851			208		208						-			-			-	416				4.0	(124)	0.5
1-11301 (N)	Lab	1,597 3.144	9		AHS-L-4	839 1.615			208 208		208 208			-			-			-			-	416 416				3.7 4.4	(59) (463)	0.5 0.5
1-11311	Lab	3,144	9		AHS-L-4 AHE-L-4	1,615			208		208			-			-			-			-	416	1,662				(463)	0.5
1-11310	Lab	102	9		AHS-L-5	73	_	-			-			-			-			+ -			-	-	130				(57)	0.4
1-11304	Lab	410	9		AHS-L-5	182											-			1			-	-	328				(146)	0.4
1-11353	Lab	101	9		AHS-L-4	35											-			1			-	-	45				(10)	0.3
1-11308	Lab	206	9		AHS-L-4	81			-		-			-			-			-			-	-	134				(53)	0.4
1-11320	Lab	211	9		AHS-L-4	84			-		-			-			-			-			-	-	174	174		5.5	(90)	0.4
1-11316	Lab	195	9		AHS-L-4	75			-		-						-			-			-	-	122			4.2	(47)	0.4
1-11314	Lab	299	9	2,691	AHS-L-4	116			-		-			-			-			-			-	-	234	234	234	5.2	(118)	0.4
1-11312	Lab	101	9		AHS-L-4	52			208											-			-	208		208		13.7	(156)	0.5
1-11318	Lab	211	9		AHS-L-4	131			-		-			-			-			-			-	-	153				(22)	0.6
1-11322	Lab	202	9		AHS-L-4	71			-		-			-			-			-			-	-	115				(44)	0.4
2-11001	Lab	3,156	9		AHS-L-5	1,790			208		-			-						-			-	208				7.6	(1,810)	0.6
2-11002	Lab	209	9		AHS-L-5	95					-						-			-			-		172			5.5	(77)	0.5
2-11301 (S)	Lab	1,624	9		AHS-L-5	880			208		-						-			-			-	208		1,126 1.340		4.6	(246)	0.5 0.6
2-11301 (N)	Lab	1,601 3.160	9			916 1.688			208		-			-			-			-			-		1,340			5.6 5.0	(424) (693)	0.6
2-11311	Lab	3,160	9		AHS-L-4	1,688			208		-			-			-			-			-	208	2,173				(693)	0.5
2-11310 2-11306 (S)	Lab	203	9		AHS-L-4	203			-		_			<u> </u>						-			_	-	153			5.0	50	1.0
2-11306 (N)	Lab	205	9		AHE-L-4	203											-			1			-	-	165				(165)	1.0
2-11304	Lab	300	9		AHS-L-5	103			-					-			-			-			-		162				(59)	0.3
2-11302	Lab	101	9		AHS-L-5	59			208					-			-			-			-	208		208		13.7	(149)	0.6
2-11350	Lab	212	9		AHE-L-4				-											-				-	114				(114)	
2-11322	Lab	422	9	3,799	AHS-L-4	147			-		-			-			-			-			-	-	226	226	226	3.6	(79)	0.3
2-11318	Lab	202	9		AHS-L-4	65			-											-			-		110				(45)	0.3
2-11314	Lab	299	9		AHS-L-4	120			+		-			-			-			-			-	-	159				(39)	0.4
2-11312	Lab	101	9		AHS-L-4	54			208		-			-			-			-			-	208		208		13.7	(154)	0.5
2-11320	Lab	204	9		AHS-L-4	82			-		-			-						-			-	-	172			5.6	(90)	0.4
3-11006	Lab	116	9		AHS-L-5	47					-						-			-			-		76	76			(29)	0.4
3-11001	Lab	3,147	9		AHS-L-5			1	208	_	208	-	1	208	-	1	208		-	-	1		-	832		2,969 277		6.3 8.8	(1,383)	0.5 0.5
3-11002 3-11301	Lab	209 1.607	9		AHS-L-5	105 941		-	208	_	<u> </u>		1	<u> </u>	-	-	-		-	+ -	1	-	-	208	277 1.028	1,236		5.1	(172) (295)	0.6
3-11301	Lab	4,752	9			2.332		+	208	_	208	-	 	208	-	-	208	-	-	208	1	-	208			2,862		4.0	(530)	0.6
3-11311	Lab	4,752	9		AHS-L-4			1	208	_	208		1	206		1	208			208	1		200	1,246	1,014				(12)	
3-11310	Lab	101	9		AHS-L-4	41		+				 	 	 	 	1		l	 	1	!	†		1 - i	57				(12)	0.4
3-11308	Lab	205	9		AHS-L-4	68		1	208		—	1	1			1	-			1	1		1	208		208			(140)	0.3
3-11306	Lab	194	9		AHS-L-5	79			-		-			-			-			-			-	-	131			4.5	(52)	0.4
3-11304	Lab	194	9	1,750	AHS-L-5	115			208		-						-			-			-	208	-	208	208	7.1	(93)	0.6
3-11302	Lab	204	9		AHS-L-5	80			-		-						-			-			-	-	124			4.1	(44)	0.4
3-11320	Lab	204	9		AHS-L-4	108			-														<u> </u>	-	134			4.4	(26)	0.5
3-11318	Lab	208	9		AHS-L-4	72			-														-	-	120			3.8	(48)	0.3
3-11316	Lab	195	9		AHS-L-4	76		1	-														-	-	129	129		4.4	(53)	0.4
3-11314	Lab	195	9		AHS-L-4	72			-		-						-			-			-	-	120			4.1	(48)	0.4
3-11312	Lab	206	9		AHS-L-4	87		1	208		-			-			-			-			-	208				10.9	(251)	0.4
3-11322	Lab	101	9		AHS-L-4	69		1	208				1	-			-			-			-	208		208		13.7	(139)	0.7
L		36,102	450	324,918	-	18,110	1	1	3,536	- -	1,248	<u> </u>	<u> </u>	624	<u> </u>		624	<u> </u>		208	<u> </u>	<u> </u>	208	6,448	20,847	27,295	27,295	272	(9,185)	- 22

wer	ndel																														
	University of R	ochester Energ	zv Conservati	on MP Support																											
	Del Monte		.,																												
	4/1/2021																														
	Lab Airflow Op Exisitng and P																														
Calculated By:		roposeu																													
Reviewed By:																															
																									_						
isting Conditio	ns	1 1		1				Fume Hood 1		_	Fume Hood			Fume Hood			Fume Hood			Fume Hood 5			Fume Hood 6			1	1	Summary	1		
			Assumed Ceiling	Volume	Associated	Supply	Opening	Measured Face		pening	Measured Face	Calculated Exhaust		Measured Face	Calculated Exhaust	Opening	Measured Face	Calculated Exhaust	Opening	Measured Face	Calculated Exhaust	Opening	Measured Face	Calculated Exhaust	Total Hood Exhaust	General Exhaust	Total Lab				
oom Number	Room Tyne	So Ft	Height				Area (sf)				Velocity	CFM		Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	CFM	CFM	Exhaust CFM		Calculated ACH	Pressurization	CFM/S
11006	Lab	116	9		AHS-L-5	121		reneuny				-			-			-			-		reservy	-	-	178			10.3		
11001	Lab	3146	9		AHS-L-5	6,561	6.7	106.0	709	6.7	108.0	722	6.7	103.0	688	6.7	92.0	615						-	2,734	7,265	9,999		21.2		
11002 11301 (S)	Lab Lab	210 1615	9	1,888 14,536	AHS-L-5	334 3,728	6.7	109.0	729	6.7	110.0	735			-	1	 	-		 	-	1	1	-	1.464	482 3.825	482 5,289		15.3 21.8		
11301 (S) 11301 (N)	Lab	1597	9	14,536		3,728	6.7		682	6.7	91.0	608				l —	 	-		-	-	 	l —		1,464	3,825	4,940		21.8		
11311	Lab	3144	9		AHS-L-4	7,078	6.7		642	6.7	100.0	668						-			-	!			1,310		8,706		18.5		
11310	Lab	102	9	914	AHE-L-4	- 1			-			-						-			-			-	-	215	215		14.1	(215)	
11306	Lab	195	9		AHS-L-5	303									-									-		448	448		15.3		
11304 11353	Lab Lab	410 101	9		AHS-L-5 AHS-L-4	743 140			-			-			-			-			-			-	-	1,112	1,112 202		18.1 13.3		
11308	Lab	206	9		AHS-L-4	310												-							-	436			14.1		
11320	Lab	211	9		AHS-L-4	383			-			-			-			-			-			-	-	530	530		16.7		
11316	Lab	195	9	1,751	AHS-L-4	290			-			-						-			-			-	-	446	446		15.3	(156)	
11314	Lab	299	9		AHS-L-4	502			-						-			-			-			-	-	718			16.0		
11312 11318	Lab Lab	101 211	9		AHS-L-4	588 464	6.7	103.0	688			-			-	 	-			-	-	-	 	-	688	496	688 496		45.4 15.6		
11322	Lab	202	9		AHS-L-4	314						-				l					-	!	l		1	458	458		15.1		
11001	Lab	3156	9	28,408	AHS-L-5	7,849	6.7	101.0	675			-			-			-			-			-	675	8,024	8,699		18.4	(850)	
11002	Lab	209	9		AHS-L-5	381						-			-			-			-			-	-	547	547		17.4		
11301 (S) 11301 (N)	Lab	1624 1601	9	14,620	AHS-L-5 AHS-L-4	3,701 3,771	6.7	110.0	735			-			-	1	 	-		 	-	1	1	-	735	4,066 3,918	4,801 3,918		19.7 16.3		
11301 (N) 11311	Lab Lab	3160	9		AHS-L-4	7,169	6.7	94.0	628							!	+			-		!	!	— :	628	7,837	3,918 8,465		16.3		
11310	Lab	101	9	911	AHS-L-4	150						-									-					205	205		13.5	(55)	
11306 (S)	Lab	203	9		AHS-L-5	897			-															-	-	506	506		16.6		
11306 (N)	Lab	206 300	9		AHE-L-4 AHS-L-5	463			-			-			-			-			-			-	-	512	512 675		16.6		
11304 11302	Lab Lab	101	9		AHS-L-5	463 602	6.7	116.0	775							 	 			 	-	 	 	1	775	675	675 775		15.0 51.1		
11350	Lab	212	9	1,911	AHE-L-4	-	5.1	110.0	-			-						-			-					654	654		20.5		
11322	Lab	422	9	3,799	AHS-L-4	856			-			-			-			-			-			-		950	950		15.0	(94)	
11318	Lab	202	9		AHS-L-4	335			-						-									I -	1 -	454	454		15.0		
11314 11312	Lab Lab	299 101	9		AHS-L-4	480 609	6.3	90.0	563			-			-	-	-			-	-	-	-	-	563	660	660 563		14.7 37.0		
11312	Lab	204	9		AHS-L-4	357	0.3	90.0				-						-			-				- 503	505	505		16.5		
11006	Lab	116	9	1,041	AHS-L-5	165			-																	247	247		14.2	(82)	
11001	Lab	3147	9			6,770	6.7	95.0	635	6.7	105.0	702	6.7	94.0	628	6.7	102.0							-	2,647		10,467		22.2		
	Lab	209 1607	9	1,883	AHS-L-5	486		05.0	635			-			-	1	 	-		 	-	1	1	-		1,775 4,358	1,775 4.993		56.6 20.7		
11301 11311	Lab Lab	1607 4752	9			3,725 10,323	6.7		635 715	6.7	99.0	662	6.7	95.0	635	6.7	101.0	675	6.7	103.0	688	6.7	102.0	682	635 2 4,057		4,993 15,984		20.7		
11311	Lab	101	9		AHS-L-4	146	0.7	107.0	- 120	0.7	55.0	- 002	0.7	50.0	- 035	0.7	101.0		0.7	103.0		0.7	102.0		4,057	192	192		12.7		
11353	Lab	101	9	911	AHS-L-4	195			-			-			-			-			-			-	-	286	286		18.8	(91)	
11308	Lab	205	9		AHS-L-4	564	6.7	107.0	715									-			-			-	715		715		23.2		
11306 11304	Lab Lab	194 194	9		AHS-L-5	305 570	6.7	98.0	655			-			-			-			-			-	655	434	434 655		14.9 22.5		
11304	Lab	204	9		AHS-L-5	378	6./	96.0	- 000			-			 	!	+	t i		-		!	!	 	- 655	427			14.0		
11320	Lab	204	9		AHS-L-4	553			-			-			-			-			-			-	-	603			19.7		
11318	Lab	208	9		AHS-L-4	325			-			-						-			-			-	-	443			14.2		
11316	Lab	195	9		AHS-L-4	306			-			-			-						-					425	425		14.6		
11314 11312	Lab	195 206	9		AHS-L-4 AHS-L-4	304 765	6.7	103.0	688			-			-	-	-	H :-		-	-	-	-		688	423 130	423 818		14.5 26.4		
11322	Lab	101	9		AHS-L-4	587	6.7		628						t i	!	+	t i		-		!	!	 	628	- 130	628		41.4		
		35,794	432			79,486	113		11,498	40	613	4,097	20	292	1,952	20	295	1,972	7	103	688	7	102	682		86,860			1.001		- :

Project Name: University of Rochester Energy Conservation MP Support Building: Del Monte
Date: 41/2/021
EBM: Lab Alfrido Optimization
Scenario: Estating and Proposed
Calculated By: CUF
Reviewed By: GHB

																					Desired	face Velocity	у 80	FPM	1	CFM/SQFT		Desired Lab ACH	6		
New Fume Hood	Face Velocity or	Lab ACH Sce	nario				F	Fume Hood	1		Fume Hood	12		Fume Hoo	d 3		Fume Hood	4		Fume Hood	5		Fume Hood	6				Summary			
			Assumed Ceiling	Volume Asso	Ca	ew alculated upply C	Opening	Measured Face	Calculated Exhaust	Opening	Measured Face	Calculated Exhaust	Opening	Measured Face	Calculated Exhaust	Opening	Measured Face	Calculated Exhaust	Opening	Measured Face	Calculated Exhaust	Opening	Measured Face	Calculated Exhaust	Total Hood Exhaust	New General Exhaust	Desired New Total Lab	Actual New Total			
Room Number	Room Type	Sq. Ft	Height	(cubic feet) AHU			Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	CFM	CFM	Exhaust CFM	CFM	New ACH	Pressurization	CFM/Sqft
1-11006	Lab	116		9 1,041 AHS		116	-	-	-	-	-	-	-	· ·	-	-	-	- ·	-	-	-	-	-	-	-	173	173				1.0
1-11001	Lab	3,146			-L-5	3,146	6.7	106	708.51	7	108	721.88	7	10	3 688		7 92	615	-	-	-		-	-	2,734		6,584		14		1.0
1-11002	Lab	210	9	9 1,888 AHS	i-L-5	210			-	-	-	-	-		-	-	-		-	-	-		-		-	358	358	358	11		1.0
1-11301 (S)	Lab	1,615			-L-5	1,615	6.7	109					-	-	-	-	-	-	-	-	-	-	-	-	1,464	1,712	3,176		13		1.0
1-11301 (N)	Lab	1,597		9 14,373 AHS		1,597	6.7	102					-	-	-	-	-	-	-	-	-	-	-	-	1,290	1,707	2,997	2,997	13		1.0
1-11311	Lab	3,144		9 28,292 AHS		3,144	6.7	96	642	7	100	668	-	-	-	-	-	-	-	-	-	-	-	-	1,310						1.0
1-11310	Lab	102 195		9 914 AHE 9 1.751 AHS		5 195	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		220 340					0.0
1-11304	Lab	410		9 3,688 AHS		410		-	<u> </u>	<u> </u>	-	<u> </u>	-	-	-	-	-	_	-	-			-	-	-	779	779				1.0
1-11353	Lab	101		9 911 AHS		101	-		1	1				1	-	-	-	-			-	-	1 -	1	1	163					1.0
	Lab	206		9 1,850 AHS		206			-	-			-		-								-		-	332					1.0
1-11320	Lab	211		9 1,903 AHS		211	-	-	-	-	-	-		-	-	-	-		-	-	-		-	-	-	358		358			1.0
1-11316	Lab	195	9	9 1,751 AHS	i-L-4	195			-	-			-	-	-		-		-	-			-		-	351	351	351	12	(156)	1.0
	Lab	299		9 2,691 AHS		299											-			-		-				515					1.0
1-11312	Lab	101		9 911 AHS		588	6.7	103	688	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	688	-	202				5.8
1-11318	Lab	211		9 1,902 AHS		211		-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	243					1.0
	Lab	202 3.156		9 1,822 AHS 9 28.408 AHS		202 3.156	6.7	101	675	-			-		-	-	_	-	-	-	-		-	-	675	346	346 4.007				1.0
2-11001	Lab	3,156		9 28,408 AHS 9 1,884 AHS		209	6.7	101	6/5	-		-	-	-	-		-	-	-	-	-	-	-	-	6/5	3,331 375					1.0
2-11002 2-11301 (S)	Lab	1,624		9 14,620 AHS		1.624	6.7	110	735	<u> </u>	-	<u> </u>	-	-	-	-	-	_	-	-			-	-	735						1.0
2-11301 (N)	Lab	1,601		9 14,409 AHS		1,624	0.7	- 110	- 133	1				1	-	-	-	-			-	-	1 -	1	-	1,748					1.0
2-11311	Lab	3,160		9 28,437 AHS		3,160	6.7	94	628	-	-	-	-	-	-	-	-	-	-	-	-		-	-	628					(1,296)	1.0
2-11310	Lab	101		9 911 AHS		101	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-		-	156	156		10		1.0
2-11306 (S)	Lab	203	9	9 1,825 AHS	i-L-5	574					-		-		-		-						-	-	-	183	183	183	6	391	2.8
2-11306 (N)	Lab	206		9 1,850 AHE		8		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	520					0.0
2-11304	Lab	300		9 2,700 AHS		300		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	512					1.0
2-11302	Lab	101		9 911 AHS		602	6.7	116	775	-		-	-	-	-	-	-	-	-	-	-	-	-	-	775		275				5.9
2-11350 2-11322	Lab Lab	212 422		9 1,911 AHE 9 3,799 AHS		46 422	-		-	-		-	-	-	-		-	-	-	-	-	-	+	-	-	700 516	700 516			(654)	0.2 1.0
2-11322	Lab	202		9 1,821 AHS		202		-	<u> </u>	<u> </u>	-	<u> </u>	-	-	-	-	-	_	-	-			-	-	-	321					1.0
2-11314	Lab	299		9 2,690 AHS		299	-		1	1				1	-	-	-	-			-	-	1 -	1	1	479					1.0
2-11312	Lab	101		9 911 AHS		609	6.3	90	563	-			-		-		-						-		563		91				6.0
2-11320	Lab	204		9 1,833 AHS		204	-	-	-	-	-	-		-	-	-	-		-	-	-		-	-	-	352					1.0
3-11006	Lab	116	9	9 1,041 AHS	i-L-5	116		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	198	198	198			1.0
3-11001	Lab	3,147		9 28,325 AHS	i-L-5	3,147	6.7	95	635	7	105	702	7	9	4 628		7 102	682					-		2,647	4,197	6,844				1.0
3-11002	Lab	209		9 1,883 AHS		209		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,498	1,498		48	(1,289)	1.0
3-11301	Lab	1,607			-L-5	1,607	6.7	95			-	-	-			-		-	-	-				-	635	2,240	2,875	2,875	12	(1,268)	1.0
3-11311	Lab	4,752 101		9 42,769 AHS 9 909 AHS		4,752 101	6.7	107	715	7	99	662	7	' 9	5 635	1	7 101	675	7	103	688	7	102	682	4,057	6,356 147	10,413 147				1.0
3-11310	Lab			9 909 AHS 9 911 AHS		101	-		-	-		-	-	-	-		-	-	-	-	-	-	+	-	-						
3-11353 3-11308	Lab Lab	101 205		9 1,848 AHS		564	6.7	107	715		-	1	1	1 -	+ :	1	+ :	-	-	-	1	1 -	+ -	 	715	192	192 357				1.0 2.7
3-11306	Lab	194		9 1,750 AHS		194	- 0.7	- 107	- 110	+ :		+ -	-	+ -	+ :	+ -	+ - :	<u> </u>			+ :	+ -	1	1	- 710	323					1.0
	Lab	194		9 1,750 AHS		570	6.7	98	655	-	-		-	-	-	-	-	-	-	-	-	-	-	-	655		279				2.9
3-11302	Lab	204		9 1,834 AHS		204	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	253					1.0
3-11320	Lab	204		9 1,834 AHS		204		-	-	-	-		-	-		-	-		-	-	-	-		-	-	254				(50)	1.0
3-11318	Lab	208		9 1,875 AHS	i-L-4	208	-	-	-	-							-	_	-	_	_					326			10	(118)	1.0
	Lab	195		9 1,751 AHS		195	-	-			-		-			-	-	1 -		-			1	1 -	1 -	314					1.0
3-11314	Lab	195		9 1,751 AHS		195		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		314	314				1.0
3-11312	Lab	206		9 1,858 AHS		635	6.7	103			-	-	-	-	-	-	-	-	-	-	-		-	-	688	-	260				3.1
3-11322	Lab	101 36,102		9 911 AHS 0 324,918		587 39,156	6.7 113.2	94 1,726			613	4,097	- 20	29	2 1,952	+ -	10 295	1,972	- 7	103	688	- 7	102	682	628	46,530	143 64,311		41 766		5.8 - 74.5
	1	30,102	450	324,910	-	35,130	113.2	1,120	11,498	40	013	4,097	20	29	2 1,952	1 -	295	1,972	- 1	103	000		102	002	20,009	40,530	64,311	67,419	/00	(20,203)	- 14.5

Project Name: University of Rochester Energy Conservation MP Support Building: Del Monte Date: 41/2/021
EEM: Lab Arlifon Optimization
Scenario: Esting and Proposed Calculated By: CLF
Reviewed By: GHB

isting Conditio	ons								Fume Hood	11		Fume Hood	2		Fume Hood	3		Fume Hood	4		Fume Hoor	15		Fume Hood	6				Summary		
			Assumed						Measured	Calculate	1	Measured	Calculated		Measured	Calculated		Measured	Calculated		Measured	Calculated		Measured	Calculated	Total Hood	General				
			Ceiling	Volume	Associa	ated Sup	inte	Opening	Face	Exhaust	Opening	Face	Exhaust		Face	Exhaust	Opening	Face	Exhaust	Opening		Exhaust	Opening	Face	Exhaust	Exhaust	Exhaust	Total Lab	Calculated		
m Number	Room Type	Sa. Ft	Height	(cubic feet)	AHU	CFN		Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)		CFM	Area (sf)	Velocity	CFM	CFM		Exhaust CFM	ACH	Pressurization	CFN
.006	Lab	116	neight 9				33	ruea (si)	velocity	CITIVI	Alea (SI)	velocity	CFW	Alea (SI)	velocity	CITIVI	Area (SI)	velocity	CIWI	Alea (SI)	i) velocity	CFM	ALCO (SI)	velocity	Crivi	CIWI	49				CFR
001	Lab	3146	9				1,650			208			208			208			208			1		_	-	832		1,901	4.		
002	Lab	210	9				64			200	_		206	-		200	-	+	206	-		-		_	- 1	632	1,009	1,901	4.		
01 (S)	Lab	1615		14,536	AHS-L-		851			208			208	-		1	-	+	1	-		+ - :		_	_	416		975	4.		
301 (N)	Lab	1597	9				839			208			208									-		_		416		898	3.		
311	Lab	3144		28,292			1.615			208			208			-						-	_	-		416					
10	Lab	102	9				2,020			200			200														48				
06	Lab	195	9				73			-						-			-						-		130				
04	Lab	410	9				182			_												-		_			328	328	5.		
53	Lab	101	9				35			_												-		_			45				
108	Lab	206	9				81															-		_			134				
320	Lab	211		1,903			84			-	1	1						1				1	1			-	174				
316	Lab	195	9				75			-	1	1				-		1	-			1	1	1		-	122	122			
14	Lab	299	9		AHS-L-		116			_	1	 		1			1	t —		†		-	t	+	-	-	234				
12	Lab	101	9				52			208	1	 					1	t		!		-	 	+		208		208	13.		
18	Lab	211	9				131			-	+	 					1	t		!		-	 	+	-	-	153				
22	Lab	202	9				71			T .	1			1				1		1		-	1		-		115	115			
01	Lab	3156	9		AHS-L-		1.790			208						—										208		3,600	7.		
02	Lab	209		1.884			95			-						-			-						-	-	172				
01 (S)	Lab	1624		14,620	AHS-L-		880			208						-			-						-	208		1,126	4.		
01 (N)	Lab	1601	9				916			-						-			-						-	-	1.340		5.		
11	Lab	3160		28,437			1.688			208						-			-			-			-	208		2,381			
10	Lah	101	9				36			-						-			-			-			-	-	49				
06 (S)	Lab	203	9				212			-			-			-			-			-			-		162				
06 (N)	Lab	206	9	1,850	AHE-L-	4	-			-			-			-			-			-			-		165	165	5.		
04	Lab	300	9	2,700	AHS-L-	-5	103			-			-			-			-			-			-	-	162	162	3.	6 (59)	
302	Lab	101	g			-5	59			208			-			-			-			-			-	208	-	208	13.	7 (149)	
350	Lab	212	9	1.911	AHE-L-	4	-			-			-			-			-			-			-		114	114	3.	6 (114)	
322	Lab	422	9	3,799	AHS-L-	-4	147			-			-			-			-			-			-	-	226	226			
318	Lab	202	9	1,821	AHS-L-	-4	65			-			-			-			-			-			-	-	110	110	3.	6 (45)	
14	Lab	299	9	2,690	AHS-L-	-4	120			-			-			-			-			-			-	-	159	159	3.	5 (39)	
312	Lab	101	9	911	AHS-L-	-4	54			208						-			-			-			-	208	-	208	13.	7 (154)	
20	Lab	204	9	1,833	AHS-L-	-4	82			-						-			-			-			-	-	172	172	5.	6 (90)	
06	Lab	116	9	1,041	AHS-L-	-5	47			-			-			-			-			-			-	-	76	76	4.	4 (29)	
01	Lab	3147	9	28,325	AHS-L-	-5	1,586			208			208			208			208			-			-	832	2,137	2,969	6.	3 (1,383)	
02	Lab	209	9	1,883	AHS-L-	-5	105			-			-			-			-			-			-	-	277	277	8.	B (172)	
01	Lab	1607	g	14,464	AHS-L-	-5	941			208			-			-			-			-			-	208	1,028	1,236	5.	1 (295)	
11	Lab	4752	g	42,769	AHS-L-	-4	2,332			208			208			208			208			208			208	1,248	1,614	2,862	4.	0 (530)	
10	Lab	101	9	909	AHS-L-	-4	41			-			-			-			-			-			-	-	53	53			
53	Lab	101	9	911	AHS-L-	-4	42			-			-			-			-			-			-	-	57	57	3.	8 (15)	
08	Lab	205	9	1,848	AHS-L-	-4	68			208			-			-			-			-			-	208	-	208	6.	B (140)	
06	Lab	194	9				79						-			-						-					131				
)4	Lab	194	9				115			208			-													208		208			
)2	Lab	204	9	1,834	AHS-L-	-5	80		1	-			-	1		-	1		-			-			-	-	124	124	4.	1 (44)	
20	Lab	204			AHS-L-		108												-			-				-	134	134			
L8	Lab	208	9	1,875	AHS-L-	-4	72			-			-			-			-			-			-	-	120	120	3.		
.6	Lab	195	9	1,751	AHS-L-	-4	76			-			-			-			-			-			-	-	129	129	4.	4 (53)	
4	Lab	195	g	1,751	AHS-L-	-4	72			-			-			-			-			-			-	-	120	120	4.	1 (48)	
L2	Lab	206	9	1,858	AHS-L-	-4	87			208			-			-			-			-			-	208	130	338	10.	9 (251)	
22	Lab	101	9	911	AHS-L-	-4	69			208			-			-			-			-			-	208	-	208	13.	7 (139)	
	1	35.794	4 432	322,150	1	- 1	18,119			3,536			1,248			624			624	1		208			208	6.448	20,856	27.304	- 27	3 (9.185)	-

EEM:	4/1/2021 Lab Airflow Opt																											
Calculated By:																												
	Exisitng and Pro	oposed																										
																				_							_	
																	Desired	Face Velocity	80	FPM		0.5	CFM/SQFT		Desired Lab ACH	4	4	
w Fume Hood F	Face Velocity or	Lab ACH Scenario			Fume Hoo	d 1		Fume Hood 2	!		Fume Hood 3	3		Fume Hood	4		Fume Hood 5	5		Fume Hood (3				Summary		-	-
		Assumed		New Calculate		Calculated	J		Calculated		1	Calculated			Calculated			Calculated			Calculated	New Total Hood	New General	Desired New	Actual New Total	'n		
		Ceiling	Volume Associate			Exhaust	Opening	New Face		Opening	New Face	Exhaust	Opening	New Face	Exhaust	Opening	New Face	Exhaust	Opening	New Face	Exhaust				Lab Exhaust	in .		
	Room Type	Sq. Ft Height	(cubic feet) AHU	CFM	Area (sf) Velocity	CFM	Area (sf)			Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)		CFM	Area (sf)	Velocity	CFM				CFM	New ACH	Pressurization	
	Lab		9 1,041 AHS-L-5	33					-			-			-			-			-	-	49	49	49	2.8		
	Lab		9 28,313 AHS-L-5 9 1,888 AHS-L-5	1,637		208	-	+	208		1	208	-	-	208	1	+	-	-	+	-	832	1,056 108	1,888 108	1,888 108	4.0 3.4		
	Lab		9 14,536 AHS-L-5	845		208	!		208		1			!		1				1		416	553	969	969	4.0		
.1301 (N)	Lab	1,597	9 14,373 AHS-L-4	899)	208			208									-			-	416	542	958	958	4.0	(59	9)
	Lab		9 28,292 AHS-L-4	1,572	2	208			208						-			-			-	416	1,619	2,035	2,035	4.3		
	Lab Lab		9 914 AHE-L-4 9 1,751 AHS-L-5	73		-	1		-		1	-			-	-		-		1	-	-	48 130	48 130		3.2 4.5		
	Lab		9 1,751 AHS-L-5 9 3,688 AHS-L-5	182		-			-		1	-	 			1	+	-	l	+	-	-	328	328		4.5 5.3		
.1353	Lab	101	9 911 AHS-L-4	35	5										-			-			-	-	45	45	45	3.0	(10	0)
	Lab		9 1,850 AHS-L-4	8:		-			-			-			-			-			-	-	134	134		4.3		
	Lab		9 1,903 AHS-L-4 9 1,751 AHS-L-4	75		-	-	+	-		1	-	-	-	1	1	+	-	-	+	-	-	174 122	174 122	174 122	5.5 4.2		
	Lab		9 2.691 AHS-L-4	116		-	1		-		1	-				1				1		-	234	234	234	5.2		
1312	Lab	101	9 911 AHS-L-4	52	2	208			-			-			-			-			-	208	-	207	208	13.7	(156	6)
	Lab		9 1,902 AHS-L-4	106		-			-			-			-	1		-		1	-	-	128	128	128	4.0		
	Lab		9 1,822 AHS-L-4 9 28,408 AHS-L-5	1,578		208	-	1	-			-		-	-			-		-	-	208	115 3,180	115 3.388	115 3.388	3.8 7.2		
	Lab		9 1,884 AHS-L-5	1,576		- 208			-		1	-				1		-		1	-	- 206	172	172	172	5.5		
1301 (S)	Lab	1,624	9 14,620 AHS-L-5	812		208			-			-			-			-			-	208	850	1,058	1,058	4.3	(246	6)
	Lab		9 14,409 AHS-L-4	800												1		-		1	-	-	1,224	1,224	1,224	5.1		
	Lab		9 28,437 AHS-L-4 9 911 AHS-L-4	1,580		208	-	1	-		1	-	-	-	 	1	-	-	-	+	-	208	2,065 49	2,273 49	2,273 49	4.8 3.2		
	Lab		9 1,825 AHS-L-5	172		-			-		1	-				1		-		1	-		122	122	122	4.0		
.1306 (N)	Lab	206	9 1,850 AHE-L-4	-		-			-			-			-			-			-	-	165	165	165	5.4	(165	5)
	Lab		9 2,700 AHS-L-5	103												1		-		1	-	-	162	162	162	3.6		
	Lab		9 911 AHS-L-5 9 1,911 AHE-L-4	59	,	208	-	+	-		1	-	-	-	1	1	+	-	-	+	-	208	114	200 114	208 114	13.7 3.6		
	Lab		9 1,911 AHE-L-4 9 3,799 AHS-L-4	147	,	-			-		1	-				1		-		1	-		226	226	226	3.6		
.1318	Lab	202	9 1,821 AHS-L-4	65	5	-			-			-			-			-			-	-	110	110	110	3.6	(45	5)
	Lab		9 2,690 AHS-L-4	120												1		-		1	-	-	159	159	159	3.5		
	Lab Lab		9 911 AHS-L-4 9 1,833 AHS-L-4	54		208	-	+	-		1	-	-	-	1	1	+	-	-	+	-	208	172	205 172	208 172	13.7 5.6		
	Lab		9 1,033 AHS-L-4 9 1,041 AHS-L-5	47		1	!		-		1			!		1				1			76	76	76	4.4		
1001	Lab	3,147	9 28,325 AHS-L-5	1,574		208			208			208			208			-			-	832	2,125	2,957	2,957		(1,383	3)
	Lab		9 1,883 AHS-L-5	105								-				1		-		1	-	-	277	277	277	8.8		
	Lab		9 14,464 AHS-L-5 9 42,769 AHS-L-4	2,332		208 208		+	208		1	208	-	-	208	1	+	208	-	+	208	208 1,248	891 1,614	1,099 2,862	1,099 2,862	4.6		
	Lab		9 909 AHS-L-4	4:		-	!		-		1	-		!	-	1		-		1	-		53	53	53	3.5		
1353	Lab	101	9 911 AHS-L-4	42	2	-			-			-			-			-			-	-	57	57	57	3.8	(15	5)
	Lab		9 1,848 AHS-L-4	68		208	<u> </u>		-			-		1	-			-		-	-	208	- 424	208	208	6.8		
	Lab		9 1,750 AHS-L-5 9 1,750 AHS-L-5	79 115		208		1	-		1	-	1	1		1		-	-	1	-	208	131	131 190	131 208	4.5 7.1		
	Lab	204	9 1,834 AHS-L-5	80)	-	!		-		1	-		!	-	1		-		1	-	-	124	124	124	4.1	(44	
.1320	Lab	204	9 1,834 AHS-L-4	102	2				-			-			-			-			-	-	128	128	128	4.2	(26	6)
	Lab		9 1,875 AHS-L-4	72		-						-				1		-		1	-	-	120	120	120	3.8		
	Lab Lab		9 1,751 AHS-L-4 9 1,751 AHS-L-4	76		-	-	+	-		1	-	-	-	1	1	+	-	-	+	-	-	129 120	129 120	129 120	4.4 4.1		
	Lab		9 1,751 AHS-L-4 9 1,858 AHS-L-4	81		208	 	+ +			1	-	 	 	 	1	+	-	-	+	-	208	120	338	338	10.9		
	Lab		9 911 AHS-L-4	69		208		1 - 1			+	-	1	+	-	+				+		208	200	190	208	13.7		

ECM - 03 - Lab HVAC Systems - AHS-L-04 & AHS-L-05

Project Name: University of Rochester

Building: Medical Research Building

Date: 4/1/2021

ECM Lab HVAC Systems

Calculated By: CLF
Reviewed By: GHB

Summary of Existing System

Measured Data and Data Limitations

ECMs Implemented

DAT Reset Schedulex Lab CFM AdjustmentNight Setbacks

Summary of Systems Used for Calculation

Existing Usage (10 / 6 ACM)

Preheat Usage 3,273 mmBtu
Cooling Usage 6,337 mmBtu
Reheat Usage 5,275 mmBtu
Supply Fan Usage 205,989 kWh

Proposed Usage - Option A (8 / 4 ACH)

Preheat Usage 1,928 mmBtu
Cooling Usage 3,576 mmBtu
Reheat Usage 3,083 mmBtu
Supply Fan Usage 83,184 kWh

Proposed Usage - Option B (6 / 4 ACH)

Preheat Usage 1,896 mmBtu
Cooling Usage 3,525 mmBtu
Reheat Usage 3,033 mmBtu
Supply Fan Usage 81,550 kWh

Summary of EEM Savings - Option A (8 / 4 ACH)

Proposed Savings

Preheat Usage 1,344 mmBtu
Cooling Usage 2,762 mmBtu
Reheat Usage 2,192 mmBtu
Supply Fan Usage 122,805 kWh

Summary of EEM Savings - Option A (6 / 4 ACH)

Proposed Savings

Preheat Usage 1,377 mmBtu
Cooling Usage 2,813 mmBtu
Reheat Usage 2,242 mmBtu
Supply Fan Usage 124,439 kWh

Project Name: University of Rochester

Building: Medical Research Building

Building: Medical Research Building
Date: 4/1/2021

Calculated By: CLF
Reviewed By: GHB

System: AHS-L-04 & AHS-L-05

Scenario: Existing

Fan Affinity Law Adjsut: 1.5
Lab Airflow CFM Reduction

Occupied Design Ariflow 79,486 CFM
Unoccupied Design Airflow 18,119 CFM

Occupied Airflow Reduction 0 CFN Unoccupied Airflow Reduction 0 CFN

Summary of Use Preheat Usage Cooling Usage

Preheat Usage 3,273 mmBtu Cooling Usage 6,337 mmBtu Reheat Usage 5,275 mmBtu Supply Fan Usage 205,989 kWh

Also System Info

Cooling Shutoff 55 degF

Cooling Shutoff 5 May

Cooling Shutoff 10 October

OAT Load % Occ Unocc 68.0 68.0 0 0.00% 10 68.0 68.0 0.00% 20 68.0 68.0 0.00% 30 68.0 0.00% 68.0 40 68.0 68.0 0.00% 50 68.0 68.0 0.00% 55 68.0 68.0 0.00% 60 69.2 69.2 0.00% 70 71.6 71.6 0.00% 0.00% 80 74.0 74.0 100 74.0 74.0 0.00%

Scheduling / Population load (1=0cc 0=Un0cc) Population Schedule Population Days1-5 Days1-5 Days6,7,8 Days6,7,8 0 100% 0 100% 0 100% 0 100% 100% 100% 0 100% 0 100% 0 0 100% 0 100% 0 100% 100% 100% 100% 100% 100% 100% 100% 10 1 100% 100% 11 100% 100% 12 100% 100% 13 100% 100% 1 14 100% 100% 15 100% 100% 16 1 100% 100% 17 100% 100% 18 100% 100% 19 100% 100% 20 100% 100% 0 Ω 21 0 100% 100% 22 100% 100% 0 0 23 0 100% 0 100% 24 0 100% 0 100%

System Setpoint S	imulations			
OAT	PHT STP	DAT STP	DAH STP	
0	55.0	65.0	25.6	
10	55.0	63.6	25.3	
20	55.0	62.1	24.9	
30	55.0	60.7	24.6	
40	55.0	59.3	24.2	
50	55.0	57.9	23.9	
55	55.0	57.1	23.7	
60	55.0	56.4	23.5	
70	55.0	55.0	23.2	
80	55.0	55.0	23.2	
100	55.0	55.0	23.2	
	1.585E-05	-0.001483	-0.109225	64.903594
	X=	28.00	Y=	61.03
	0	0	0	55
	X=	28.00	Y=	55.00
	3.861E-06	-0.000361	-0.026601	25.589599
	X=	90.00	Y=	23.08

eheat Load	ing			
OAT	DAT	Occ	Unocc	
0	85.0	85.0%	85.0%	
10	85.0	76.8%	76.8%	
20	85.0	68.5%	68.5%	
30	85.0	60.3%	60.3%	
40	85.0	52.0%	52.0%	
50	85.0	43.8%	43.8%	
55	85.0	39.6%	39.6%	
60	85.0	35.5%	35.5%	
70	85.0	27.3%	27.3%	
80	85.0	19.0%	19.0%	
100	85.0	2.5%	2.5%	
	0	0	0	85
	X=	0.00	Y=	85.00
	2.195E-21	-2.61E-19	-0.00825	0.85
	X=	0.00	Y=	0.85
	2.195E-21	-2.61E-19	-0.00825	0.85
	X=	55.00	Y=	0.40
	% of CF	M to Reheat	100.0%	

Formulas

D: Based on Simulation

D: Based on Simulation
E: Design CFM x Fan Simulation
F: ((E / Fan CFM Output) Fan Affinity) x Fan Kw
G: 1.08 x (D - B) x F / 1.000,000
H: 4.5 x (C - Coil Enthalpy) x E / 1,000,000
J: Based on Simulation

K: Based on Simulation L: 1.08 x (K-I) x E x % CFM to Reheat / 1,000,000

Reviewed By: GHB
System: AHS-L-04 & AHS-L-05
Scenario: Existing

Building: Medical Research Building
Date: 44287.47

Calculated By: CLF

FORMULA INDEX	A .	В	С	D	-	-	G	и			И	1 -	М -	N .	0	В	0	В		т		V	W
FORMULA INDEX MAX	A 8.0	93.9	40.8	55.0	£ 64.5	r 25.5	79486.0	н 39.8	4.3	6.0	n 75.9	E 85.0	M 2.1	N 0.0	0.0	0.0	Q 0.0	к 0.0	0.0	0.0	0.0	v 0.0	w 0.0
MIN								39.8 4.3															
	1.0	3.9	1.8	55.0	54.6	23.1	18119.0		0.0	0.0	54.6		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUM	36600	496470	194424	481800	501243	207772	449908855	205989	3273	6337	489054	744600	5275	0	0	0	0	0	0	0	0	0	0
Time Stamp	Туре	Outside dry- bulb	Specific Enthalpy	Preheat	SAT STP	Enthalpy	Supply Air	Supply Fan Usage	Preheat Usage	Cooling Usage	DAT (degF)	Reheat DAT	Reheat Usage										
	.,,-	temp (F)	(Btu/lb)	Setpoint	(degF)	Setpoint	CFM	(kWh)	(mmBtu)	(mmBtu)	((degF)	(mmBtu)										
1/1/17 0:00	7.0	41.0	14.4	55.0	59.0	24.2	18119	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 1:00	7.0	37.9	12.6	55.0	59.5	24.3	18119	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 2:00	7.0	37.0	11.9	55.0	59.6	24.3	18119	4	0.4	0.0	55.0	85.0	0.3										
1/1/17 3:00	7.0	34.0	11.2	55.0	60.1	24.4	18119	4	0.4	0.0	55.0	85.0	0.3										
1/1/17 4:00	7.0	33.1	11.0	55.0	60.2	24.5	18119	4	0.4	0.0	55.0	85.0	0.3										
1/1/17 5:00	7.0	28.9	9.8	55.0	60.9	24.6	18119	4	0.5	0.0	55.0	85.0	0.4										
1/1/17 6:00	7.0	30.9	10.5	55.0	60.6	24.5	79486	40	2.1	0.0	55.0	85.0	1.5										
1/1/17 7:00	7.0	32.0	10.7	55.0	60.4	24.5	79486	40	2.0	0.0	55.0	85.0	1.5										
1/1/17 8:00	7.0	32.0	11.0	55.0	60.4	24.5	79486	40	2.0	0.0	55.0	85.0	1.5										
1/1/17 9:00	7.0	35.1	11.7	55.0	59.9	24.4	79486	40	1.7	0.0	55.0		1.4										
1/1/17 10:00	7.0	37.0	12.3	55.0	59.6	24.3	79486	40	1.5	0.0	55.0		1.4										
1/1/17 11:00	7.0	41.0	13.3	55.0	59.0	24.2	79486	40	1.2	0.0	55.0		1.3										
1/1/17 12:00	7.0	43.0	13.9	55.0	58.7	24.1	79486	40	1.0	0.0	55.0		1.3										
1/1/17 13:00	7.0	45.0	14.6	55.0	58.4	24.0	79486	40	0.9	0.0	55.0		1.2										
1/1/17 14:00	7.0	46.0	14.6	55.0	58.3	24.0	79486	40	0.8	0.0	55.0		1.2										
1/1/17 15:00	7.0	46.9	15.0	55.0	58.2	23.9	79486	40	0.7	0.0	55.0	85.0	1.2										
1/1/17 16:00	7.0	46.9	15.0	55.0	58.2	23.9	79486	40	0.7	0.0	55.0		1.2										
1/1/17 17:00	7.0	44.1	14.5	55.0	58.6	24.0	79486	40	0.9	0.0	55.0		1.3										
1/1/17 18:00	7.0	43.0	14.2	55.0	58.7	24.1	79486	40	1.0	0.0	55.0		1.3										
1/1/17 19:00	7.0	42.1	14.0	55.0	58.9	24.1	18119	4	0.3	0.0	55.0		0.3										
1/1/17 20:00	7.0	39.9	13.6	55.0	59.2	24.2	18119	4	0.3	0.0	55.0		0.3										
1/1/17 21:00	7.0	39.9	13.4	55.0	59.2	24.2	18119	4	0.3	0.0	55.0		0.3										
1/1/17 22:00	7.0	41.0	14.1	55.0	59.0	24.2	18119	4	0.3	0.0	55.0		0.3										
1/1/17 23:00	7.0	44.1	14.8	55.0	58.6	24.2	18119	4	0.3	0.0	55.0		0.3										
1/2/17 0:00	8.0	45.0	15.2	55.0	58.4	24.0	18119	4	0.2	0.0	55.0		0.3										
		45.0						4	0.2														
1/2/17 1:00	8.0		15.0	55.0	58.6	24.0	18119			0.0	55.0		0.3										
1/2/17 2:00	8.0	43.0	15.1	55.0	58.7	24.1	18119	4	0.2	0.0	55.0		0.3										
1/2/17 3:00 1/2/17 4:00	8.0	42.1 42.1	15.2 15.5	55.0	58.9	24.1 24.1	18119	4	0.3	0.0	55.0		0.3										
	8.0	42.1	15.5	55.0 55.0	58.9 58.9	24.1	18119 18119	4	0.3	0.0	55.0 55.0												
1/2/17 5:00	8.0								0.3	0.0			0.3										
1/2/17 6:00	8.0	42.1	15.5	55.0	58.9	24.1	79486	40	1.1	0.0	55.0		1.3										
1/2/17 7:00	8.0	42.1	15.5	55.0	58.9	24.1	79486	40	1.1	0.0	55.0		1.3										
1/2/17 8:00	8.0	42.1	15.7	55.0	58.9	24.1	79486	40	1.1	0.0	55.0		1.3										
1/2/17 9:00	8.0	43.0	15.9	55.0	58.7	24.1	79486	40	1.0	0.0	55.0		1.3										
1/2/17 10:00	8.0	44.1	16.4	55.0	58.6	24.0	79486	40	0.9	0.0	55.0		1.3										
1/2/17 11:00	8.0	46.0	17.3	55.0	58.3	24.0	79486	40	0.8	0.0	55.0		1.2										
1/2/17 12:00	8.0	46.9	17.5	55.0	58.2	23.9	79486	40	0.7	0.0	55.0		1.2										
1/2/17 13:00	8.0	48.9	18.5	55.0	57.9	23.9	79486	40	0.5	0.0	55.0		1.2										
1/2/17 14:00	8.0	50.0	19.1	55.0	57.7	23.8	79486	40	0.4	0.0	55.0		1.1										
1/2/17 15:00	8.0	51.1	19.4	55.0	57.6	23.8	79486	40	0.3	0.0	55.0		1.1										
1/2/17 16:00	8.0	51.1	19.4	55.0	57.6	23.8	79486	40	0.3	0.0	55.0		1.1										
1/2/17 17:00	8.0	50.0	19.1	55.0	57.7	23.8	79486	40	0.4	0.0	55.0	85.0	1.1										
1/2/17 18:00	8.0	50.0	19.1	55.0	57.7	23.8	79486	40	0.4	0.0	55.0		1.1										
1/2/17 19:00	8.0	50.0	19.3	55.0	57.7	23.8	18119	4	0.1	0.0	55.0	85.0	0.3										

Project Name: University of Rochester

Building: Medical Research Building Date: 4/1/2021 Calculated By: CLF

Reviewed By: GHB System:

Scenario: Proposed System A

Fan Label Fan HP: 100.0 Fan QTY: 2.0 Calculated Load Factor: 75% Fan Motor Eff: 90% Fan kW: 124.3 Max Fan Flow: 170,000 Fan Affinity Law Adjsut: 1.5 Lab Airflow CFM Reduction Occupied Design Ariflow 79,486 CFM Unoccupied Design Airflow 18,119 CFM Occupied Airflow Reduction 40,085 CFM Unoccupied Airflow Reduction 9 CFM ary of Use Preheat Usage 1,928 mmBtu Cooling Usage 3,576 mmBtu Reheat Usage 3.083 mmBtu Supply Fan Usage 83.184 kWh

55 Cooling Shutoff degF May Cooling Shutoff 5 Cooling Shutoff 10 October OAT Осс Unocc Load % 0 68.0 68.0 0.00% 10 68.0 68.0 0.00% 20 68.0 68.0 0.00% 30 68.0 0.00% 68.0 40 68.0 68.0 0.00% 50 68.0 68.0 0.00% 55 68.0 68.0 0.00% 60 69.2 69.2 0.00% 70 71.6 71.6 0.00% 80 74.0 74.0 0.00% 90 0.00% 74.0 74.0

0 100% 0 100% 0 100% 100% 100% 100% 10 1 100% 11 100% 12 100% 13 1 100% 14 100% 15 100% 16 100% 1 17 100% 18 100% 19 100% 20 0 100% 21 0 100% 22 0 100% 23 0 100% 0 24 0 100% 0

Scheduling / Population load (1=Occ 0=UnOcc)

Days1-5

Ω

0

Population

Days1-5

100%

100%

100%

Schedule

Ω

0

0

0

0

0

Ω

0

Population

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

Days6,7,8 Days6,7,8

OAT PHT STP DAT STP DAH STP 0 55.0 65.0 25.6 10 55.0 63.6 25.3 20 55.0 24.9 62.1 30 24.6 55.0 60.7 40 55.0 59.3 24.2 50 55.0 57.9 23.9 55 55.0 57 1 23.7 60 55.0 56.4 23.5 70 55.0 55.0 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 SE-05 -0.001483 9225 64.903594 X= 28.00 Y= 61.03 55 X= 28.00 Y= 55.00 3.861E-06 -0.000361 -0.026601 25.589599 X= 90.00 Y= 23.08

OAT DAT Occ Unocc 0 85.0 85.0% 85.0% 10 85.0 76.8% 76.8% 20 68.5% 68.5% 85.0 30 60.3% 60.3% 85.0 40 85.0 52.0% 52.0% 50 85.0 43.8% 43.8% 55 85.0 39.6% 39.6% 60 85.0 35.5% 35.5% 70 85.0 27.3% 27.3% 80 85.0 19.0% 19.0% 100 85.0 2.5% 2.5% X= 0.00 Y= 85.00 5F-21 -0.00825 X= 0.00 2.195E-21 -2.61E-19 X= 55.00 0.40 % of CFM to Reheat 100.0%

Project Name: University of Rochester Building: Medical Research Building

Date: 44287.47
Calculated By: CLF

Reviewed By: GHB System: 0

Scenario: Proposed System A

Formulas

D: Based on Simulation

E: Design CFM x Fan Simulation
F: ((E/ Fan CFM Output) Fan Affinity) x Fan Kw
G: 1.08 x (D - B) x E / 1,000,000

H: 4.5 x (C - Coil Enthalpy) x E / 1,000,000

J: Based on Simulation

K: Based on Simulation

L: 1.08 x (K - I) x E x % CFM to Reheat / 1,000,000

FORMULA INDEX	A	В	С	D	F	F	G	н	1	1	к	1	М	N	0	Р	0	R	s	Т	Ш	V	w
MAX	8.0	93.9	40.8	55.0	64.5	25.5	39400.6	13.9	2.1	3.0	75.9	85.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MIN	1.0	3.9	1.8	55.0	54.6	23.1	18109.8	4.3	0.0	0.0	54.6	85.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUM	36600	496470	194424	481800	501243		259666911	83184	1928	3576	489054	744600	3083	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30141		Outside dry-	Specific					Supply Fan	Preheat	Cooling	+65054		Reheat										
Time Stamp	Туре	buib temp (F)	Enthalpy (Btu/lb)	Preheat Setpoint	SAT STP (degF)	Enthalpy Setpoint	Supply Air CFM	Usage (kWh)	Usage (mmBtu)		DAT (degF)	Reheat DAT (degF)	Usage (mmBtu)										
1/1/17 0:00	7.0	41.0	14.4	55.0	59.0	24.2	18110	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 1:00	7.0	37.9	12.6	55.0	59.5	24.3	18110	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 2:00	7.0	37.0	11.9	55.0	59.6	24.3	18110	4	0.4	0.0	55.0	85.0	0.3										
1/1/17 3:00	7.0	34.0	11.2	55.0	60.1	24.4	18110	4	0.4	0.0	55.0	85.0	0.3										
1/1/17 4:00	7.0	33.1	11.0	55.0	60.2	24.5	18110	4	0.4	0.0	55.0	85.0	0.3										
1/1/17 5:00	7.0	28.9	9.8	55.0	60.9	24.6	18110	4	0.5	0.0	55.0	85.0	0.4										
1/1/17 6:00	7.0	30.9	10.5	55.0	60.6	24.5	39401	14	1.0	0.0	55.0	85.0	0.8										
1/1/17 7:00	7.0	32.0	10.7	55.0	60.4	24.5	39401	14	1.0	0.0	55.0	85.0	0.7										
1/1/17 8:00	7.0	32.0	11.0	55.0	60.4	24.5	39401	14	1.0	0.0	55.0	85.0	0.7										
1/1/17 9:00	7.0	35.1	11.7	55.0	59.9	24.4	39401	14	0.8	0.0	55.0	85.0	0.7										
1/1/17 10:00	7.0	37.0	12.3	55.0	59.6	24.3	39401	14	0.8	0.0	55.0	85.0	0.7										
1/1/17 11:00	7.0	41.0	13.3	55.0	59.0	24.2	39401	14	0.6	0.0	55.0	85.0	0.7										
1/1/17 12:00	7.0	43.0	13.9	55.0	58.7	24.1	39401	14	0.5	0.0	55.0	85.0	0.6										
1/1/17 13:00	7.0	45.0	14.6	55.0	58.4	24.0		14	0.4	0.0	55.0	85.0	0.6										
1/1/17 14:00	7.0	46.0	14.6	55.0	58.3	24.0	39401	14	0.4	0.0	55.0	85.0	0.6										
1/1/17 15:00	7.0	46.9	15.0	55.0	58.2	23.9	39401	14	0.3	0.0	55.0	85.0	0.6										
1/1/17 16:00	7.0	46.9	15.0	55.0	58.2	23.9	39401	14	0.3	0.0	55.0	85.0	0.6										
1/1/17 17:00	7.0	44.1	14.5	55.0	58.6	24.0	39401	14	0.5	0.0	55.0	85.0	0.6										
1/1/17 18:00	7.0	43.0	14.2	55.0	58.7	24.1	39401	14	0.5	0.0	55.0	85.0	0.6										
1/1/17 19:00	7.0	42.1	14.0	55.0	58.9	24.1	18110	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 20:00	7.0	39.9	13.6	55.0	59.2	24.2	18110	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 21:00	7.0	39.9	13.4	55.0	59.2	24.2	18110	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 22:00	7.0	41.0	14.1	55.0	59.0	24.2	18110	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 23:00	7.0	44.1	14.8	55.0	58.6	24.0	18110	4	0.2	0.0	55.0	85.0	0.3										
1/2/17 0:00	8.0	45.0	15.2	55.0	58.4	24.0	18110	4	0.2	0.0	55.0	85.0	0.3										
1/2/17 1:00	8.0	44.1	15.0	55.0	58.6	24.0	18110	4	0.2	0.0	55.0	85.0	0.3										
1/2/17 2:00	8.0	43.0	15.1	55.0	58.7	24.1	18110	4	0.2	0.0	55.0	85.0	0.3										
1/2/17 3:00	8.0	42.1	15.2	55.0	58.9	24.1	18110	4	0.3	0.0	55.0	85.0	0.3										
1/2/17 4:00	8.0	42.1	15.5	55.0	58.9	24.1	18110	4	0.3	0.0	55.0	85.0	0.3										
1/2/17 5:00	8.0	42.1	15.5	55.0	58.9	24.1	18110	4	0.3	0.0	55.0	85.0	0.3										
1/2/17 6:00	8.0	42.1	15.5	55.0	58.9	24.1	39401	14	0.5	0.0	55.0	85.0	0.6										
1/2/17 7:00	8.0	42.1	15.5	55.0	58.9	24.1	39401	14	0.5	0.0	55.0	85.0	0.6										
1/2/17 8:00	8.0	42.1	15.7	55.0	58.9	24.1	39401	14	0.5	0.0	55.0	85.0	0.6										
1/2/17 9:00	8.0	43.0	15.9	55.0	58.7	24.1	39401	14	0.5	0.0	55.0	85.0	0.6										
1/2/17 10:00	8.0	44.1	16.4	55.0	58.6	24.0	39401	14	0.5	0.0	55.0	85.0	0.6										
1/2/17 11:00	8.0	46.0	17.3	55.0	58.3	24.0	39401	14	0.4	0.0	55.0	85.0	0.6										
1/2/17 12:00	8.0	46.9	17.5	55.0	58.2	23.9		14	0.3	0.0	55.0	85.0	0.6										
1/2/17 13:00	8.0	48.9	18.5	55.0	57.9	23.9	39401	14	0.3	0.0	55.0	85.0	0.6										
1/2/17 14:00	8.0	50.0	19.1	55.0	57.7	23.8		14	0.2	0.0	55.0	85.0	0.6										
1/2/17 15:00	8.0	51.1	19.4	55.0	57.6	23.8	39401	14	0.2	0.0	55.0	85.0	0.5										
1/2/17 16:00	8.0	51.1	19.4	55.0	57.6	23.8		14	0.2	0.0	55.0	85.0	0.5										
1/2/17 17:00	8.0	50.0	19.1	55.0	57.7	23.8	39401	14	0.2	0.0	55.0	85.0	0.6										
1/2/17 18:00	8.0	50.0	19.1	55.0	57.7	23.8	39401	14	0.2	0.0	55.0	85.0	0.6										
1/2/17 19:00	8.0	50.0	19.3	55.0	57.7	23.8	18110	4	0.1	0.0	55.0	85.0	0.3										

Project Name: University of Rochester

Building: Medical Research Building Date: 4/1/2021 Calculated By: CLF

Reviewed By: GHB System:

Scenario: Proposed System B

Fan Label Fan HP: 100.0 Fan QTY: 2.0 Calculated Load Factor: 75% Fan Motor Eff: 90% Fan kW: 124.3 Max Fan Flow: 170,000 Fan Affinity Law Adjsut: 1.5 Lab Airflow CFM Reduction Occupied Design Ariflow 79,486 CFM Unoccupied Design Airflow 18,119 CFM

Occupied Airflow Reduction 40,330 CFM

Unoccupied Airflow Reduction 728 CFM

ary of Use Preheat Usage 1,896 mmBtu Cooling Usage 3,525 mmBtu Reheat Usage 3.033 mmBtu Supply Fan Usage 81,550 kWh

55 Cooling Shutoff degF May Cooling Shutoff 5 Cooling Shutoff 10 October OAT Осс Unocc Load % 0 68.0 68.0 0.00% 10 68.0 68.0 0.00% 20 68.0 68.0 0.00% 0.00% 30 68.0 68.0 40 68.0 68.0 0.00% 50 68.0 68.0 0.00% 55 68.0 68.0 0.00% 60 69.2 69.2 0.00% 70 71.6 71.6 0.00% 80 74.0 74.0 0.00% 90 0.00% 74.0 74.0

Scheduling / Population load (1=Occ 0=UnOcc) Population Schedule Population Days1-5 Days1-5 Days6,7,8 Days6,7,8 100% 100% Ω Ω 0 100% 0 100% 100% 100% 0 0 100% 0 100% 0 100% 0 100% 0 100% 0 100% 100% 100% 100% 100% 100% 100% 10 1 100% 100% 11 100% 100% 12 100% 100% 13 100% 100% 14 100% 100% 15 100% 100% 16 100% 100% 1 17 100% 100% 18 100% 100% 19 100% 100% 20 0 100% Ω 100% 21 0 100% 100% 22 100% 0 100% 0 23 0 100% 0 100% 24 0 100% 0 100%

OAT PHT STP DAT STP DAH STP 0 55.0 65.0 25.6 10 55.0 63.6 25.3 20 55.0 24.9 62.1 30 24.6 55.0 60.7 40 55.0 59.3 24.2 50 23.9 55.0 57.9 55 55.0 57 1 23.7 60 55.0 56.4 23.5 70 55.0 55.0 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 SE-05 -0.001483 9225 64.903594 X= 28.00 Y= 61.03 55 X= 28.00 Y= 55.00 3.861E-06 -0.000361 -0.026601 25.589599 X= 90.00 Y= 23.08

OAT DAT Occ Unocc 0 85.0 85.0% 85.0% 10 85.0 76.8% 76.8% 20 68.5% 68.5% 85.0 30 60.3% 60.3% 85.0 40 85.0 52.0% 52.0% 50 85.0 43.8% 43.8% 55 85.0 39.6% 39.6% 60 85.0 35.5% 35.5% 70 85.0 27.3% 27.3% 80 85.0 19.0% 19.0% 100 85.0 2.5% 2.5% X= 0.00 Y= 85.00 5F-21 -0.00825 X= 0.00 2.195E-21 -2.61E-19 X= 55.00 0.40 % of CFM to Reheat 100.0%

Date: 44287.47
Calculated By: CLF

Reviewed By: GHB

Building: Medical Research Building

Formulas

D: Based on Simulation

E: Design CFM x Fan Simulation
F: ((E/ Fan CFM Output) Fan Affinity) x Fan Kw
G: 1.08 x (D - B) x E / 1,000,000

H: 4.5 x (C - Coil Enthalpy) x E / 1,000,000

J: Based on Simulation

K: Based on Simulation L: 1.08 x (K - I) x E x % CFM to Reheat / 1,000,000

Reviewed By: (Based on Sin																	
System: (L: 1	L.08 x (K - I)	x E x % CFM t	o Reheat / 1,0	000,000														
	Proposed Syst																						
FORMULA INDEX																							W
MAX	8.0		40.8	55.0	64.5	25.5		13.7	2.1	2.9		85.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MIN	1.0	3.9	1.8	55.0	54.6	23.1	17391.3	4.1	0.0	0.0		85.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUM	36600		194424	481800	501243	207772	255623028	81550	1896	3525	489054	744600	3033	0	0	0	0	0	0	0	0	0	0
		Outside dry-	Specific	Preheat	SAT STP	Enthalpy	Supply Air	Supply Fan	Preheat	Cooling		Reheat DAT	Reheat										
Time Stamp	Туре	bulb temp (F)	Enthalpy (Btu/lb)	Setpoint	(degF)	Setpoint	CFM	Usage (kWh)	Usage (mmBtu)	Usage (mmBtu)	DAT (degF)	(degF)	Usage (mmBtu)										
1/1/17 0:00	7.0		14.4	55.0	59.0	24.2	17391	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 1:00	7.0		12.6	55.0	59.5	24.3	17391	4	0.3	0.0		85.0	0.3										
1/1/17 2:00	7.0		11.9	55.0	59.6	24.3	17391	4	0.3	0.0		85.0	0.3										
1/1/17 3:00	7.0		11.2	55.0	60.1	24.4	17391	4	0.4	0.0		85.0	0.3										
1/1/17 4:00	7.0		11.0	55.0	60.2	24.5		4	0.4	0.0		85.0	0.3										
1/1/17 5:00	7.0	28.9	9.8	55.0	60.9	24.6	17391	4	0.5	0.0	55.0	85.0	0.3										
1/1/17 6:00	7.0	30.9	10.5	55.0	60.6	24.5	39156	14	1.0	0.0	55.0	85.0	0.8										
1/1/17 7:00	7.0	32.0	10.7	55.0	60.4	24.5	39156	14	1.0	0.0	55.0	85.0	0.7										
1/1/17 8:00	7.0	32.0	11.0	55.0	60.4	24.5	39156	14	1.0	0.0	55.0	85.0	0.7										
1/1/17 9:00	7.0	35.1	11.7	55.0	59.9	24.4	39156	14	0.8	0.0	55.0	85.0	0.7										
1/1/17 10:00	7.0	37.0	12.3	55.0	59.6	24.3	39156	14	0.8	0.0	55.0	85.0	0.7										
1/1/17 11:00	7.0	41.0	13.3	55.0	59.0	24.2	39156	14	0.6	0.0	55.0	85.0	0.6										
1/1/17 12:00	7.0	43.0	13.9	55.0	58.7	24.1	39156	14	0.5	0.0	55.0	85.0	0.6										
1/1/17 13:00	7.0	45.0	14.6	55.0	58.4	24.0	39156	14	0.4	0.0	55.0	85.0	0.6										
1/1/17 14:00	7.0	46.0	14.6	55.0	58.3	24.0	39156	14	0.4	0.0	55.0	85.0	0.6										
1/1/17 15:00	7.0	46.9	15.0	55.0	58.2	23.9	39156	14	0.3	0.0	55.0	85.0	0.6										
1/1/17 16:00	7.0	46.9	15.0	55.0	58.2	23.9	39156	14	0.3	0.0	55.0	85.0	0.6										
1/1/17 17:00	7.0	44.1	14.5	55.0	58.6	24.0	39156	14	0.5	0.0	55.0	85.0	0.6										
1/1/17 18:00	7.0	43.0	14.2	55.0	58.7	24.1	39156	14	0.5	0.0	55.0	85.0	0.6										
1/1/17 19:00	7.0	42.1	14.0	55.0	58.9	24.1	17391	4	0.2	0.0	55.0	85.0	0.3										
1/1/17 20:00	7.0	39.9	13.6	55.0	59.2	24.2	17391	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 21:00	7.0	39.9	13.4	55.0	59.2	24.2	17391	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 22:00	7.0	41.0	14.1	55.0	59.0	24.2	17391	4	0.3	0.0	55.0	85.0	0.3										
1/1/17 23:00	7.0	44.1	14.8	55.0	58.6	24.0	17391	4	0.2	0.0		85.0	0.3										
1/2/17 0:00	8.0	45.0	15.2	55.0	58.4	24.0	17391	4	0.2	0.0	55.0	85.0	0.3										
1/2/17 1:00	8.0		15.0	55.0	58.6	24.0		4	0.2	0.0		85.0	0.3										
1/2/17 2:00	8.0		15.1	55.0	58.7	24.1	17391	4	0.2	0.0		85.0	0.3										
1/2/17 3:00	8.0		15.2	55.0	58.9	24.1	17391	4	0.2	0.0		85.0	0.3										
1/2/17 4:00	8.0		15.5	55.0	58.9	24.1		4	0.2	0.0		85.0	0.3										
1/2/17 5:00	8.0	42.1	15.5	55.0	58.9	24.1	17391	4	0.2	0.0		85.0	0.3										
1/2/17 6:00	8.0		15.5	55.0	58.9	24.1		14	0.5	0.0		85.0	0.6										
1/2/17 7:00	8.0	42.1	15.5	55.0	58.9	24.1		14	0.5	0.0		85.0	0.6										
1/2/17 8:00	8.0		15.7	55.0	58.9	24.1	39156	14	0.5	0.0		85.0	0.6										
1/2/17 9:00	8.0		15.9	55.0	58.7	24.1	39156	14	0.5	0.0		85.0	0.6										
1/2/17 10:00	8.0		16.4	55.0	58.6	24.0		14	0.5	0.0		85.0	0.6										
1/2/17 11:00	8.0		17.3	55.0	58.3	24.0		14	0.4	0.0		85.0	0.6										
1/2/17 12:00	8.0		17.5	55.0	58.2	23.9	39156	14	0.3	0.0		85.0	0.6										
1/2/17 13:00	8.0	48.9	18.5	55.0	57.9	23.9	39156	14	0.3	0.0		85.0	0.6										
1/2/17 14:00	8.0		19.1	55.0	57.7	23.8	39156	14	0.2	0.0		85.0	0.6										
1/2/17 15:00	8.0	51.1	19.4	55.0	57.6	23.8	39156	14	0.2	0.0		85.0	0.5										
1/2/17 16:00	8.0		19.4	55.0	57.6	23.8		14	0.2	0.0		85.0	0.5										
1/2/17 17:00	8.0	50.0	19.1	55.0	57.7	23.8	39156	14	0.2	0.0		85.0	0.6										
1/2/17 18:00	8.0	50.0	19.1	55.0	57.7	23.8	39156	14	0.2	0.0		85.0	0.6										
1/2/17 19:00	8.0	50.0	19.3	55.0	57.7	23.8	17391	4	0.1	0.0	55.0	85.0	0.2										

UNIVERSITY OF ROCHESTER

Laboratory Air Flow Optimization

KMRB

Option A

Building U	tility Impact										
Building Level	Energy Savings										
Electrical Energy Savings	152	mmBtu/Year									
Chilled Water Savings	1,108	mmBtu/Year									
Steam Savings	1,443	mmBtu/Year									
Total Energy Savings	2,703	mmBtu/Year									
Building Level Utility Savings											
Electrical Energy Savings	44,444	kWh/Year									
Chilled Water Savings	92,346	Ton-Hour/Year									
Steam Savings	1,443	klbs/Year									
Water Savings	-	kGal/Year									
Annual O&M Savings (\$)											
Operational & Maintenance Savings	\$0	Per Year									

UNIVERSITY OF ROCHESTER

Laboratory Air Flow Optimization

KMRB

Option B

Building U	tility Impact										
Building Level	Energy Savings										
Electrical Energy Savings	166	mmBtu/Year									
Chilled Water Savings	1,233	mmBtu/Year									
Steam Savings	1,703	mmBtu/Year									
Total Energy Savings	3,102	mmBtu/Year									
Building Level Utility Savings											
Electrical Energy Savings	48,514	kWh/Year									
Chilled Water Savings	102,749	Ton-Hour/Year									
Steam Savings	1,703	klbs/Year									
Water Savings	-	kGal/Year									
Annual O&M Savings (\$)											
Operational & Maintenance Savings	\$0	Per Year									

Project Name: University of Rochester Energy Conservation MP Support
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: Building: VMRB
Building: Building: VMRB
Building: Building: VMRB
Building: VM

Reviewed	By:																												
Existing Conditions													Fume Hood	3		Fume Hood	4		Fume Hood	15		Fume Hood	6				Summary		
	B B	o- 5	Assumed	Volume Associated	d Supply CFM	Opening	Measured		Opening	Measured	Calculated	Opening	Measured	Calculated	Opening	Measured	Calculated	Opening	Measured		Opening	Measured Face	Calculated	Total Hood		Total Lab	Calculated	Pressurization	Supply General Exhaust
Room Number	Room Type	Sq. Ft	Ceiling Height	(cubic feet) AHU	Supply CFM	Area (sf)		Exhaust CFM	Area (sf)	Face Velocity	Exhaust CFM	Area (sf)	Face Velocity	Exhaust CFM	Area (sf)	Face Velocity	Exhaust CFM	Area (sf)	Face Velocity	Exhaust CFM	Area (sf)	Face Velocity	Exhaust CFM	Exhaust CFM	Exhaust CFM	Exhaust CFM	ACH	Pressurization	CFM/Sqft Exhaust CFM/Sqft
1-9905 / 1-9911 / 1-9915	Lab	2397		9 21,573 AHS-L-1	2,723	6.3	98.0	613			-		. c. com						10.000					613	2,345	2,958	8.23	(235)	1.1 1.0
1-9872 / 1-9878 / 1-9892	Lab	3583		9 32,247 AHS-L-1	4,836		97.0	606	6.3	97	606						-			-			-	1,213	4,330	5,543	10	(707)	1.3 1.2
1-9858 / 1-9852 / 1-9538	Lab	3618		9 32,562 AHS-L-2	2,881	6.3	96.0				-			-			-			~			-	600		3,669	7	(788)	0.8 0.8
1-9855	Lab	407 2415	-	9 3,663 AHS-L-1 9 21,735 AHS-L-3	623 4.277	6.3			63	99	619	6	104	650			-			-		-	-	613 1 938		731 5 180	12 14 30	(108)	1.5 0.3 1.8 1.3
1-9804 / 1-9812 1-9807 / 1-9809	Lab	2415		9 21,735 AHS-L-3 9 4,032 AHS-L-3					6.3	99	619	6	104	650						-		+	-	1,938		1,131	14.30	(215)	2.0 1.1
1-9816 / 1-9828	Lab	2409		9 21,681 AHS-L-3		0.3	103.0	-			-									-				-	4,677	4,677	13	(346)	1.8 1.9
1-9823	Lab	596		9 5,364 AHS-L-2	672						-						-			-			-		735	735	8	(63)	1.1 1.2
1-9839	Lab	584		9 5,256 AHS-L-2	820															-			-		1,112	1,112	13	(292)	1.4 1.9
1-9811 / 1-9813	Lab	311		9 2,799 AHS-L-3				-						-			-			-				-	-	-	-	369	
1-9825 1-9826	Lab Lab	562 14		9 5,058 AHS-L-3 9 126 AHS-L-2	320 102			-			-			-			-			-			-	-	137 140	137 140	2 67	183	0.6 0.2 7.3 10.0
1-9827 / 1-9829	Lab	98		9 882 AHS-L-2	413						-			- :						-			-		382		26	31	4.2 3.9
1-9837	Lab	156		9 1,404 AHS-L-2							-			-			-			-					192	192	8	(60)	
1-9847	Lab	198		9 1,782 AHS-L-2				-									-			-				-	240	240	8	(72)	0.8 1.2
1-9845	Lab	194		9 1,746 AHS-L-2				-			-			-			-			-			-	-	315		11	(77)	1.2 1.6
1-9803 / 1-9805 1-9857	Lab	199 198		9 1,791 AHS-L-3 9 1.782 AHS-L-1				-						-			-			-			-		309 244	309 244	10	(71)	1.2 1.6 0.9 1.2
1-9857	Lab	198		9 1,782 AHS-L-1 9 1.773 AHS-L-1				-			-			-						-		+	-	-	244	244	8 8	(62)	0.9 1.2
1-9861 / 1-9863	Lab	193	1	9 1,737 AHS-L-1			1	-			-								1	-	t			-	223	223	8	(66)	0.8 1.2
2-9905 / 2-9915	Lab	2416		9 21,744 AHS-L-1	3,051	6.3	98.0	613			-													613	2,846	3,459	10	(408)	1.3 1.2
2-9872 / 2-9878 / 2-9892	Lab	3451		9 31,059 AHS-L-1	4,638	6.3	102.0	638	6	104	650				_		-			-				1,288	4,074	5,362	10	(724)	1.3 1.2
2-9861 / 2-9863	Lab	193	1	9 1,737 AHS-L-1	170		1	-			-	-	1			1	-		1	-		1	-	-	318	318	11	(148)	
2-9859	Lab	187	1	9 1,683 AHS-L-1 9 1,683 AHS-L-1			1	-			-	-	1			1	-		1	-	-	1	-	-	224	224 207	8 7	(65)	0.9 1.2 0.7 1.1
2-9855 A & B	Lab	134	+	9 1,683 AHS-L-1 9 1,206 AHS-L-1			+	-			-		 	 					+	-	+	+	-	-	655		33		
2-9841 & 2-9843	Lab	395		9 3,555 AHS-L-2	316									-						-				-	441	441	7	(125)	0.8 1.1
2-9845	Lab	194		9 1,746 AHS-L-2	147			-			-													-	211		7	(64)	0.8 1.1
2-9847	Lab	198		9 1,782 AHS-L-2																-			-		204	204	7	(60)	0.7 1.0
2-9837	Lab	77		9 693 AHS-L-2	72			-			-			-			-			-			-	-	104	104	9	(32)	0.9 1.4
2-9839 2-9827 / 2-9829	Lab Lab	195 162		9 1,755 AHS-L-2 9 1,458 AHS-L-2				-						-			-			-		-	-	-	271 415	271 415	17	(81)	1.0 1.4 2.5 2.6
2-9825	Lab	562		9 5,058 AHS-L-2	270															-		+			382	382	5	(112)	0.5 0.7
2-9626	Lab	115		9 1,035 AHS-L-2				-			-			-			-			-			-	-	103		6	(25)	
2-9803	Lab	90		9 810 AHS-L-3																-			-		92	92	7	(92)	- 1.0
2-9805	Lab	100		9 900 AHS-L-3				-			-			-			-			~			-	-	-	-		52	0.5
2-9807 2-9809	Lab	184 189	-	9 1,656 AHS-L-3 9 1.701 AHS-L-3	153 149			-			-			-			-			-		-	-	-	224 224	224 224	8 8	(71) (75)	0.8 1.2 0.8 1.2
2-9809	Lab	418		9 1,701 AHS-L-3							-			- :						-			-		608	608	10	(189)	
2-9819	Lab	198		9 1,782 AHS-L-2	173						-			-			-			-					235	235	8	(62)	0.9 1.2
2-9838 / 2-9852 / 2-9858	Lab	3638		9 32,742 AHS-L-2		6.3			6	105	656						-			-				1,300			8		0.9 0.8
2-9804 / 2-9812 / 2-9616 / 2-9828		4770		9 42,930 AHS-L-3		6.3	100.0	625	6	94	588						-			-			-	1,213		4,610	6	(1,515)	0.6 0.7
2-9823 3-9905 / 3-9915	Lab	413 2323	-	9 3,717 AHS-L-2 9 20.907 AHS-L-3		63	94.0	588			-			-			-			-		-	-	588	318 3 905		5 13	(2.158)	1.1 0.8 1.0 1.7
3-9872 / 3-9878 / 3-9892	Lab	3618		9 20,907 AHS-L-3 9 32,562 AHS-L-1		6.3			6	101	631			- :						-			-	1.263		6.183	13	(1,628)	1.0 1.7
3-9861 & 3-9863	Lab	193		9 1,737 AHS-L-1				-						-			-			-				-,200	230		8		0.8 1.2
3-9859	Lab	187		9 1,683 AHS-L-1	155			-									-			-				-	220	220	8	(65)	0.8 1.2
3-9626	Lab	114		9 1,026 AHS-L-2				-			-			-			-			~			-	-	105	105	6		0.9 0.9
3-9803 & 3-9805 3-9807	Lab	199 197		9 1,791 AHS-L-3 9 1,773 AHS-L-3				-			-			-			-			-			-	-	225 280	225	8 9	(70)	0.8 1.1 1.0 1.4
3-9809	Lab	189		9 1,701 AHS-L-3	195															-		+			280	280 280	10	(85)	1.0 1.5
3-9813	Lab	412		9 3,708 AHS-L-3	325						-			-			-			-					470	470	8	(145)	0.8 1.1
3-9825	Lab	560		9 5,040 AHS-L-2				-						-			-			-					375	375	4	(115)	
3-9827 & 3-9829	Lab	98		9 882 AHS-L-2				-			-			-			-			~			-	-	440		30		4.5 4.5
3-9837 3-9839	Lab Lab	172 186	+	9 1,548 AHS-L-2 9 1,674 AHS-L-2	440 175		+	-			-			-			-		+	-	-	+		-	235 250	235 250	9	205 (75)	2.6 1.4 0.9 1.3
3-9839	Lab	401	+	9 1,674 AHS-L-2 9 3.609 AHS-L-2	1/5 250		+	-			-		1			+			+	—	 	-			355	250 355	9	(105)	0.9 1.3
3-9845	Lab	194	1	9 1,746 AHS-L-2			1	-			-					1	-		1	-	t		-	-	225	225	8	(70)	0.8 1.2
3-9847	Lab	198		9 1,782 AHS-L-2				-			-			-			-			-			-	-	230	230	8	(70)	0.8 1.2
3-9848	Lab	81		9 729 AHS-L-2	65			-			-						-			-			-	-	85	85	7	(20)	0.8 1.0
3-9855	Lab	407	1	9 3,663 AHS-L-1	495 155		-	-			-			-		-	-		1	-	-	+	-	-	605		10		1.2 1.5 0.8 1.2
3-9857 3-9838 / 3-9852 / 3-9858	Lab	187 3534	+	9 1,683 AHS-L-1 9 31,806 AHS-L-2		6.3	102.0	638					 				H :-		+	-	-	+	<u> </u>	638	225 3,130	225 3,768	8 7	(70)	0.8 1.2 0.8 0.9
3-9836 / 3-9832 / 3-9838	Lab	2415	1	9 21,735 AHS-L-3		6.3			6	100	625	1	1			1			1		t	1		1,238		4,618	13	(1,503)	1.3 1.4
3-9804 / 3-9812	Lab	2406		9 21,654 AHS-L-3	3,160						-														3,520		10	(360)	1.3 1.5
G9852 / G9858 / G9838	Lab	3610		9 32,490 AHS-L-2	2,515				6	101	631	6	105		- 6	101	631	6	101	1 631	- 6	101	631		1,860	5,616	10	(3,101)	0.7 0.5
G9816 / G9828	Lab	2410		9 21,690 AHS-L-3		6.3		631	6	89	556	6	104	650					\perp					1,838		4,028	11	(703)	1.4 0.9
G9804 / G9812	Lab	2406	1	9 21,654 AHS-L-3		6.3	107.0	669			-			-		-	-		1	-	-	+	-	669		3,719	10	(669)	1.3 1.3
G9805 G9820	Lab Lab	100 95	+	9 900 AHS-L-3 9 855 AHS-L-2	100 200		+	-					 				H :-		+	-	-	+	<u> </u>	-	145 300	145 300	10 21	(45)	1.0 1.5 2.1 3.2
G9823	Lab	312	†	9 2,808 AHS-L-2			+						!						†	—	 	+	-		720	720	15	(540)	0.6 2.3
G9825A	Lab	117	1	9 1,053 AHS-L-2			1				-		1	- 1		1	-		1	-	1	1		-	200	200	11	(50)	1.3 1.7
G9821	Lab	787		9 7,083 AHS-L-2	445						-						-								550	550	5	(105)	
G9826A	Lab	98		9 882 AHS-L-2			\perp	-			-								\perp					-	135	135	9	-	1.4 1.4
G9837	Lab	197	-	9 1,773 AHS-L-2	210		-	-			-		1	-		1	-		-	-	-		-	-	155	155	5	55	1.1 0.8
G9839 G9807 / G9809	Lab Lab	72 376	+	9 648 AHS-L-2 9 3.384 AHS-L-2	105 360		+	-					 			+	H :-		+	-	-	+	<u> </u>	-	115 500	115 500	11	(10) (140)	1.5 1.6 1.0 1.3
G9813	Lab	408	†	9 3,364 AHS-L-2 9 3,672 AHS-L-3		7.8	88.0	682					1						†	—	 	+	-	682		2.632	43	(1.032)	3.9 4.8
G9843	Lab	501	1	9 4,509 AHS-L-2		6.3					-						-		1	-	t		-	581			9	(16)	
G9909 / G9915	Lab	1520		9 13,680 AHS-L-3	1,940	6.3	93.0	581	6.3	93.0	581	6.3	93.0	581										1,744	2,232	3,976	17	(2,036)	1.3 1.5
G9872 / G9878 / G9892	Lab	3596		9 32,364 AHS-L-3	4,589	6.3			6.3	101	631	6		606	6	97	606	6	103	3 644	6	100	625	3,650	5,281	8,931	17	(4,342)	1.3 1.5
G9855 G9857	Lab	407 196	1	9 3,663 AHS-L-3			-	-			-			-		-	-		1	-	-	+	-	-	598 288	598	10	(78)	1.3 1.5 1.3 1.5
G9857 G9859	Lab	196	1	9 1,764 AHS-L-3 9 1,764 AHS-L-3			1	-			-	1	1	1 1		1			1	-	1	1	-		288 288	288 288	10	(38)	1.3 1.5 1.3 1.5
G9861 & G9863	Lab	193	1	9 1,737 AHS-L-3	246		1				-								1		t				283		10	(37)	
		73.111	77	74 657,999 -	83,323	133	2.057	12,988	60	1,084	6,775	31	503	3.144										26 674	85,678				
		, , 3,111			U3,323	133	2,007	44,500	Ud	4,004	3,115	31	503	3,144		1	1							20,010	UJ,018	412,004	920	(40,001)	/ 125

Project Name: University of Rochester Energy Conservation MP Support
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: Bu

																			Desire	d Face Veloc	ity 80	FPM	Des	ired CFM/Sqft	1 0	CFM/SQFT		Desired Lab ACH	8 10	12
New Fume Hood Face Velocity or La	ab ACH Scenario				_			Fume Hood	1		Fume Hood	2		Fume Hood	3		Fume Hoo	14		Fume Hoo	d 5		Fume Hood	6				Summary		
								Measured			Measured			Measured			Measured	Calculated		Measured	Calculated		Measured	Calculated New	Total N	lew				1
			Assumed			New		Face	Calculated	1	Face	Calculated		Face	Calculate	Opening	Face	F-h	Opening	Face	Exhaust	Opening	Face	Exhaust Hoo		Seneral	Desired New	Actual New Total	Pressurization	i l
			Ceiling	Volume	Associated		Opening	Velocity	Exhaust	Opening	Velocity	Exhaust	Opening	Velocity	Exhaust	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM	Area (sf)	Velocity	CFM Exh	aust E	xhaust	Total Lab	Lab Exhaust		i l
Room Number 1-9905 / 1-9911 / 1-9915	Room Type Lab	Sq. Ft 2,397	Height	(cubic feet)	AHU AHS-L-1	Supply CFM 2,642	Area (sf) 6.3	98	CFM 613	Area (sf)		CFM	Area (sf)		CFM									CFM	613	2,264	Exhaust CFM 2,876	CFM New ACH 2,876	8 (235)	SQFT ACH CFM/Sq 1.1 1
1-9872 / 1-9878 / 1-9892	Lab	3,58	13		AHS-L-1	3,593	6.3			6	97	606	-	-	-		-		-	-		-		-	1,213	3,087	4,300		8 (707)	1.0 1
1-9858 / 1-9852 / 1-9538	Lab	3,61			AHS-L-2	2,881	6.3	96		-	-	-	-	-	-	-		-	-	-		-	-	-	600	3,069	3,669	3,669	7 (788)	0.8 0
1-9855 1-9804 / 1-9812	Lab Lab	40 2.41			AHS-L-1 AHS-L-3	505 2,415	6.3			-	- 00	619		104	- 6	-	-	-	-	-	-	-	-	-	613 1.938	1.380	515 3,318		8 (108) 9 (903)	1.2 1 1.0 1
1-9807 / 1-9809	Lab	44		9 4,032	AHS-L-3	448	6.3					- 019	-	- 104	-		-	-	-	-					644	1,360	663		0 (215)	1.0 1
1-9816 / 1-9828	Lab	2,40	19	9 21,681	AHS-L-3	2,545	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	2,891	2,891	2,891	8 (346)	1.1 1
1-9823 1-9839	Lab	59 58			AHS-L-2 AHS-L-2	652 584	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	715 876	715 876	715 876	8 (63)	1.1 1 1.0 1
1-9811 / 1-9813	Lab	31			AHS-L-2		-			-	1					-	-		-	-	-	-		-		373	373		0 (292) 8 369	
1-9825	Lab	56	12		AHS-L-3	320		-	-	-	-	-	-	-					-			-		-	-	137	137	137	2 183	0.6
1-9826	Lab		.4		AHS-L-2	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	52	52	52 2		
1-9827 / 1-9829 1-9837	Lab	15	i6	9 1.404	AHS-L-2	149 132	-			-	1					-	-		-		-	-		-		118 192	118 192		8 31 8 (60)	1.5 1 0.8 0
1-9847	Lab	19			AHS-L-2	168	-	-	-	-	-	-	-	-	-	-	-		-	-		-		-	-	240	240		8 (72)	0.8
1-9845	Lab	19			AHS-L-2	194	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	271	271		9 (77)	
1-9803 / 1-9805 1-9857	Lab	19			AHS-L-3	199	-	1	-	-	H :	-	-	H :	-	-	-	-	-	-	-	-	-	-		270	270		9 (71)	1.0 1
1-9859	Lab	19			AHS-L-1		-	-		-	-		-	-		-	-	-		-	-	-			-	238	238		8 (55)	0.9 0
1-9861 / 1-9863	Lab	19	13	9 1,737	AHS-L-1	157	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	223	223		8 (66)	0.8 0
2-9905 / 2-9915 2-9872 / 2-9878 / 2-9892	Lab	2,41 3,45			AHS-L-1	2,492 3,451	6.3	98 102			104	650	-	-	-	-	-	-	-	-	-	-	-		613 1,288	2,287 2,887	2,899 4,175	2,899 4,175	8 (408) 8 (724)	1.0 1 1.0 1
2-98/2 / 2-98/8 / 2-9892 2-9861 / 2-9863	Lab	3,45			AHS-L-1	3,451	9.3	102	- 0.38	- 6	104	- 650	-	1	<u> </u>	-	1	1 -	-	 		-	1		- 200	2,887	4,175 318		1 (148)	0.9
2-9859	Lab	18	17	9 1,683	AHS-L-1	159	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	224	224	224	8 (65)	0.9 0
2-9857 2-9855 A & B	Lab	18			AHS-L-1	139	-	 -	+ :	H :	 	H :	-	-	<u> </u>	+ -	-	+ -	-	+		-	-		-	207	207 276	207	7 (68) 4 (142)	
2-9855 A & B 2-9841 & 2-9843	Lab	39			AHS-L-1	316	-	 	t i	t i	 	t i	1	 	1	+ -	1	1 -		 	-	-	+			441	441	441	4 (142) 7 (125)	
2-9845	Lab	19	14	9 1,746	AHS-L-2	147	-	-	-	-	-	-		-	-		-	-	-			-		-	-	211	211	211	7 (64)	0.8 0
2-9847	Lab	19	18	9 1,782	AHS-L-2	144 72	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	204	204	204	7 (60)	0.7 0 0.9 0
2-9837 2-9839	Lab	19			AHS-L-2	190	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	104 271	104 271	104 271	9 (32) 9 (81)	0.9 0 1.0 1
2-9827 / 2-9829	Lab	16			AHS-L-2	189	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	194	194		8 (5)	
2-9825	Lab	56			AHS-L-2	270	-	-	-	-	-	-	-	-	-				-			-		-	-	382	382		5 (112)	
2-9626 2-9803	Lab Lab	11	.5	9 1,035	AHS-L-2 AHS-L-3	78	-	1	-	-	H :	-	-	H :	-	-	-	-	-	-	-	-	-	-		103 92	103 92		6 (25) 7 (92)	0.7 0
2-9805	Lab	10	10	9 900	AHS-L-3	52	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-		-		52	0.5
2-9807	Lab	18		9 1,656	AHS-L-3	153	-	-	-	-	-	-	-	-	-				-			-		-	-	224	224	224	8 (71)	0.8 0
2-9809	Lab	18			AHS-L-3	149 418	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	224 607	224 607		8 (75) 0 (189)	0.8 0 1.0 1
2-9819	Lab	19			AHS-L-2	173	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	235	235		8 (62)	0.9 0
2-9838 / 2-9852 / 2-9858	Lab	3,63			AHS-L-2		6.3	103	644	6	105	656	-	-	-				-			-			1,300	2,960	4,260		8 (1,091)	0.9 0
2-9804 / 2-9812 / 2-9616 / 2-9828 2-9823	8 Lab	4,77		9 42,930	AHS-L-3 AHS-L-2	3,095 639	6.3	100	625	- 6	94	588	-	H :	-	-	-	-	-	-	-	-	-	-	1,213	3,397 496	4,610 496		6 (1,515) 8 143	0.6 0 1.5 1
3-9905 / 3-9915	Lab	2,32		9 20,907	AHS-L-3	2,323	6.3	94	588	-	-	-	-	-	-	-	-		-	-		-	-	-	588	3,893	4,481		.3 (2,158)	1.0 1
3-9872 / 3-9878 / 3-9892	Lab	3,61			AHS-L-1	3,618	6.3	101	631	. 6	101	631	-	-	-		-		-	-		-		-	1,263	3,983	5,246	5,246		1.0 1
3-9861 & 3-9863 3-9859	Lab	19			AHS-L-1	160 155	-	1	-	-	H :	-	-	H :	-	-	-	-	-	-	-	-	-	-		230 220	230 220		8 (70) 8 (65)	0.8 0 0.8 0
3-9626	Lab	11			AHS-L-2		-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	105	105		6 -	0.9 0
3-9803 & 3-9805	Lab	19			AHS-L-3	155	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	225	225		8 (70)	0.8 0
3-9807 3-9809	Lab	19 18	17		AHS-L-3	195 189	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	280 274	280 274		9 (85) .0 (85)	1.0 1 1.0 1
3-9813	Lab	41			AHS-L-3	325	-		-	-	-	-			-	-	-	-	-	-					-	470	470		8 (145)	0.8 0
3-9825	Lab	56			AHS-L-2	260	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	375	375	375	4 (115)	0.5
3-9827 & 3-9829 3-9837	Lab	17	18		AHS-L-2	118 411	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	118 206	118 206		8 - 205	1.2 1 2.4 2
3-9839	Lab	18			AHS-L-2	175							1		-	1	1 -			1	-	-	1		-	250	250		9 (75)	0.9 0
3-9843	Lab	40	11	9 3,609	AHS-L-2	250	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		355	355		6 (105)	0.6 0
3-9845 3-9847	Lab	19 19		9 1,746	AHS-L-2	155 160	-	-	-	-	1	-	-	-	-	-	-	-	-	-	+ -	-	+		-	225 230	225 230	225 230	8 (70) 8 (70)	0.8 0 0.8 0
3-9848	Lab	8	11		AHS-L-2	65							1		-	1	1 -			1	-	-	1		-	230 85	85	85	7 (20)	0.8
3-9855	Lab	40	17	9 3,663	AHS-L-1	407	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	517	517	517	8 (110)	1.0 1
3-9857	Lab	18 3.53			AHS-L-1	155	. 63	100	638	-	-	-	-	-	<u> </u>	+ -	-	+ -	-	+		-	+ -	-	638	225	225	225 3.768	8 (70)	
3-9838 / 3-9852 / 3-9858 3-9816 / 3-9828	Lab	2,41		9 21,735	AHS-L-2 AHS-L-3	2,890 2,415	6.3	102	613	6	100	625	-	1		-	1	1 -	-	1 -	_	-	1		1,238	3,130 2,680	3,768 3,918	3,768	7 (878) 1 (1,503)	0.8 0 1.0 1
3-9804 / 3-9812	Lab	2,40	16	9 21,654	AHS-L-3	2,527		-		-	-	-	-	-	-	-	-	-				-	-	-		2,887	2,887	2,887	8 (360)	1.1 1
G9852 / G9858 / G9838 G9816 / G9828	Lab	3,61 2,41	.0	9 32,490	AHS-L-2 AHS-L-3	2,515	6.3	92 101		6	101	631 556	6.3		6	56 6.3	3 10	1 631	6.3	10	01 631	6.3	3 101	631	3,756 1,838	1,860 1,275	5,616 3,113	5,616 : 3,113	0 (3,101) 9 (703)	0.7
G9816 / G9828 G9804 / G9812	Lab	2,41			AHS-L-3	2,410	6.3		631 669	- 6	- 89	556	- 6	104	- 6		+ :	+ -	-	 	-	-	1		1,838	1,275 2,406	3,113	3,113 3,075	9 (703) 9 (669)	1.0 1
G9805	Lab	10	10	9 900	AHS-L-3	100	-	-				-	_		·					_	-			-		145	145	145	.0 (45)	1.0 1
G9820	Lab	9			AHS-L-2	95		_	_	1	1 -	-	-	1	-			_	_	_	_	_	_		- T	195	195	195 :		1.0 1
G9823 G9825A	Lab	31			AHS-L-2	180 117	-	1	1	1	+ :	1 :	-	1	-	_	+ -	1 :	-	+	-	-	+ -		-	720 167	720 167		.5 (540) .0 (50)	
G9821	Lab	78	17	9 7,083	AHS-L-2	445				L÷.					L											550	550	550	5 (105)	0.6 0
G9826A	Lab	9	18	9 882	AHS-L-2	118		-	ļ -	-	-	ļ -	-		-	-	-	-	-	-	-		-	-	-	118	118	118	8 -	1.2 1
G9837 G9839	Lab	19			AHS-L-2	291 76		1	-	 	+	- -	-	-	-	-	+ -	+ -	-	-	+ -	-	+		-	236 86	236 86	236 86	8 55 8 (10)	1.5 1 1.1 1
G9839 G9807 / G9809	Lab	37			AHS-L-2	360	-	1	1	1	1	1	-	1		-	1	1 -	-	1 -	_	-	1		-	500	500		9 (140)	
G9813	Lab	40			AHS-L-3		7.8				-	-	-	-	-	-	-	-				-	-	-	682	758	1,440		4 (1,032)	1.0 1
G9843 G9909 / G9915	Lab	50 1,52		9 4,509	AHS-L-2 AHS-L-3	585 1,520	6.3	93	581 581		93	581	-	93	-	31 -	-	+ -	-	+		-	+ -	-	581 1,744	20 1,813	601 3,556		8 (16) 6 (2,036)	1.2 1 1.0 1
G9909 / G9915 G9872 / G9878 / G9892	Lab	3,59		9 32,364	AHS-L-3	3,596	6.3	93	538	6	101	631	6	93	6	06 (6 9	7 606	- 6	10	03 644		100		3,650	4,288	7,938		5 (2,036) 5 (4,342)	1.0 1 1.0 1
G9855	Lab	40	17	9 3,663	AHS-L-3	410	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	488	488	488	8 (78)	1.0 1
G9857 G9859	Lab Lab	19 19			AHS-L-3			-	-	-	-	-	_	_	-	-	1 -	_	-	1 -	-	_	-	-	[235	235 235		8 (38)	1.0 1 1.0 1
G9859 G9861 & G9863	Lab	19			AHS-L-3		-	1	1	1	1	1	-	1		-	1	1 -	-	1 -	_	-	1		-	235 232	235		8 (38) 8 (37)	
			1 76	657,999		67,938				_	1.084	6.775		503	3.1			8 1.238					3 201	1,256	26,676	70,294	96,871		0 (29,031)	80.8

Project Name: University of Rochester Energy Conservation MP Support
Building: KMRB
Date: 4/1/2021
EEM: Lab Airflow Optimization
Scenario: Exisiting and Proposed
Calculated By: CLF
Reviewed By: 0

Existing Conditions							Fume Hood 1	Fume Hood 2	Fume Hood 3	Fume Hood 4	Fume Hood 5	Fume Hood 6				Sum	nmary			
Room Number	Room Type	Sq. Ft	Assumed Ceiling Height	Volume (cubic feet)	Associated AHU	Supply CFM	Design Exhaust CFM	Total Hood Exhaust CFM	Evhauet	Total Lab Exhaust CFM		Calculated ACH	Pressurization	Supply CFM/Sqft	General Exhaust CFM/Sqft					
	Lab	2397	9		AHS-L-1	1,328	337.00	-	-	-			337	1,297	1,634		5	(306)	0.6	
1-9872 / 1-9878 / 1-9892	Lab	3583	9	32,247	AHS-L-1	2,431	253.00	232	-	-	-	-	485	2,509	2,994		6	(563)	0.7	
1-9858 / 1-9852 / 1-9538	Lab	3618	9	32,562	AHS-L-2	1,571	278.00	-	-	-	-	-	278	1,951	2,229		4	(658)	0.4	
1-9855	Lab	407	9	3,663	AHS-L-1	297	281.00	-	-	-	,	-	281	100	381		6	(84)	0.7	
1-9804 / 1-9812	Lab	2415	9	21,735	AHS-L-3	1,912	215.00	226	215	-	-	-	656	1,643	2,299		6	(387.00)	0.8	0.7
1-9807 / 1-9809	Lab	448	9	4,032	AHS-L-3	314	337.00	-	-	-	1	-	337	168	505		8	(191)	0.7	7 0.4
1-9816 / 1-9828	Lab	2409	9	21,681	AHS-L-3	2,140	-	-	-	-	-	-	-	2,720	2,720		8	(580)	0.9	
1-9823	Lab	596	9	5,364	AHS-L-2	406	-	-	-	-	-	-	-	467	467		5	(61)	0.7	7 0.8
1-9839	Lab	584	9	5,256	AHS-L-2	399	-	-	-	-	1	-	-	263	263		3	136	0.7	
1-9811 / 1-9813	Lab	311	9		AHS-L-3	146	-	-	-	-	-	-	-	-	-		-	146	0.5	
1-9825	Lab	562	9		AHS-L-3	295	-	-	-	-	-	-	-	98	98		1	197	0.5	
1-9826	Lab	14	9		AHS-L-2	51	-	-	-	-	-	-	-	71	71		34	(20)	3.6	
1-9827 / 1-9829	Lab	98	9		AHS-L-2	413	-	-	-	-	-	-	-	281	281		19	132	4.2	
1-9837	Lab	156	9		AHS-L-2	73		-	-	-	-	-	-	107	107		5	(34)	0.5	
1-9847	Lab	198	9		AHS-L-2	65	-	-	-	-	-	-	-	129	129		4	(64)	0.3	
1-9845	Lab	194	9		AHS-L-2	90	-	-	-	-	-	-	-	198	198		7	(108)	0.5	
1-9803 / 1-9805	Lab	199	9		AHS-L-3	93	-	-	-	-	-	-	-	172	172		6	(79)	0.5	
1-9857	Lab	198	9		AHS-L-1	65	-	-	-	-	-	-	-	110	110		4	(- /	0.3	
1-9859	Lab	197	9		AHS-L-1	86	-	-	-	-	-	-	-	140	140		5	(54)	0.4	
1-9861 / 1-9863	Lab	193	9		AHS-L-1	68	-	-		-	-	-	-	128	128		4	(60)	0.4	
2-9905 / 2-9915	Lab	2416	9	21,744	AHS-L-1	1,469	236.00	-	-	-	٠	-	236	1,680	1,916		5	(447)	0.6	6 0.7
2-9872 / 2-9878 / 2-9892	Lab	3451	9	31,059	AHS-L-1	2,090	257.00	253	-	-	-	-	510	2,279	2,789		5	(699)	0.6	
2-9861 / 2-9863	Lab	193	9	1,737	AHS-L-1	60	-	-	-	-	-	-	-	98	98		3	(38)	0.3	3 0.5
2-9859	Lab	187	9	1,683	AHS-L-1	81	-	-	-	-	-	-	-	120	120		4	(39)	0.4	4 0.6
2-9857	Lab	187	9	1,683	AHS-L-1	82	-	-	-	-	-	-	-	101	101		4	(19)	0.4	4 0.5
2-9855 A & B	Lab	134	9	1,206	AHS-L-1	169	-	-	-	-	-	-	-	243	243		12	(74)	1.3	3 1.8
2-9841 & 2-9843	Lab	395	9	3,555	AHS-L-2	176	-	-	-	-	-	-	-	285	285		5	(109)	0.4	
2-9845	Lab	194	9	1,746	AHS-L-2	79	-	-	-	-		-	-	135	135		5	(56)	0.4	
2-9847	Lab	198	9	1,782	AHS-L-2	81	-	-	-	-	-	-	-	128	128		4	(47)	0.4	4 0.6
2-9837	Lab	77	9	693	AHS-L-2	59	-	-	-	-	-	-	-	74	74		6	(15)	0.8	3 1.0
2-9839	Lab	195	9	1,755	AHS-L-2	80	-	-	-	-	-	-	-	165	165		6	(85)	0.4	
2-9827 / 2-9829	Lab	162	9	1,458	AHS-L-2	410	-	-	-	-		-	-	410	410		17	-	2.5	5 2.5
2-9825	Lab	562	9	5,058	AHS-L-2	207	-	-	-	-	٠	-	-	254	254		3	(47)	0.4	
2-9626	Lab	115	9	1,035	AHS-L-2	54	-	-	-	-	-	-	-	69	69		4	(15)	0.5	5 0.6
2-9803	Lab	90	9		AHS-L-3	-	-	-	-	-		-	-	92	92		7	(92)	-	1.0
2-9805	Lab	100	9	900	AHS-L-3	52	-	-	-	-		-	-	,	-		-	52	0.5	
2-9807	Lab	184	9	1,656	AHS-L-3	61	-	-	-	-	-	-	-	116	116		4	(55)	0.3	3 0.6
2-9809	Lab	189	9	1,701	AHS-L-3	66	-	-	-	-	1	-	-	117	117		4	(51)	0.3	3 0.6
2-9813	Lab	418	9	3,762	AHS-L-3	178	-	-	-	-		-	-	357	357		6	(179)	0.4	4 0.9
2-9819	Lab	198	9		AHS-L-2	105	-	-	-	-	-	-	-	137	137		5		0.5	
2-9838 / 2-9852 / 2-9858	Lab	3638	9	32,742	AHS-L-2	1,427	309.0	246	-	-	-	-	555	1,640	2,195		4	(768)	0.4	
2-9804 / 2-9812 / 2-9616		4770	9	, , , , ,	AHS-L-3	1,488	229.0	246	-	-	-	-	475	1,696	2,171		3	(683)	0.3	
2-9823	Lab	413	9		AHS-L-2	211	-	-	-	-	-	-	-	180	180		3	31	0.5	
3-9905 / 3-9915	Lab	2323	9		AHS-L-3	1,088	260.0	-		-	-	-	260	1,834	2,094		6	(1,006)	0.5	
3-9872 / 3-9878 / 3-9892	Lab	3618	9		AHS-L-1	2,098	215.0	271	-	-	-	-	486	2,227	2,713		5	(615)	0.6	
3-9861 & 3-9863	Lab	193	9	1,737	AHS-L-1	73	-	-	-	-	-	-		110	110		4	(37)	0.4	
3-9859	Lab	187	9		AHS-L-1	82	-	-	-	-	-	-	-	131	131		5	(49)	0.4	
3-9626	Lab	114	9	-,	AHS-L-2	58	-	-	-		-	-	-	63	63		4	(5)	0.5	
3-9803 & 3-9805	Lab	199	9		AHS-L-3	62	-	-	-	-	-	-	-	122	122		4	(60)	0.3	
3-9807	Lab	197	9		AHS-L-3	84	-	-	-	-	-	-	-	166	166		6	(82)	0.4	
3-9809	Lab	189	9	1,701	AHS-L-3	86	-	-	-	-	-	-	-	157	157		6	(71)	0.5	5 0.8
3-9813	Lab	412	9	3,708	AHS-L-3	151	-	-	-	-	-	-	-	244	244		4	(93)	0.4	4 0.6
3-9825	Lab	560	9	5,040	AHS-L-2	218	-	-	-	-	-	-	-	265	265		3	(47)	0.4	4 0.5
3-9827 & 3-9829	Lab	98	9	882	AHS-L-2	439	-	-	-	-	-	-	-	440	440		30	(1)	4.5	5 4.5
3-9837	Lab	172	9	1,548	AHS-L-2	82	-	-	-	-	-	-	-	85	85		3	(3)	0.5	
									1											
3-9839	Lab	186	9	1,674	AHS-L-2	65	-	-	-	-	-	-	-	114	114		4	(49)	0.3	3 0.6

7.7																				
wendel																				
Project Name:		ochester Energ	gy Conservation	MP Support																
Building:															Assumed					
	4/1/2021														Avg. CFM/Sqft					
	Lab Airflow Op																			
	Exisitng and P	roposed																		
Calculated By:																				
Reviewed By:	0																			
-9845	Lab	194	9	1,746		70	-	-	-	-	-	-	-	122	122		4	(52)	0.4	
	Lab	198	9	1,782	AHS-L-2	66	-	-	-	-	-	-	-	121	121		4	(55)	0.3	┖
	Lab	81	9	729	AHS-L-2	67	-	-	-	-	-	-	-	81	81		7	(14)	0.8	
9855	Lab	407	9	3,663	AHS-L-1	120	-	-	-	-	-	-	-	221	221		4	(101)	0.3	
9857	Lab	187	9	1,683	AHS-L-1	71	-	-	-	-	-	-	-	108	108		4	(37)	0.4	L
-9838 / 3-9852 / 3-9858	Lab	3534	9	31,806	AHS-L-2	1,072	257.0	-	-	-	-	-	257	1,266	1,523		3	(451)	0.3	Ĺ
	Lab	2415	9	21,735	AHS-L-3	1,460	243.0	264	-	-	-	-	507	1,279	1,786		5	(326)	0.6	Ĺ
-9804 / 3-9812	Lab	2406	9	21,654	AHS-L-3	1,409	-	-	-	-	-	-	-	2,175	2,175		6	(766)	0.6	Г
9852 / G9858 / G9838	Lab	3610	9	32,490	AHS-L-2	1,611	243.0	312	243	236	167	167	1,368	902	2,270		4	(659)	0.4	Г
9816 / G9828	Lab	2410	9	21,690	AHS-L-3	1,418	257.0	258	205	-	-	-	720	841	1,561		4	(143)	0.6	Γ
9804 / G9812	Lab	2406	9	21,654	AHS-L-3	1,322	267.0	-	-	-	-	-	267	1,499	1,766		5	(444)	0.5	Г
9805	Lab	100	9	900	AHS-L-3	103	-	-	-	-	-	-	-	90	90		6	13	1.0	Г
9820	Lab	95	9	855	AHS-L-2	95	-	-	-	-	-	-	-	197	197		14	(102)	1.0	Г
9823	Lab	312	9	2,808	AHS-L-2	162	-	-	-	-	-	-	-	369	369		8	(207)	0.5	Г
9825A	Lab	117	9	1,053	AHS-L-2	76	-	-	-	-	-	-	-	98	98		6	(22)	0.6	Г
9821	Lab	787	9	7,083	AHS-L-2	318	-	-	-	-	-	-	-	430	430		4	(112)	0.4	Г
9826A	Lab	98	9	882	AHS-L-2	70	-	-	-	-	-	-	-	64	64		4	6	0.7	Г
9837	Lab	197	9	1,773	AHS-L-2	113	-	-	-	-	-	-		88	88		3	25	0.6	Г
9839	Lab	72	9	648	AHS-L-2	54	-	-	-	-	-	-		98	98		9	(44)	0.8	Г
9807 / G9809	Lab	376	9	3,384	AHS-L-2	159	-	-	-	-	-	-	-	298	298		5	(139)	0.4	Т
9813	Lab	408	9	3,672	AHS-L-3	598	289.0	-	-	-	-	-	289	131	420		7	178	1.5	Г
9843	Lab	501	9	4,509	AHS-L-2	303	201.0	-	-	-	-	-	201	113	314		4	(11)	0.6	Г
9909 / G9915	Lab	1520	9	13,680	AHS-L-3	1,040	700.0	700	-	-	-	-	1,400	1,238	2,638		12	(1,598)	0.7	Г
9872 / G9878 / G9892	Lab	3596	9	32,364	AHS-L-3	2,460	700.0	700	700	700	700	700	4,200	2,930	7,130		13	(4,669)	0.7	Г
9855	Lab	407	9	3,663	AHS-L-3	278	-	-	-	_	-	-	-	332	332		5	(53)	0.7	Г
	Lab	196	9	1,764	AHS-L-3	134	-	-	-	_	_	_	-	160	160		5	(26)	0.7	Т
9859	Lab	196	9	1,764	AHS-L-3	134	-	-	-	_	-	-	-	160	160		5	(26)	0.7	r
9861 & G9863	Lab	193	9	1,737	AHS-L-3	132	-	-	-	-	-	-	-	157	157	İ	5	(25)	0.7	H
		73.111	774	657.999		40.567	6.364	3,708	1.363				14.105	44.610	58.715		509	(18,148)	58	F

Project Name: University of Rochester Energy Conservation MP Support
Building: KMRB
Date: 4/1/2021
EEM: Lab Airflow Optimization
Scenario: Exisiting and Proposed
Calculated By: CLF
Reviewed By: 0

								80	Desired CFM/S	Sqft			1	CFM/SQFT		Desired Lab ACH	4	ı		
New Fume Hood Face Veloc	ity or Lab ACH So	enario					Fume Hood 1	Fume Hood 2	Fume Hood 3	Fume Hood 4	Fume Hood 5	Fume Hood 6	i			Summary				1
Room Number	Room Type	Sq. Ft	Assumed Ceiling Height	Volume (cubic feet)	Associated AHU	New Calculated Supply CFM	Calculated Exhaust CFM	Calculated Exhaust CFM	Calculated Exhaust CFM	Calculated Exhaust CFM	Calculated Exhaust CFM	Calculated Exhaust CFM	Total Hood Exhaust CFM	New General Exhaust CFM	Desired New Total Lab Exhaust CFM	Actual New Total Lab Exhaust CFM	New ACH	Pressurization		CFM/Sqft
1-9905 / 1-9911 / 1-9915	Lab	2.397	neight 9	21.573	AHS-L-1	1,328	337		-		-	-	337	1,297	1,634	1.634	1vew Acri			0.6
1-9872 / 1-9878 / 1-9892	Lab	3,583	9	32,247	AHS-L-1	2,431	253	232	_	-		-	485	2,509	2,994	2,994	6			0.7
1-9858 / 1-9852 / 1-9538	Lab	3,618	9		AHS-L-2	1,571	278		-	-	_	-	278	1,951	2,229	2,229	4			0.4
1-9855	Lab	407	9		AHS-L-1	297	281	-	-	_	-	-	281	100	381	381	6			0.7
1-9804 / 1-9812	Lab	2,415	9		AHS-L-3	1,912	215	226	215	-	-	-	656	1,643	2,299	2,299	6			0.8
1-9807 / 1-9809	Lab	448	9	4,032	AHS-L-3	314	337	-	-	-	-	-	337	168	505	505	8	(191)		0.7
1-9816 / 1-9828	Lab	2,409	9	21,681	AHS-L-3	2,140	-	-	-	-	-	-	-	2,720	2,720	2,720	8	(580)		0.9
1-9823	Lab	596	9	5,364	AHS-L-2	406	-	-	-	-	-	-	-	467	467	467	5	(61)		0.7
1-9839	Lab	584	9	5,256	AHS-L-2	399	-	-	-	-	-	-	-	263	263	263	3			0.7
1-9811 / 1-9813	Lab	311	9		AHS-L-3	146	-	-	-	-	-	-	-	-	-	-	-	146		0.5
1-9825	Lab	562	9		AHS-L-3	295	-	-	-	-	-	-	-	98				1		0.5
1-9826	Lab	14	9		AHS-L-2	14	-	-	-	-	-	-	-	34		34				1.0
1-9827 / 1-9829	Lab	98	9		AHS-L-2	191	-	-	-	·	-	_	-	59		59				1.9
1-9837	Lab	156	9	1,404	AHS-L-2	73	-	-			-	-	-	107	107	107	5			0.5
1-9847	Lab	198	9		AHS-L-2	65	-	-	-	-	-	-	-	129	129	129	4			0.3
1-9845	Lab	194	9	1,746	AHS-L-2	90	-	-	-	-	-	-	-	198	198	198	7	(===)		0.5
1-9803 / 1-9805	Lab	199	9		AHS-L-3	93	-	-	-	-	-	-	-	172		172				0.5
1-9857	Lab	198	9		AHS-L-1	65	-	-	-	-	-	-	-	110	110	110	4	()		0.3
1-9859	Lab	197	9	1,773	AHS-L-1	86	-	-	-	-	-	-	-	140	140	140	5	(- /		0.4
1-9861 / 1-9863	Lab	193	9		AHS-L-1	68	-	-	-	-	-	-	-	128	128	128	4	(/		0.4
2-9905 / 2-9915 2-9872 / 2-9878 / 2-9892	Lab Lab	2,416 3,451	9	21,744 31.059	AHS-L-1 AHS-L-1	1,469 2,090	236	- 052	-	-	-	-	236 510	1,680 2,279	1,916 2,789	1,916 2,789	5 5			0.6
2-9812 / 2-9818 / 2-9892	Lab	193	9	. ,	AHS-L-1	2,090	257	253	-	-		-	210	98	2,789	2,789	3			0.8
2-9859	Lab	193	9		AHS-L-1	81	-	-	-	-	-	-	-	120	120	120	4			0.3
2-9857	Lab	187	9		AHS-L-1	82		-	-	-	-	-	-	101	101	101	4			0.4
2-9855 A & B	Lab	134	9	1,003	AHS-L-1	134	 	-				-		208	208	208	10			1.0
2-9841 & 2-9843	Lab	395	9	3,555	AHS-L-2	176	_	-	_	-		-	_	285	285	285	5			0.4
2-9845	Lab	194	9		AHS-L-2	79	-	-	-	-	-	-	_	135	135	135	5			0.4
2-9847	Lab	198	9		AHS-L-2	81	-	-	-	-	-	-	_	128		128	4			0.4
2-9837	Lab	77	9		AHS-L-2	59	_	-	-	-	-	-	-	74						0.8
2-9839	Lab	195	9	1,755	AHS-L-2	80	-	-	-	_	-	-	-	165		165	6			0.4
2-9827 / 2-9829	Lab	162	9		AHS-L-2	162	-	-	-	-	-	-	-	162	162	162	7			1.0
2-9825	Lab	562	9	5,058	AHS-L-2	207	-	-	-	-	-	-	-	254	254	254	3	(47)		0.4
2-9626	Lab	115	9		AHS-L-2	54	-	-	-	-	-	-	-	69		69				0.5
2-9803	Lab	90	9	810	AHS-L-3	-	-	-	-	-	-	-	-	92	92	92	7	(92)		-
2-9805	Lab	100	9	900	AHS-L-3	52	-	-	-	-	-	-	-	-	-	-	-	52		0.5
2-9807	Lab	184	9		AHS-L-3	61	-	-	-	-	-	-	-	116	116	116				0.3
2-9809	Lab	189	9	1,701	AHS-L-3	66	-	-	-	-	-	-	-	117	117	117	4	(51)		0.3
2-9813	Lab	418	9		AHS-L-3	178	-	-	-	-	-	-	-	357	357	357	6			0.4
2-9819	Lab	198	9	1,782	AHS-L-2	105	-	-	-	-	-	-	-	137	137	137	5			0.5
2-9838 / 2-9852 / 2-9858	Lab	3,638	9	32,742	AHS-L-2	1,427	309	246	-	-	-	-	555	1,640	2,195	2,195	4			0.4
, ,	Lab	4,770	9		AHS-L-3	1,488	229	246	-	·	-	_	475	1,696	2,171	2,171	3			0.3
2-9823	Lab	413	9		AHS-L-2	211		-	-	-	-	-	-	180	180	180	3			0.5
3-9905 / 3-9915	Lab	2,323	9	- 7	AHS-L-3	1,088	260	-	-	-	-	-	260	1,834	2,094	2,094	6	() ,		0.5
3-9872 / 3-9878 / 3-9892	Lab	3,618	9	32,562	AHS-L-1	2,098	215	271	-	-	-	-	486	2,227	2,713	2,713	5	(/		0.6
3-9861 & 3-9863	Lab	193	9	1,737	AHS-L-1	73	-	-	-	-	-	-	-	110		110	4			0.4
3-9859	Lab	187	9		AHS-L-1	82	-	-	-	-	-	-	-	131	131	131				0.4
3-9626	Lab	114	9		AHS-L-2	58	-	-	-	-	-	-	-	63		63		(-/	 	0.5
3-9803 & 3-9805	Lab	199	9		AHS-L-3	62	-	-	-	-	-	-	-	122	122	122	4	(/	 	0.3
3-9807 3-9809	Lab	197 189	9	1,773	AHS-L-3	84	-	-	-	-	-	-	 	166 157	166 157	166 157	6	(- /		0.4
3-9813	Lab Lab	189 412	9	1,701 3,708	AHS-L-3 AHS-L-3	86 151	<u> </u>	-	-	-	-	-	-	244	244	244	6			0.5
3-9813 3-9825		560	9				<u> </u>		-		-		 			244	3	(,		0.4
J-9820	Lab	560	9	5,040	AHS-L-2	218	-	-	-	-	-	-	-	265	265	265	3	(47)		0.4

wendel																				
	: University of	Rochester Energ	v Conservation	MP Support																
Building	,		,												Assumed					
	: 4/1/2021														Avg. CFM/Sqft					
	: Lab Airflow C	Optimization													0 , , , ,					
	: Exisitng and																			
Calculated By																				
Reviewed By																				
3-9827 & 3-9829	Lab	98	9	882	AHS-L-2	98	-	-	-	-	-	-	-	99	99	99	7	(1)		T
-9837	Lab	172	9	1,548	AHS-L-2	82	-	-	-	-	-	-	-	85	85	85	3	(3)		
-9839	Lab	186	9	1,674	AHS-L-2	65	-	-	-	-	-	-	-	114	114	114	4	(49)		
-9843	Lab	401	9	3,609	AHS-L-2	137	-	-	-	-	-	-	-	157	157	157	3	(20)		
-9845	Lab	194	9	1,746	AHS-L-2	70	-	-	-	-	-	-	-	122	122	122	4	(52)		
9847	Lab	198	9	1,782	AHS-L-2	66	-	-	-	-	-	-	-	121	121	121	4	(55)		
9848	Lab	81	9	729	AHS-L-2	67	-	-	-	-	-	-	-	81	81	81	7	(14)		
9855	Lab	407	9	3,663	AHS-L-1	120	-	-	-	-	-	-	-	221	221	221	4	(101)		
9857	Lab	187	9	1,683	AHS-L-1	71	-	-	-		-	-	-	108	108	108	4	(37)		
9838 / 3-9852 / 3-9858	3 Lab	3,534	9	31,806	AHS-L-2	1,072	257	-	-	-	-	-	257	1,266	1,523	1,523	3	(451)		
-9816 / 3-9828	Lab	2,415	9	21,735	AHS-L-3	1,460	243	264	-	-	-	-	507	1,279	1,786	1,786	5	(326)		
-9804 / 3-9812	Lab	2,406	9	21,654	AHS-L-3	1,409	-	-	-	-	-	-	-	2,175	2,175	2,175	6	(766)		
9852 / G9858 / G9838	Lab	3,610	9	32,490	AHS-L-2	1,611	243	312	243	236	167	167	1,368	902	2,270	2,270	4	(659)		
9816 / G9828	Lab	2,410	9	21,690	AHS-L-3	1,418	257	258	205	-	-	-	720	841	1,561	1,561	4	(143)		
9804 / G9812	Lab	2,406	9	21,654	AHS-L-3	1,322	267	-	-	-	-	-	267	1,499	1,766	1,766	5	(444)		
9805	Lab	100	9	900	AHS-L-3	100	-	-	-	-	-	-	-	87	87	87	6	13		
9820	Lab	95	9	855	AHS-L-2	95	-	-	-	-	-	-	-	197	197	197	14	(102)		
9823	Lab	312	9	2,808	AHS-L-2	162	-	-	-	-	-	-	-	369	369	369	8	(207)		
9825A	Lab	117	9	1,053	AHS-L-2	76	-	-	-	-	-	-	-	98	98	98	6	(22)		
9821	Lab	787	9	7,083	AHS-L-2	318	-	-	-	=	-	-	-	430	430	430	4	(112)		
9826A	Lab	98	9	882	AHS-L-2	70	-	-	-	-	-	-	-	64	64	64	4	6		
9837	Lab	197	9	1,773	AHS-L-2	113	-	-	-	-	-	-	-	88	88	88	3	25		
9839	Lab	72	9	648	AHS-L-2	54	-	-	-	-	-	-	-	98	98	98	9	(44)		
9807 / G9809	Lab	376	9	3,384	AHS-L-2	159	-	-	-	-	-	-	-	298	298	298	5	(139)		
9813	Lab	408	9	3,672	AHS-L-3	467	289	-	-	-	-	-	289		245	289	4	178		
9843	Lab	501	9	4,509	AHS-L-2	303	201	-	-	-	-	-	201	113	314	314	4	(11)		
9909 / G9915	Lab	1,520	9	13,680	AHS-L-3	1,040	700	700	-	-	-	-	1,400	1,238	2,638	2,638	12	(1,598)		
9872 / G9878 / G9892	Lab	3,596	9	32,364	AHS-L-3	2,460	700	700	700	700	700	700	4,200	2,930	7,130	7,130	13	(4,669)		
9855	Lab	407	9	3,663	AHS-L-3	278	-	-	-	-	-	-	-	332	332	332	5	(53)		
9857	Lab	196	9	1,764	AHS-L-3	134	-	-	-	-	-	-	-	160	160	160	5	(26)		
9859	Lab	196	9	1,764	AHS-L-3	134	-	-	-	-	-	-	-	160	160	160	5	(26)		
9861 & G9863	Lab	193	9	1,737	AHS-L-3	132	-	-	-	-	-	-	-	157	157	157	5	(25)		
		73.111	765	657,999	-	39.550	6,364	3,708	1.363	936	867	867	14.105	43,593	57.654	57.698	438	(18,148)	-	

Project Name: University of Rochester Energy Conservation MP Support
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: Building: VMRB
Building: Building: VMRB
Building: Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VMRB
Building: VM

Existing Conditions			,					Fume Hood	1		Fume Hood	2		Fume Hoor	13		Fume Hood	4		Fume Hood	5		Fume Hood (3				Summary			
		1	Assumed	Volume As	eenriated		Onening		Calculated	Opening	Measured		Opening	Measured	Calculated	Opening	Measured	Calculated	Opening	Measured	Calculated	Onening	Measured	Calculated	Total Hood		Total Lab	Calculated		Sunnly	Gene
Room Number	Room Type	Sq. Ft	Ceiling		ssociated HU	Supply CFM	Opening Area (sf)	Face	Exhaust	Opening Area (sf)	Face	Exhaust	Opening Area (sf)	Face	Exhaust	Opening Area (sf)	Face	Exhaust	Opening Area (sf)	Face	Exhaust	Opening Area (sf)	Face	Exhaust	Exhaust	Exhaust	Total Lab Exhaust CFM	Calculated ACH		Supply CFM/Sqft	Exha
			Height	(cubic feet) Ar	nu	,	Area (SI)	Velocity	CFM	Area (SI)	Velocity	CFM	Area (SI)	Velocity	CFM	Area (SI)	Velocity	CFM	Area (SI)	Velocity	CFM	Area (SI)	Velocity	CFM	CFM	CFM	Exhaust CFM	ALFI		CFM/Sqrt	CFM,
1-9905 / 1-9911 / 1-9915	Lab	2397	9	9 21,573 A	NHS-L-1	2,723	6.3	98.0	613			-			-			-			-			-	613	2,345	2,958	8.23	(235)	1	1.1
1-9872 / 1-9878 / 1-9892	Lab	3583	9	9 32,247 A		4,836	6.3	97.0	606	6.3	97	606			-			-			-			-	1,213	4,330	5,543	10	(707)	1	1.3
1-9858 / 1-9852 / 1-9538	Lab	3618	9	9 32,562 AI	NHS-L-2	2,881	6.3		600						-			-			-			-	600		3,669	7	(788)	0	0.8
L-9855	Lab	407	9	9 3,663 A		623	6.3								-			-			-			-	613	118	731	12	(108)		1.5
I-9804 / 1-9812	Lab	2415	9	9 21,735 A	NHS-L-3	4,277	6.3	107.0	669	6.3	99	619	6	104	650			-			-			-	1,938	3,242	5,180	14.30	(903)	1	1.8
1-9807 / 1-9809	Lab	448	9	9 4,032 AI	NHS-L-3	916	6.3		644			-			-			-			-			-	644	487	1,131	17	(215)	2	2.0
I-9816 / 1-9828	Lab	2409	9	9 21,681 A	NHS-L-3	4,331			-						-			-			-			-		4,677	4,677	13	(346)	1	1.8
1-9823	Lab	596	9	9 5,364 AI		672			-			-			-			-			-			-		735	735	8	(63)		1.1
L-9839	Lab	584	9	9 5,256 A	NHS-L-2	820			-						-			-			-			-		1,112	1,112	13	(292)	1	1.4
1-9811 / 1-9813	Lab	311	9	9 2,799 A	NHS-L-3	369			-						-			-			-			-			-	-	369	1	1.2
-9825	Lab	562	9	9 5,058 AI	NHS-L-3	320									-			-			-			-		137	137	2	183	0	0.6
-9826	Lab	14	9	9 126 A		102			-						-			-			-			-		140	140	67	(38)		7.3
9827 / 1-9829	Lab	98	9	9 882 A	NHS-L-2	413			-						-			-			-			-		382	382	26	31	4	4.2
9837	Lab	156	9	9 1,404 A	NHS-L-2	132			-						-			-			-			-		192	192	8	(60)	0	0.8
9847	Lab	198	9	9 1,782 A	NHS-L-2	168			-						-			-			-			-		240	240	8	(72)	0	0.8
9845	Lab	194	9	9 1,746 A	NHS-L-2	238			-						-			-			-			-		315	315	11	(77)	1	1.2
9803 / 1-9805	Lab	199	9	9 1,791 A	NHS-L-3	238			-						-			-			-			-		309	309	10	(71)	1	1.2
9857	Lab	198	9	9 1.782 A		182			-			-			-						-			-		244	244	8			0.9
9859	Lab	197		9 1,773 A		183									-			-			-			-		238	238	8	(55)		0.9
9861 / 1-9863	Lab	193		9 1,737 A		157									1 -		1	-						-		223	223	8			0.8
9905 / 2-9915	Lab	2416		9 21,744 A	AHS-I-1	3,051	6.3	98.0	613						-			-			-			-	613	2,846	3,459	10	(408)		1.3
9872 / 2-9878 / 2-9892	Lab	3451	1 3	9 31,059 A		4,638	6.3		638	6	104	650	t	+	1 :		1	1		t			t		1,288	4,074	5,362	10	(724)		1.3
9861 / 2-9863	Lab	193		9 1.737 A		170	0.0	202.0		ŭ	204	000													1,200	318	318	11			0.9
9859	Lab	187	1 3	9 1,683 A		159		+	t i				_	+	+ - :		+	1 - 1		 	 		 	-	-	224	224	8			0.9
9857	Lab	187	1 3	9 1,683 Al	HS.I.1	139		1	-	1	l		 	1	 		+			l	<u> </u>	 	l	-	-	224	224	7		- 0	0.9
9855 A & B	Lab		1	9 1,083 A	WIS-L-1	513			-				-	_			-	-			-			-		655	655		(00)	- 0	
-9855 A & B -9841 & 2-9843	Lab	134 395	1 2	9 1,206 AI 9 3,555 AI		316		+	<u> </u>	-	-	<u> </u>	-	+	+		+	+		-	<u> </u>	-	-	-	-	441	441	33	(142)		3.8
9845		194	1	9 3,555 A 9 1,746 A		147			-				-	_			-	-			-			-				7			0.8
9845 9847	Lab	194						1	<u> </u>	-		<u> </u>	1	+	+		+	1 -		1	-		1	-	-	211	211	7 7			
	Lab		1 9			144			-	-	-	<u> </u>	-	-	1		1	-			<u> </u>			-	-	204	204				0.7
9837	Lab	77	1 5	9 693 A	MS-L-2	72			-	-	-	-	-	-	1 -		1	-			-			-	-	104	104	9	(32)	0	0.9
9839	Lab	195	9	9 1,755 A		190			-						-			-			-			-		271	271	9	(81)		1.0
-9827 / 2-9829	Lab	162		9 1,458 A		410			-			<u> </u>		 	-			-		ļ	· ·		ļ	-		415	415	17	(5)		2.5
9825	Lab	562		9 5,058 A		270			-			<u> </u>		 	-			-		ļ	· ·		ļ	-		382	382	5	(112)		0.5
9626	Lab	115	9			78									-			-			-			-		103	103	6		0	0.7
9803	Lab	90	9	9 810 AI		-		1	-			-			1 -		1	-			-			-		92	92	7			-
9805	Lab	100	9	9 900 A		52						-															-	-	52		0.5
9807	Lab	184		9 1,656 A		153																				224	224	8	(71)		0.8
9809	Lab	189	- 9	9 1,701 A		149							Ľ													224	224	8	(75)		0.8
9813	Lab	418	9	9 3,762 AI		419									-			-			-			-		608	608	10			1.0
9819	Lab	198	9	9 1,782 A	NHS-L-2	173									-			-			-			-		235	235	8	(62)	0	0.9
9838 / 2-9852 / 2-9858	Lab	3638	9	9 32,742 AI	NHS-L-2	3,169	6.3	103.0	644	6	105	656			-			-			-			-	1,300	2,960	4,260	8	(1,091)	0	0.9
2-9804 / 2-9812 / 2-9616 / 2-982	328 Lab	4770	9	9 42.930 A		3.095	6.3		625	6	94	588			-			-			-			-	1.213	3,397	4,610	6	(1.515)		0.6
2-9823	Lab	413		9 3,717 A	HS-1-2	461									-			-			-			-	-,	318	318	5	143		1.1
3-9905 / 3-9915	Lab	2323		9 20,907 A		2,335	6.3	94.0	588						-			-			-			-	588		4,493	13			1.0
3-9872 / 3-9878 / 3-9892	Lab	3618		9 32,562 A	AHS-I-1	4,555	6.3		631	6	101	631			-			-			-			-	1,263	4,920	6,183	11	(1,628)	1	1.3
3-9861 & 3-9863	Lab	193		9 1,737 A	HS.I.1	160	0.0	202.0		ŭ	101														1,200	230	230	8	(70)	1	0.8
3-9859	Lab	187		9 1.683 A	HS.I.1	155																				220	220	8	(65)	0	0.8
9626	Lab	114		9 1.026 A		105																				105	105	6			0.0
-9803 & 3-9805	Lab	199		9 1,791 A		155									-		_				-			-		225	225	8			0.8
9807	Lab	197		9 1,773 A	MICI 2	195									-		_				-			-		280	280		(85)		1.0
9809	Lab	189		9 1,773 A		195									-		_				-			-		280	280	10			1.0
9813	Lab	412		9 3,708 A		325									-		_				-			-		470	470	8	(145)		0.8
9825	Lab	560		9 5.040 A		260									-		_				-			-		375	375	4			0.5
-9827 & 3-9829		98				440									-		_				-			-		440	440				4.5
-9827 & 3-9829 -9837	Lab	172	1 2	9 882 AI 9 1.548 AI		440		+	<u> </u>	-		<u> </u>	-	+	+		+	+		-	<u> </u>	-	-	-	-	235	440 235	30	205		2.6
-9837 -9839	Lab	186	1 .	9 1,548 A 9 1.674 A		175		+	<u> </u>	-		<u> </u>	-	+	+		+	+		 	<u> </u>	-	 	-	-	235	235 250	9			0.9
9839		186	1 5					1	<u> </u>	-		<u> </u>	1	1	+		+	1 -		1	-		1	-	-			-			
9843 9845	Lab	194	1 9	9 3,609 AI 9 1.746 AI		250		-	-			-	1	-	+		-	1		-	-		-	-	-	355	355	6			0.6
9845 9847	Lab		1 9			155		-	-			-	1	-	+		-	1		-	-		-	-	-	225	225	8			
	Lab	198	1 9	9 1,782 A	uno-L-2	160		-	-			-	1	-	+		-	1		-	-		-	-	-	230	230	8			0.8
9848	Lab	81	1 5	9 729 A		65			-	-	-	-	-	-	1 -		1	-			-			-	-	85	85		(20)		0.8
9855	Lab	407	1 5	9 3,663 A		495			-	-	-	-	-	-	1 -		1	-			-			-	-	605	605	10	(110)		1.2
9857	Lab	187		9 1,683 A		155		1	-			<u> </u>	1	1	-		-	-		1	-		1	-	-	225	225	8	(70)		0.8
9838 / 3-9852 / 3-9858	Lab	3534		9 31,806 A	NHS-L-2	2,890	6.3	102.0	638					 	-			-		ļ	· ·		ļ	-	638	3,130	3,768	7		0	0.8
9816 / 3-9828	Lab	2415		9 21,735 A	NHS-L-3	3,115	6.3	98.0	613	6	100	625		 	-			-		ļ	· ·		ļ	-	1,238	3,380	4,618	13	(1,503)	1	1.3
9804 / 3-9812	Lab	2406		9 21,654 A		3,160			-			<u> </u>		 	-			-		ļ	· ·		ļ	-		3,520	3,520	10	(360)		1.3
9852 / G9858 / G9838	Lab	3610	1 9	9 32,490 A		2,515	6.3	92.0	575	6	101	631	6	105		6	6 101	631	6	101	631	6	101	631	3,756	1,860	5,616	10	(3,101)		0.7
816 / G9828	Lab	2410	9	9 21,690 A	NHS-L-3	3,325	6.3		631	6	89	556	6	104	650										1,838		4,028	11	(703)		1.4
804 / G9812	Lab	2406	9	9 21,654 A	NHS-L-3	3,050	6.3	107.0	669			-													669	3,050	3,719	10	(669)	1	1.3
805	Lab	100	9	9 900 A	AHS-L-3	100									1 -											145	145	10			1.0
1820	Lab	95	- 9	9 855 AI	NHS-L-2	200							Ľ													300	300	21	(100)	2	2.1
623	Lab	312	9	9 2,808 A	NHS-L-2	180			-	1	1	-	1	1	-			-	1	1	1 -	1	1	-	-	720	720	15			0.6
825A	Lab	117	9	9 1,053 A	NHS-L-2	150									-			-								200	200	11	(50)	1	1.3
821	Lab	787		9 7,083 A		445									-			-								550	550	5	(105)	0	0.6
826A	Lab	98		9 882 A	NHS-L-2	135		1						1	-		1	-								135	135	9		1	1.4
637	Lab	197		9 1.773 A		210		1		T			1	1	1 :		1			1			1		-	155	155	5	55		1.1
1639	Lab	72	1 3	9 648 A		105		t					t	+	1 :		1	1		t			t			115	115	11			1.5
1807 / G9809	Lab	376	1 3	9 3,384 A		360		+	t i				_	+	+ - :		+	1 - 1		 	 		 	-	-	500	500	9	(140)		1.0
	Lau	408	1 2				7.8	90.0	682	-	-	<u> </u>	+	+	+	_	+		-	-	<u> </u>	-	-	-		1.950			(140)		
9813	Lab		+ 5	9 3,672 A		1,600		88.0		-	-	<u> </u>	-	+	1		+	+ -	-	-	<u> </u>	-	-	-	682		2,632	43			3.9
9843	Lab	501	1 5	9 4,509 A		665	6.3		581.25				—	-	1 - 1 -		+	-			-			-	581	100	681	9	(16)		1.3
909 / G9915	Lab	1520	1 5	9 13,680 A		1,940	6.3			6.3	93.0	581	6.3					-			-				1,744		3,976	17	(2,036)		1.3
9872 / G9878 / G9892	Lab	3596		9 32,364 AI		4,589	6.3	86.0	538	6.3	101	631	6	97	606	6	6 97	606	6	103	644	6	100	625	3,650	5,281	8,931	17	(4,342)		1.3
3855	Lab	407		9 3,663 A	NHS-L-3	519			-			-		1	1 -		1	-						-		598	598	10	(78)		1.3
9857	Lab	196	9	9 1,764 A	NHS-L-3	250						-														288	288	10	(38)	1	1.3
1859	Lab	196	9	9 1,764 A	NHS-L-3	250									1 -											288	288	10	(38)	1	1.3
	Lab	193		9 1.737 A	NHS-L-3	246	_	1	-		_	-	1	1 -					_	1			1		-	283	283	10	(37)	1	1.3
9861 & G9863	Lab																														

Wendel
Project Name: University of Rochester Energy Conservation MP Support
Building: YMMB
Building: YMMB
Building: YMMB
Building: YMMB
Building: Support
EEM: Lab Airflow Optimization
Scenaric: Existing and Proposed
Calculated By: CLF
Reviewed By:

																			Desire	d Face Velocit	y 80	FPM	Des	ired CFM/Sqft	1 (CFM/SQFT		Desired Lab ACH	6 10	0 12	
New Fume Hood Face Velocity or La	ab ACH Scenario						Fi	ıme Hood 1	l		Fume Hood	2		Fume Hood	3		Fume Hood	14		Fume Hood	15		Fume Hood	6				Summary		T	
		Ce	sumed		Neciated Cal		Opening \	Measured Face Velocity	Calculated Exhaust	Opening	Measured Face Velocity	Calculated Exhaust	Opening	Measured Face Velocity	Calculated Exhaust	Opening Area (sf)	Measured Face Velocity	Calculated Exhaust CFM	Opening Area (sf)	Measured Face Velocity	Calculated Exhaust CFM	Opening Area (sf)	Measured Face Velocity	Exhaust Hoo CFM Exha	od G naust E	New General Exhaust	Desired New Total Lab	Actual New Total Lab Exhaust	Pressurization	1	
Room Number 1-9905 / 1-9911 / 1-9915	Room Type Lab	Sq. Ft He 2,397	ight 9	(cubic feet) AHU 21,573 AHS	L-1	pply CFM A 2,723	Area (sf) 6.3	98	CFM 613	Area (sf)		CFM -	Area (sf)		CFM -	-	-	-			-			CFM	0 613	2,345	Exhaust CFM 2,632	2,958 New A0	7 (235)	SQFT ACH	CFM/Sqf 1.1 1.1
1-9872 / 1-9878 / 1-9892	Lab	3,583	9	32,247 AHS	L-1	3,583	6.3	97	606	6	97	606	-	-	-	-		-	-	-		-		-	1,213	3,077	4,290	4,290	8 (707)) 1	1.0 1. 0.8 0.
1-9858 / 1-9852 / 1-9538 1-9855	Lab	3,618 407	9	32,562 AHS- 3.663 AHS-		2,881 623	6.3	96 98	600		-	-	-	-	-		-	-	-	-	-	-	-		600	3,069 118	3,669 515	3,669 731	7 (788) 8 (108)		0.8 0. 1.5 1.
1-9804 / 1-9812	Lab	2,415	9	21,735 AHS-	L-3	2,415	6.3	107	669	6	99	619	6	104	650		-	-	-	-		-		-	1,938	1,380	3,318	3,318	9 (903)) 1	1.0 1
1-9807 / 1-9809 1-9816 / 1-9828	Lab	448 2.409	9	4,032 AHS- 21,681 AHS-		448 2.409	6.3	103	644		-	-	- :	-	-		-	-		-	-	-	-		644	19 2.755	663 2,755	663 2.755	10 (215) 8 (346)) 1	1.0 1 1.0 1
1-9823	Lab	596	9	5,364 AHS-	L-2	596	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	659	659	659	7 (63)) 1	1.0 1.
1-9839	Lab	584	9	5,256 AHS	L-2	584	-		-	-	-	-	-	-	-	-	-	-	-	-		-				876	876	876	10 (292)) 1	1.0 1 1.2 1
1-9811 / 1-9813 1-9825	Lab	311 562	9	2,799 AHS- 5,058 AHS-		369 320		-	-	-	-	-		-	-	-	-	-	-	-	-	-			\rightarrow	137	280 137	137	6 369 2 183		1.2 1 0.6 0
1-9826	Lab	14	9	126 AHS		14	-	-		-	-	-	-	-	-		-	-	-	-				-		52	52	52	25 (38)		1.0 1
1-9827 / 1-9829 1-9837	Lab	98 156	9	882 AHS- 1,404 AHS-		119 156	-	-			-	-	-	-	-	_	-	-	-	-	-	-	-			88 216	88 192	88 216	6 31 8 (60)	0 1	1.2 1 1.0 1
1-9847	Lab	198	9	1,782 AHS	L-2	198		-			-	-	-		-		-	-	-	-		-		-		270	240	270	8 (72)) 1	1.0 1
1-9845 1-9803 / 1-9805	Lab Lab	194 199	9	1,746 AHS- 1,791 AHS-	L-2	194 199	- :	-			-	-	- :	-	-		-	-		-	-	-	-			271 270	271 270	271 270	9 (77)) 1	1.0 1 1.0 1
1-9857	Lab	198	9	1,782 AHS-	L-1	198	-	-		-	-	-	-		-		-	-	-	-	-					260	244	260	8 (62)) 1	1.0 1
1-9859	Lab	197	9	1,773 AHS-		197	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			252	238	252	8 (55)		1.0 1
1-9861 / 1-9863 2-9905 / 2-9915	Lab	193 2,416	9	1,737 AHS- 21,744 AHS-		193 2,416	6.3	98	613	-	-	-	H	 -	<u> </u>	-	1	1 -	-	1	-	-	-	+ +	613	259 2,211	223 2,824	259 2,824	8 (66)		1.0 1 1.0 1
2-9872 / 2-9878 / 2-9892	Lab	3,451	9	31,059 AHS		3,451	6.3	102	638	6	104	650	-	-	-	-		-	-	-		-			1,288	2,887	4,175	4,175	8 (724)) 1	1.0 1
2-9861 / 2-9863 2-9859	Lab Lab	193 187	9	1,737 AHS- 1,683 AHS-		193 187	-	-	-		-	-		1	-		-	+ :	-	+ :	-	-	1		\rightarrow	341 252	318 224	341 252	11 (148) 8 (65)		1.0 1 1.0 1
2-9857	Lab	187	9	1,683 AHS-	L-1	187	-	-		-	-	-			-		-	-	-	-		-		-		255	207	255	7 (68)) 1	1.0 1.
2-9855 A & B 2-9841 & 2-9843	Lab Lab	134 395	9	1,206 AHS- 3,555 AHS-		134 395	-			-	-	<u> </u>	-	-	 	-	-	-	-	-	-	-	-			276 520	276 441	276 520	14 (142) 7 (125)		1.0 1. 1.0 1.
2-9845	Lab	194	9	1,746 AHS	L-2	194	-	-			-		-													258	211	258	7 (64)) 1	1.0 1.
2-9847 2-9837	Lab	198 77	9	1,782 AHS-		198 77	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-			258 109	204 104	258 109	7 (60)		1.0 1. 1.0 1.
2-9839	Lab	195	9	1,755 AHS		195		-		-	-	-	-	-	-		-	-	-	-	-	-	-			276	271	276	9 (81)		1.0 1.
2-9827 / 2-9829	Lab	162	9	1,458 AHS		162	-		-		-	-	-	-	-	-	-	-	-	-	-			-		167	167	167	7 (5)		1.0 1.
2-9825 2-9626	Lab	562 115	9	5,058 AHS- 1,035 AHS-	L-2 L-2	270 78	-	-		- :	-	-	-	-	-		-	-	-	-	-	-	-		\div	382 103	382 103	382 103	5 (112) 6 (25)	0 0	0.5 0. 0.7 0.
2-9803	Lab	90	9	810 AHS-	L-3	90	-	-	-	-	-	-	-	-			-			-			-			182	92	182	7 (92)) 1	1.0 1.
2-9805 2-9807	Lab	100 184	9	900 AHS- 1,656 AHS-		52 184	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			255	224	255	- 52 8 (71)		0.5 0. 1.0 1.
2-9809	Lab	189	9	1,701 AHS-	L-3	189		-			-	-	-		-		-	-	-	-		-	-	-	-	264	224	264	8 (75)) 1	1.0 1.
2-9813 2-9819	Lab	418 198	9	3,762 AHS- 1,782 AHS-		418 198	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-			607 260	607 235	607 260	10 (189) 8 (62)		1.0 1. 1.0 1.
2-9838 / 2-9852 / 2-9858	Lab	3,638	9	32,742 AHS-	L-2	3,169	6.3	103	644	6	105	656	-	-			-			-		-			1,300	2,960	4,260	4,260	8 (1,091)) C	0.9 0.
2-9804 / 2-9812 / 2-9616 / 2-9828 2-9823	28 Lab	4,770 413	9	42,930 AHS 3,717 AHS	L-3	3,095 461	6.3	100	625	6	94	588	-	-	-	-	-	-	-	-		-	-		1,213	3,397 318	4,610 372	4,610 318	6 (1,515) 6 143) 0	0.6 0. 1.1 1.
3-9905 / 3-9915	Lab	2,323	9	20,907 AHS	L-3	2,323	6.3	94	588	-	-	-	-	-	-		-	-	-	-	-	-	-		588	3,893	4,481	4,481	13 (2,158)		1.0 1.
3-9872 / 3-9878 / 3-9892	Lab	3,618 193	9	32,562 AHS- 1.737 AHS-		3,618 193	6.3	101	631	6	101	631	-	-	-	-	-	-	-	-		-	-	-	1,263	3,983 263	5,246	5,246 263	10 (1,628)		1.0 1. 1.0 1.
3-9861 & 3-9863 3-9859	Lab	193	9	1,683 AHS		187		-	-	-	-	-		-	-	-	-	-	-	-	-	-			\rightarrow	252	230 220	252	8 (70)		1.0 1
3-9626 3-9803 & 3-9805	Lab Lab	114	9	1,026 AHS-	L-2	105 199	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-				105 269	105 225	105 269	6 - 8 (70)	0	0.9 0. 1.0 1.
3-9803 & 3-9805	Lab	199	9	1,791 AHS-		199	-	-			-	-	-	-	-	_	-	-	-	-	-	-	-			282	225	282	9 (85)		1.0 1.
3-9809	Lab	189	9	1,701 AHS	L-3	189	-	-		-	-	-			-		-	-	-	-		-		-	-	274	274	274	10 (85)) 1	1.0 1.
3-9813 3-9825	Lab	412 560	9	3,708 AHS- 5,040 AHS-	L-3	412 260	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			557 375	470 375	557 375	8 (145) 4 (115)	0 1	1.0 1. 0.5 0.
3-9827 & 3-9829	Lab	98	9	882 AHS-	L-2	98		-			-	-	-		-		-	-	-	-		-		-		98	98	98	7 -	1	1.0 1
3-9837 3-9839	Lab	172 186	9	1,548 AHS-		360 186	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			155 261	155 250	155 261	6 205 9 (75)		2.1 2 1.0 1
3-9843	Lab	401	9	3,609 AHS	L-2	250	-			-	-	-		-	-		-	-	-	-	-	-		-	-	355	355	355	6 (105)) (0.6 0
3-9845 3-9847	Lab	194 198	9	1,746 AHS- 1,782 AHS-		194 198	-	-	-		-	-	-	-	 	*	+ -	-	-	-	+ :	-	-	-		264 268	225 230	264 268	8 (70) 8 (70)	0 1	1.0 1 1.0 1
3-9848	Lab	81	9	729 AHS-	L-2	81	-	-	-	-	-	-			-	-		-	-		-		1			101	85	101	7 (20)) 1	1.0 1
3-9855 3-9857	Lab	407 187	9	3,663 AHS-	L-1 L-1	407 187	-	-	-		-	-	-	-		*	+ -	-	-	-	+ :	-	-	-		517 257	517 225	517 257	8 (110) 8 (70)	0 1	1.0 1 1.0 1
3-9838 / 3-9852 / 3-9858	Lab	3,534	9	31,806 AHS	L-2	2,890	6.3	102	638			L													638	3,130	3,768	3,768	7 (878)	n C	0.8
3-9816 / 3-9828 3-9804 / 3-9812	Lab Lab	2,415	9	21,735 AHS- 21,654 AHS-		2,415	6.3	98	613	6	100	625		1	-		1 -	-	-	-	1 -	-	1		1,238	2,680 2,766	3,918 2,766	3,918 2,766	11 (1,503) 8 (360)		1.0 1
3-9804 / 3-9812 G9852 / G9858 / G9838	Lab	2,406 3,610	9	21,654 AHS- 32,490 AHS-		2,406	6.3	92	575	- 6	101	631	6.3	105	656	6.3	3 10:	1 631	6.3	101	L 631	6.3	3 101	631	3,756	2,766 1,860	2,766 5,616	2,766 5,616	8 (360) 10 (3,101)		1.0 1 0.7 0
G9816 / G9828	Lab	2,410	9	21,690 AHS	L-3	3,325	6.3	101	631	6	89	556	6	104	650	-	-	-	-		-	-	-		1,838	2,190	3,113	4,028	9 (703)) 1	1.4 1
G9804 / G9812 G9805	Lab Lab	2,406 100	9	21,654 AHS- 900 AHS-		2,406 100	6.3	107	669			-		1	-		-	+ :		1	-	-	1	 	669	2,406 145	3,075 145	3,075 145	9 (669) 10 (45)		1.0 1 1.0 1
39820	Lab	95	9	855 AHS-	L-2	95	-			-	-	-	-	-	-	-	-	-	-	-	-	-		-		195	195	195	14 (100)) 1	1.0 1
G9823 G9825A	Lab	312 117	9	2,808 AHS-		312 117	-	-	-		-	-	-	<u> </u>		*	-	+ :	-	-	+ :	-	-		\rightarrow	852 167	720 167	852 167	15 (540) 10 (50)		1.0 1 1.0 1
9821	Lab	787	9	7,083 AHS	L-2	445	-	-	-	-	-	-			-	-		-	-		-		1			550	550	550	5 (105)) C	0.6
39826A 39837	Lab	98 197	9	882 AHS-		98 210	-	-	-		-	-	-	-	 	*	+ -	-	-	-	+ -	-	-	-		98 155	98 177	98 155	7 - 6 55		1.0 1
39839	Lab	72	9	648 AHS-	L-2	72																				82	82	82	8 (10)) 1	1.0 1
		376	9	3,384 AHS- 3,672 AHS-	L-2	376	- 7.5	88	682	1 -	-	_	-	1	L -		-	-	-	-	1	-	1		- 682	516	500	516	9 (140)) 1	1.0 1
	Lab					408	7.8		682 581			-		1	<u> </u>	-	1	1	-	- :	+ :	-	+	+-+	581	758 100	1,440 517	1,440 681	24 (1,032) 7 (16)) 1	1.0 1 1.3 1
G9813	Lab Lab	408 501	9	4,509 AHS	L-2	665	6.3	93																							
G9807 / G9809 G9813 G9843 G9909 / G9915	Lab Lab Lab	501 1,520	9	4,509 AHS- 13,680 AHS-	L-2 L-3	1,520	6.3	93.0	581	6.3	93.0	581	6.3				-					-			1,744	1,813	3,556	3,556	16 (2,036)) 1	
G9813 G9843 G9909 / G9915 G9872 / G9878 / G9892	Lab Lab Lab	501	9 9	4,509 AHS	L-2 L-3 L-3						93.0 101	581 631	6.3	93.0		6	97	7 606	- 6	103	644	-	100		1,744 3,650) 1	1.0 1.
G9813 G9843 G9909 / G9915 G9872 / G9878 / G9892 G9855 G9857	Lab Lab Lab Lab Lab Lab Lab Lab	501 1,520 3,596 407 196	9 9 9 9	4,509 AHS- 13,680 AHS- 32,364 AHS- 3,663 AHS- 1,764 AHS-	L-2 L-3 L-3 L-3 L-3	1,520 3,596 407 196	6.3	93.0	581				6.3 6			6	97	7 606	6	103	644		3 100		1,744	1,813 4,288 485 234	3,556 7,938 485 234	3,556 7,938 485 234	16 (2,036) 15 (4,342) 8 (78) 8 (38)) 1) 1) 1	1.0 1. 1.0 1. 1.0 1.
G9813 G9843	Lab Lab Lab Lab	501 1,520 3,596 407	9 9 9 9 9	4,509 AHS- 13,680 AHS- 32,364 AHS- 3,663 AHS-	L-2 L-3 L-3 L-3 L-3 L-3	1,520 3,596 407	6.3	93.0	581				6.3			6	97	7 606 - - -	6	103	644	-	5 100		1,744	1,813 4,288 485	3,556 7,938 485	3,556 7,938 485	16 (2,036) 15 (4,342) 8 (78)) 1) 1 0 1 0 1	1.0 1. 1.0 1.

	KMRB			on MP Support												Assumed				
	4/1/2021															Avg. CFM/Sqft				
	Lab Airflow Op Exisitng and P																			
Calculated By:		roposeu																		
Reviewed By:																				
																				_
xisting Conditions							Fume Hood 1	Fume Hood 2	Fume Hood 3	Fume Hood 4	Fume Hood 5	Fume Hood 6				Summary				
			Assumed	Volume	Associated	Supply	Design	Design	Design	Design	Design	Design	Total Hood	General	Total Lab		Calculated		Supply	General
Room Number	Room Type	Sq. Ft	Ceiling	(cubic feet)	AHU	CFM	Exhaust CFM		Exhaust CFM	Exhaust CFM		Exhaust CFM	Exhaust	Exhaust	Exhaust CFM		ACH	Pressurization	CFM/Sqft	Exhaust
			Height										CFM	CFM			_			CFM/Sqft
-9905 / 1-9911 / 1-9915		2397	9	21,573	AHS-L-1	1,328	337.00	-	-	-			337	1,297	1,634		5	(306)	0.6	
	Lab Lab	3583 3618	9	32,247 32,562	AHS-L-1 AHS-L-2	2,431 1,571	253.00 278.00	232	-	-	-	-	485 278	2,509 1,951	2,994 2,229		6	(563) (658)	0.7	
	Lab	407	9		AHS-L-2	297	281.00	-	-	-	-	-	281	1,951	381		6	(84)	0.4	
-9804 / 1-9812	Lab	2415	9	21,735	AHS-L-3	1,912	215.00	226	215	-	-	_	656	1,643	2,299		6	(387.00)	0.8	
	Lab	448	9		AHS-L-3	314	337.00	-	-	-	-	-	337	168	505		8	(191)	0.7	
L-9816 / 1-9828	Lab	2409	9		AHS-L-3	2,140	-	-	-	-	-	-	-	2,720	2,720		8	(580)	0.9	
	Lab	596	9	5,364	AHS-L-2	406	-	-	-	-	-	-	-	467	467		5	(61)	0.7	
	Lab	584	9	0,200	AHS-L-2	399	-	-	-	-	-	-	-	263	263		3	136	0.7	
	Lab	311	9	2,100	AHS-L-3	146	<u> </u>	-	-	-	-	-	-	-			-	146	0.5	
	Lab Lab	562 14	9	-,	AHS-L-3 AHS-L-2	295 51		-	-	-	-	-	-	98 71	98 71		34	197 (20)	0.5 3.6	
	Lab	98	9		AHS-L-2	413		-	-	-	-	-	 -	281	281		19	132	3.6 4.2	
	Lab	156	9		AHS-L-2	73	-	-	-	-	-	-	-	107	107		5	(34)	0.5	
	Lab	198	9		AHS-L-2	65	-	-	-	-	-	-	-	129	129		4	(64)	0.3	
L-9845	Lab	194	9	1,746	AHS-L-2	90	-	-	-	-	-	-	-	198	198		7	(108)	0.5	1.0
	Lab	199	9	2,702	AHS-L-3	93		-	-	-	-	-	-	172	172		6			
	Lab	198	9	=,=	AHS-L-1	65		-	-	-	-	-	-	110	110		4	(45)	0.3	
	Lab	197	9	2,110	AHS-L-1	86		-	-	-	-	-	-	140	140		5 4	(54)	0.4	
	Lab Lab	193 2416	9	2,101	AHS-L-1	68 1,469		-	-	-	-	-	236	128 1,680	128 1,916		5	(60) (447)	0.4	
	Lab	3451	9		AHS-L-1	2,090	257.00	253		1		-	510	2,279	2,789		5	(699)		
	Lab	193	9		AHS-L-1	60	-	-	-	-	_	-	-	98	98		3	(38)	0.3	
	Lab	187	9		AHS-L-1	81	-	-	-	-	-	-	-	120	120		4			
2-9857	Lab	187	9	1,683	AHS-L-1	82	-	=	-	-	-	-	-	101	101		4	(19)	0.4	0.5
	Lab	134	9	1,200	AHS-L-1	169	-	-	-	-	-	-	-	243	243		12	(74)	1.3	
	Lab	395	9	-,	AHS-L-2	176	-	-	-	-	-	-	-	285	285		5	(109)	0.4	
	Lab	194	9	2,1 10	AHS-L-2	79	-	-	-	-	-	-	-	135	135		5 4			
	Lab Lab	198 77	9	1,102	AHS-L-2	81 59	-	-	-	-	-	-	-	128 74	128 74		6	(47) (15)	0.4	
	Lab	195	9	000	AHS-L-2	80		<u> </u>		1 -	-		<u> </u>	165	165		6	(85)	0.4	
	Lab	162	9	-,	AHS-L-2	410		-	-	-	-	-	-	410	410		17	-	2.5	
	Lab	562	9	, , , , , ,	AHS-L-2	207	-	-	-	-	-	-	-	254	254		3	(47)	0.4	
	Lab	115	9	2,000	AHS-L-2	54	-	-	-	-	-	-	-	69	69		4	(15)	0.5	
	Lab	90	9	010	AHS-L-3	-	-	-	-	-	-	-	-	92	92		7	(92)		1.0
	Lab	100	9		AHS-L-3	52	-	-	-	-	-	-	-		116		-	52	0.5	
	Lab	184 189	9	2,000	AHS-L-3	61 66		-	-	-	-	-	-	116	116 117		4	(55)	0.3	
	Lab	418	9	2,702	AHS-L-3	178		-	-	-	-	-	-	117 357	357		6	(51) (179)		
	Lab	198	9	0,102	AHS-L-3	105		-			-			137	137		5	(32)	0.4	
9838 / 2-9852 / 2-9858		3638	9	2,102	AHS-L-2	1,427	309.0	246	-	-	-	-	555	1,640	2,195		4	(768)	0.4	
	Lab	4770	9		AHS-L-3	1,488	229.0	246	-	-	-	-	475	1,696	2,171		3	(683)	0.3	
-9823	Lab	413	9	3,717	AHS-L-2	211	-	-	-	-	-	-	-	180	180		3	31	0.5	0.4
	Lab	2323	9	20,001	AHS-L-3	1,088	260.0	-	-	-	-	-	260	1,834	2,094		6		0.5	
, ,	Lab	3618	9	02,002	AHS-L-1	2,098	215.0	271	-	-	-	-	486	2,227	2,713		5	(615)	0.6	
	Lab	193	9	2,101	AHS-L-1	73	-	-	-	-	-	-	-	110	110			(37)	0.4	
	Lab Lab	187 114	9	-,	AHS-L-1 AHS-L-2	82 58	<u> </u>	-	-	-	-	-	 	131 63	131 63		5 4	(49)		
	Lab	199	9	1,020	AHS-L-3	62		-	-	-	-			122	122		4	(60)		
	Lab	197	9	2,702	AHS-L-3	84	-	-	-	-	-	-	-	166	166		6			
	Lab	189	9		AHS-L-3	86		-	-	-	-	-	-	157	157		6			
	Lab	412	9	0,100	AHS-L-3	151	-	-	-	-	-	-	-	244	244		4	(93)	0.4	
3-9825	Lab	560	9	0,010	AHS-L-2	218	-	-	-	-	-	-	-	265	265		3	(47)	0.4	
3-9827 & 3-9829	Lab	98	9		AHS-L-2	439	-	-	-	-	-	-	-	440	440		30	(1)		
	Lab	172	9	2,010	AHS-L-2	82	-	-	-	-	-	-	-	85	85		3	(3)		
	Lab Lab	186 401	9	2,011	AHS-L-2 AHS-L-2	65 137	-	-	-	-	-	-	-	114 157	114 157		4	(49)		

Project Name: University of Rochester Energy Conservation MP Support

Building: KMRB Date: 4/1/2021

EEM: Lab Airflow Optimization Scenario: Exisitng and Proposed

Calculated By: CLF

Reviewed By: 0

3-9845																				
3-3043	Lab	194	9	1,746	AHS-L-2	70	-	-	-	-	-	-	-	122	122		4	(52)	0.4	0.6
3-9847	Lab	198	9	1,782	AHS-L-2	66	-	-	-	-	-	-	-	121	121		4	(55)	0.3	0.6
3-9848	Lab	81	9	729	AHS-L-2	67	-	-	-	-	-	-	-	81	81		7	(14)	0.8	1.0
3-9855	Lab	407	9	3,663	AHS-L-1	120	-	-	-	-	-	-	-	221	221		4	(101)	0.3	0.5
3-9857	Lab	187	9	1,683	AHS-L-1	71	-	-	-	-	-	-	-	108	108		4	(37)	0.4	0.6
3-9838 / 3-9852 / 3-9858	Lab	3534	9	31,806	AHS-L-2	1,072	257.0	-	-	-	-	-	257	1,266	1,523		3	(451)	0.3	0.4
3-9816 / 3-9828	Lab	2415	9	21,735	AHS-L-3	1,460	243.0	264	-	-	-	-	507	1,279	1,786		5	(326)	0.6	0.5
3-9804 / 3-9812	Lab	2406	9	21,654	AHS-L-3	1,409	-	-	-	-	-	-	-	2,175	2,175		6	(766)	0.6	0.9
G9852 / G9858 / G9838	Lab	3610	9	32,490	AHS-L-2	1,611	243.0	312	243	236	167	167	1,368	902	2,270		4	(659)	0.4	0.2
G9816 / G9828	Lab	2410	9	21,690	AHS-L-3	1,418	257.0	258	205	-	-	-	720	841	1,561		4	(143)	0.6	0.3
G9804 / G9812	Lab	2406	9	21,654	AHS-L-3	1,322	267.0	-	-	-	-	-	267	1,499	1,766		5	(444)	0.5	0.6
G9805	Lab	100	9	900	AHS-L-3	103	-	-	-	-	-	-	-	90	90		6	13	1.0	0.9
G9820	Lab	95	9	855	AHS-L-2	95	-	-	-	-	-	-	-	197	197		14	(102)	1.0	2.1
G9823	Lab	312	9	2,808	AHS-L-2	162	-	-	-	-	-	-	-	369	369		8	(207)	0.5	1.2
G9825A	Lab	117	9	1,053	AHS-L-2	76	-	-	-	-	-	-	-	98	98		6	(22)	0.6	0.8
G9821	Lab	787	9	7,083	AHS-L-2	318	-	-	-	-	-	-	-	430	430		4	(112)	0.4	0.5
G9826A	Lab	98	9	882	AHS-L-2	70	-	-	-	-	-	-	-	64	64		4	6	0.7	0.7
G9837	Lab	197	9	1,773	AHS-L-2	113	-	-	-	-	-	-	-	88	88		3	25	0.6	0.4
G9839	Lab	72	9	648	AHS-L-2	54	-	-	-	-	-	-	-	98	98		9	(44)	0.8	1.4
G9807 / G9809	Lab	376	9	3,384	AHS-L-2	159	-	-	-	-	-	-	-	298	298		5	(139)	0.4	0.8
G9813	Lab	408	9	3,672	AHS-L-3	598	289.0	-	-	-	-	-	289	131	420		7	178	1.5	0.3
G9843	Lab	501	9	4,509	AHS-L-2	303	201.0	-	-	-	-	-	201	113	314		4	(11)	0.6	0.2
G9909 / G9915	Lab	1520	9	13,680	AHS-L-3	1,040	700.0	700	-	-	-	-	1,400	1,238	2,638		12	(1,598)	0.7	0.8
G9872 / G9878 / G9892	Lab	3596	9	32,364	AHS-L-3	2,460	700.0	700	700	700	700	700	4,200	2,930	7,130		13	(4,669)	0.7	0.8
G9855	Lab	407	9	3,663	AHS-L-3	278	-	-	-	-	-	-	-	332	332		5	(53)	0.7	0.8
G9857	Lab	196	9	1,764	AHS-L-3	134	-	=	-	-	-	-	-	160	160		5	(26)	0.7	0.8
G9859	Lab	196	9	1,764	AHS-L-3	134	-	-	-	-	-	-	-	160	160		5	(26)	0.7	0.8
G9861 & G9863	Lab	193	9	1,737	AHS-L-3	132	-	-	-		-	-	-	157	157		5	(25)	0.7	0.8
		73,111	774	657,999	-	40,567	6,364	3,708	1,363				14,105	44,610	58,715	-	509	(18,148)	58	69

Project Name: University of Rochester Energy Conservation MP Support Building: KMRB

Date: 4/1/2021

EEM: Lab Airflow Optimization

Scenario: Exisitng and Proposed
Calculated By: CLF Reviewed By: 0

								80	Desired CFM/	Sqft			0.5	CFM/SQFT		Desired Lab ACH	4			
New Fume Hood Face Veloc	ity or Lab ACH S	cenario					Fume Hood 1	Fume Hood 2	Fume Hood 3	Fume Hood 4	Fume Hood 5	Fume Hood 6	5			Summary				1
						New								New						l
			Assumed			Calculated							Total Hood	General	Desired New	Actual New Total				l
			Ceiling	Volume	Associated	Supply	Calculated	Calculated	Calculated	Calculated	Calculated	Calculated	Exhaust	Exhaust	Total Lab	Lab Exhaust				l
Room Number	Room Type	Sq. Ft	Height	(cubic feet)	AHU	CFM	Exhaust CFM	Exhaust CFM	Exhaust CFM	Exhaust CFM	Exhaust CFM	Exhaust CFM	CFM	CFM	Exhaust CFM	CFM	New ACH	Pressurization		CFM/Sqft
	Lab	2,397	9		AHS-L-1	1,199	337	-	-	-	-	-	337	1,168	1,505	1,505	4			0.5
1-9872 / 1-9878 / 1-9892		3,583	9		AHS-L-1	1,792	253	232	-	-	-	-	485	1,870	2,355	2,355	4	()		0.5
1-9858 / 1-9852 / 1-9538	Lab	3,618	9		AHS-L-2	1,809	278	-	-	-	-	-	278	2,189	2,467	2,467	5			0.5
1-9855	Lab	407	9		AHS-L-1	297	281	-	-	-	-	-	281	100	381	381	6			0.7
1-9804 / 1-9812	Lab	2,415	9		AHS-L-3	1,208	215	226	215	-	-	-	656	939	1,595		4			0.5
1-9807 / 1-9809	Lab	448	9		AHS-L-3	314	337	-	-	-	-	-	337	168	505	505	8			0.7
1-9816 / 1-9828	Lab	2,409	9		AHS-L-3	1,205	-	-	-	-	-	-	-	1,785	1,785	1,785	5			0.5
1-9823	Lab	596	9		AHS-L-2	298	-	-	-	-	-	-	-	359	359	359	4			0.5
	Lab	584	9		AHS-L-2	399	-	-	-	-	-	-	-	263	263	263	3			0.7
1-9811 / 1-9813	Lab	311	9	,	AHS-L-3	146	-	-	-	-	-	-	-	-	-	-	-	146	ļl	0.0
	Lab	562	9			295	-	-	-	-	-	-	-	98	98		1		ļl	0.0
1-9826	Lab	14	9			7		-	-	-	-	-	-	27	27	27	13	(20)	ļl	0.0
1-9827 / 1-9829	Lab	98	9		AHS-L-2	191		·	-	-	-	·	-	59	59					1.9
1-9837	Lab	156	9		AHS-L-2	78		-	-	-	-	-	-	112	112		5		ļl	0.5
1-9847	Lab	198	9		AHS-L-2	99		-	-	-	-	-	-	163	163		5		ļl	0.0
1-9845	Lab	194	9			97		·	-	-	-	·	-	205	205	205	7			0.5
	Lab	199	9		AHS-L-3	100		-	-	-	-	-	-	179	179		6			0.5
1-9857	Lab	198	9		AHS-L-1	99	-	-	-	-	-	-	-	144	144					0.5
1-9859	Lab	197	9		AHS-L-1	99	-	-	-	-	-	-	-	153	153	153	5	(54)		0.5
1-9861 / 1-9863	Lab	193	9		AHS-L-1	97		-	-	-	-	-	-	157	157	157	5			0.5
,	Lab	2,416	9		AHS-L-1	1,208	236	-	-	-	-	-	236	1,419	1,655	1,655	5			0.5
, ,	Lab	3,451	9		AHS-L-1	1,726		253	-	-	-	-	510	1,915	2,425		5			0.5
2-9861 / 2-9863	Lab	193	9		AHS-L-1	97		-	-	-	-	-	-	135	135		5			0.5
2-9859	Lab	187	9		AHS-L-1	94		-	-	-	-	-	-	133	133		5	(39)		0.5
2-9857	Lab	187	9		AHS-L-1	94		-	-	-	-	-	-	113	113		4			0.5
2-9855 A & B	Lab	134	9		AHS-L-1	67		-	-	-	-	-	-	141	141	141	7			0.5
2-9841 & 2-9843	Lab	395	9		AHS-L-2	198		-	-	-	-	-	-	307	307	307	5			0.5
	Lab	194	9			97		-	-	-	-	-	-	153	153		5	(,		0.5
2-9847	Lab	198	9		AHS-L-2	99		-	-	-	-	-	-	146	146		5	(47)		0.5
2-9837	Lab	77	9		AHS-L-2	39		-	-	-	-	-	-	54	54					0.5
2-9839	Lab	195	9		AHS-L-2	98		-	-	-	-	-	-	183	183	183	6	(85)		0.5
2-9827 / 2-9829	Lab	162	9		AHS-L-2	97	-	-	-	-	-	-	-	97	97	97	4	1		0.6
2-9825	Lab	562	9		AHS-L-2	207	-			-	-	-	-	254	254		3		-	0.4
2-9626	Lab	115	9		AHS-L-2	58		-	-	-	-	-	-	73	73 137					0.5
2-9803 2-9805	Lab Lab	90 100	9		AHS-L-3 AHS-L-3	45 52		-	-			 	-	137	137	137	10	(92) 52	 	0.5
2-9805 2-9807		184	9			92				-	-	 		147	147	147	<u> </u>		 	0.5
2-9807 2-9809	Lab Lab	184	9		AHS-L-3 AHS-L-3	92		-	-	-		-	-	147	147	147	5 5		 	0.5
2-9809 2-9813	Lab	189 418	9		AHS-L-3	209		-	-	-	-	-	-	388	388		6		 	0.5
	Lab	198	9		AHS-L-3	99		-	-	-	-	-	-	131	131	131	4		 	0.5
	Lab	3,638	9		AHS-L-2	1.427		246			-	ļ	555	1.640	2.195		4	(- /	 	0.5
2-9838 / 2-9852 / 2-9858 2-9804 / 2-9812 / 2-9616		4,770	9		AHS-L-2	1,427	229	246		-	-	-	475	1,640	2,195	2,195	3	,	 	0.2
2-9823	Lab	4,770	9	, , , , , ,	AHS-L-3	211		240	-		-	 	413	1,090	180	180	3	31	 	0.5
3-9905 / 3-9915	Lab	2,323	9		AHS-L-3	1.162	260	-	-	-	-	-	260	1.908	2,168	2,168	6		 	0.5
	Lab	3,618	9		AHS-L-3	1,809	215	271	-	 	 	 	486	1,938	2,100	2,100	4		 	0.5
3-9861 & 3-9863	Lab	193	9		AHS-L-1	97		- 2/1	-	-		-	400	1,936	134	134	5		 	0.5
3-9859	Lab	187	9		AHS-L-1	94		-	-		-	-		143	143		5			0.5
3-9626	Lab	114	9		AHS-L-2	63		_	-	1	 	 	 	68	68		4		 	0.0
3-9803 & 3-9805	Lab	199	9		AHS-L-3	100		-	-			-		160	160		5		 	0.
3-9807	Lab	199	9		AHS-L-3	99	 	 	 	 	 	<u> </u>	+ -	181	181	181	6	(82)	 	0.:
3-9809	Lab	189	9		AHS-L-3	95	1	-			_			166	166	166	6			0.5
3-9813	Lab	412	9		AHS-L-3	206			-			 		299	299		5	. ,	 	0.5
	Lab	560				218			 	<u> </u>		 	+	265	265		3	(/	 	0.4
0 0020		500		3,040	7410 L Z	210	1			1		1	1	200	203	203	J	(+1)	1	0.4

wendel																				
Project Name	: University of	Rochester Energy	y Conservation	MP Support																
Building	: KMRB														А	Assumed				
Date	: 4/1/2021														А	lvg. CFM/Sqft				
EEM	: Lab Airflow C	Optimization													_					
Scenario	: Exisitng and	Proposed																		
Calculated By	: CLF																			
Reviewed By	: 0																			
3-9827 & 3-9829	Lab	98	9	882	AHS-L-2	58	-	-	-	-	-	-	-	59	59	59	4	(1)		T
3-9837	Lab	172	9	1,548	AHS-L-2	82	-	-	-	-	-	-	-	85	85	85	3	(3)		
3-9839	Lab	186	9	1,674	AHS-L-2	93	-	-	-	-	-	-	-	142	142	142	5	(49)		T
3-9843	Lab	401	9	3,609	AHS-L-2	137	-	-	-	-	-	-	-	157	157	157	3	(20)		1
3-9845	Lab	194	9	1,746	AHS-L-2	97	-	-	-	-		-	-	149	149	149	5	(52)		1
3-9847	Lab	198	9	1,782	AHS-L-2	99	-	-	-	-		-	-	154	154	154	5	(55)		1
-9848	Lab	81	9	729	AHS-L-2	41	-	-	-	-		-	-	55	55	55	4	(14)		T
-9855	Lab	407	9	3,663	AHS-L-1	204	-	-	-	-	-	-	-	305	305	305	5	(101)		1
-9857	Lab	187	9	1,683	AHS-L-1	94	-	-	-	-		-	-	131	131	131	5	(37)		
-9838 / 3-9852 / 3-9858	B Lab	3,534	9	31,806	AHS-L-2	1,072	257	-	-	-	-	-	257	1,266	1,523	1,523	3	(451)		T
-9816 / 3-9828	Lab	2,415	9	21,735	AHS-L-3	1,208	243	264	-	-	-	-	507	1,027	1,534	1,534	4	(326)		T
3-9804 / 3-9812	Lab	2,406	9	21,654	AHS-L-3	1,203	-	-	-	-	-	-	-	1,969	1,969	1,969	5	(766)		1
9852 / G9858 / G9838	Lab	3,610	9	32,490	AHS-L-2	1,611	243	312	243	236	167	167	1,368	902	2,270	2,270	4	(659)		
9816 / G9828	Lab	2,410	9	21,690	AHS-L-3	1,418	257	258	205	-	-	-	720	841	1,561	1,561	4	(143)		T
G9804 / G9812	Lab	2,406	9	21,654	AHS-L-3	1,203	267	-	-	-	-	-	267	1,380	1,647	1,647	5	(444)		
9805	Lab	100	9	900	AHS-L-3	73	-	-	-	-	-	-	-	60	60	60	4	13		
9820	Lab	95	9	855	AHS-L-2	48	-	-	-	-	-	-	-	150	150	150	10	(102)		\top
9823	Lab	312	9	2,808	AHS-L-2	156	-	-	-	-		-	-	363	363	363	8	(207)		
9825A	Lab	117	9	1,053	AHS-L-2	59	-	-	-	-		-	-	81	81	81	5	(22)		
G9821	Lab	787	9	7,083	AHS-L-2	394	-	-	-	-	-	-	-	506	506	506	4	(112)		1
9826A	Lab	98	9	882	AHS-L-2	65	-	-	-	-	-	-	-	59	59	59	4	6		1
9837	Lab	197	9	1,773	AHS-L-2	113	-	-	-	-	-	-	-	88	88	88	3	25		1
9839	Lab	72	9	648	AHS-L-2	36	-	-	-	-	-	-	-	80	80	80	7	(44)		1
9807 / G9809	Lab	376	9	3,384	AHS-L-2	188	-	-	-	-	-	-	-	327	327	327	6	(139)		T
9813	Lab	408	9	3,672	AHS-L-3	598	289	-	-	-	-	-	289	131	420	420	7	178		T
9843	Lab	501	9	4,509	AHS-L-2	303	201	-	-	-	-	-	201	113	314	314	4	(11)		1
9909 / G9915	Lab	1,520	9	13,680	AHS-L-3	760	700.0	700	-	-	-	-	1,400	958	2,358	2,358	10	(1,598)		1
9872 / G9878 / G9892	Lab	3,596	9	32,364	AHS-L-3	1,798	700.0	700	700	700	700	700	4,200	2,267	6,467	6,467	12	(4,669)		1
9855	Lab	407	9	3,663	AHS-L-3	204	-	-	-	-	-	-	-	257	257	257	4	(53)		1
9857	Lab	196	9	1,764	AHS-L-3	98	-	-	-	-	-	-	-	124	124	124	4	(26)		T
9859	Lab	196	9	1,764	AHS-L-3	98	-	-	-	-	-	-	-	124	124	124	4	(26)		1
9861 & G9863	Lab	193	9	1,737	AHS-L-3	97	-	-	-	-	-	-	-	122	122	122	4	(25)		\top
		73.111	765	657,999		35.362	6.364	3,708	1.363	936	867	867	14.105	39,405	53,510	53,510	424	(18,148)	_	1

ECM - 03 - Lab HVAC Systems - AHS-L- 1, 2 & 3

Project Name: University of Rochester

Building: Medical Research Building - Kronberg

Date: 4/1/2021

ECM Lab HVAC Systems

Calculated By: CLF
Reviewed By: GHB

Summary of Existing System

Measured Data and Data Limitations

ECMs Implemented

DAT Reset Schedule

Lab CFM Adjustment

Night Setbacks

Summary of Systems Used for Calculation

Existing Usage (10 / 6 ACM)

Preheat Usage 4,154 mmBtu
Cooling Usage 7,670 mmBtu
Reheat Usage 6,636 mmBtu
Supply Fan Usage 208,459 kWh

Proposed Usage - Option A (8 / 4 ACH)

Preheat Usage 3,604 mmBtu
Cooling Usage 6,562 mmBtu
Reheat Usage 5,743 mmBtu
Supply Fan Usage 164,014 kWh

Proposed Usage - Option B (6 / 4 ACH)

Preheat Usage 3,500 mmBtu
Cooling Usage 6,437 mmBtu
Reheat Usage 5,587 mmBtu
Supply Fan Usage 159,945 kWh

Summary of EEM Savings - Option A (8 / 4 ACH)

Proposed Savings

Preheat Usage 550 mmBtu
Cooling Usage 1,108 mmBtu
Reheat Usage 893 mmBtu
Supply Fan Usage 44,444 kWh

Summary of EEM Savings - Option A (6 / 4 ACH)

Proposed Savings

Preheat Usage 654 mmBtu
Cooling Usage 1,233 mmBtu
Reheat Usage 1,049 mmBtu
Supply Fan Usage 48,514 kWh

Building: Medical Research Building - Kronberg

Date: 4/1/2021
Calculated By: CLF

Reviewed By: GHB System: AHS-L- 1, 2 & 3

Scenario: Existing

Scenario: Ex Fan Info

Fan Label SF
Fan HP: 125.0
Fan QTY: 3.0
Calculated Load Factor: 75%
Fan Motor Eff: 90%
Fan kW: 233.1

Fan Affinity Law Adjsut: 1.5

Lab Airflow CFM Reduction
Occupied Design Airflow 83,323 CFM
Unoccupied Design Airflow 40,567 CFM

Max Fan Flow: 300,000

Occupied Airflow Reduction 0 CF Unoccupied Airflow Reduction 0 CF Preheat Usage
Cooling Usage
Reheat Usage
Supply Fan Usage

4,154 mmBtu

7670 mmBtu

6636 mmBtu

208459 kWh

| Misc System Info | Cooling Shutoff | 55 | degF | Cooling Shutoff | 5 | May | Cooling Shutoff | 10 | October |

OAT Осс Unocc Load % 68.0 68.0 0.00% 0 10 68.0 68.0 0.00% 20 68.0 68.0 0.00% 30 68.0 68.0 0.00% 40 68.0 0.00% 68.0 50 68.0 68.0 0.00% 55 68.0 68.0 0.00% 60 69.2 69.2 0.00% 70 71.6 71.6 0.00% 80 74.0 74.0 0.00% 100 74.0 74.0 0.00%

duling/	Population io	ad (1=0cc 0=	UnOcc)	
	Schedule	Population	Schedule	Population
	Days1-5	Days1-5	Days6,7,8	Days6,7,8
1	0	100%	0	100%
2	0	100%	0	100%
3	0	100%	0	100%
4	0	100%	0	100%
5	0	100%	0	100%
6	0	100%	0	100%
7	1	100%	1	100%
8	1	100%	1	100%
9	1	100%	1	100%
10	1	100%	1	100%
11	1	100%	1	100%
12	1	100%	1	100%
13	1	100%	1	100%
14	1	100%	1	100%
15	1	100%	1	100%
16	1	100%	1	100%
17	1	100%	1	100%
18	1	100%	1	100%
19	1	100%	1	100%
20	0	100%	0	100%
21	0	100%	0	100%
22	0	100%	0	100%
23	0	100%	0	100%
24	0	100%	0	100%

OAT PHTSTP DAT STP DAH STP 0 55.0 65.0 25.6 10 55.0 63.6 25.3 20 55.0 62.1 24.9 30 55.0 60.7 24.6 40 55.0 59.3 24.2 50 55.0 57.9 23.9 55 55.0 57.1 23.7 60 55.0 56.4 23.5 70 55.0 55.0 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 1.585E-05 0.001483 0.109225 64.903594 X= 28.00 Y= 61.03 0 0 0 55.0 3.861E-06 -0.000361 -0.026601 25.589599 X= 90.00 Y= 23.08	System Setpoint Si	mulations			
10 55.0 63.6 25.3 20 55.0 62.1 24.9 30 55.0 60.7 24.6 40 55.0 59.3 24.2 50 55.0 57.9 23.9 55 55.0 57.1 23.7 60 55.0 56.4 23.5 70 55.0 55.0 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 1.585E05 0.001483 0.109225 64.903594 X= 28.00 Y= 55.00 3.861E06 0.00361 0.026601 25.589599	OAT	PHT STP	DAT STP	DAH STP	
20 55.0 62.1 24.9 30 55.0 60.7 24.6 40 55.0 59.3 24.2 50 55.0 57.9 23.9 55 55.0 57.1 23.7 60 55.0 56.4 23.5 70 55.0 55.0 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 1.885E.05 .0.001483 0.109225 64.903594 0 0 0 55 0 2 28.00 Y= 55.00 1.861E.06 0.000361 -0.026601 25.589599	0	55.0	65.0	25.6	
30 55.0 60.7 24.6 40 55.0 59.3 24.2 50 55.0 57.9 23.9 55 55.0 57.1 23.7 60 55.0 56.4 23.5 70 55.0 55.0 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 1,585E-05 -0.001483 -0.109225 64.903594 X= 28.00 Y= 61.03 0 0 55 X= 28.00 Y= 55.00 3.861E-06 -0.000361 -0.026601 25.589599	10	55.0	63.6	25.3	
40 55.0 59.3 24.2 50 55.0 57.9 23.9 55 55.0 57.1 23.7 60 55.0 56.4 23.5 70 55.0 56.4 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 1.585E-05 -0.001483 -0.109225 64.903594 X= 28.00 Y= 55.00 3.861E-06 -0.00361 -0.02660 25.589599	20	55.0	62.1	24.9	
50 55.0 57.9 23.9 55 55.0 57.1 23.7 60 55.0 56.4 23.5 70 55.0 55.0 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 100 55.0 55.0 23.2 1585E-05 -0.001483 -0.109225 64.903594 X= 28.00 Y= 61.03 0 0 55 X= 28.00 Y= 55.00 3.861E-06 -0.00361 -0.026601 25.589599	30	55.0	60.7	24.6	
55 55.0 57.1 23.7 60 55.0 56.4 23.5 70 55.0 55.0 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 1,585e-05 0,001483 0,109225 64,903594 X= 28.00 Y= 61.03 0 0 55 X= 28.00 Y= 55.00 3,861e-06 0,000361 -0,026601 2,5589599	40	55.0	59.3	24.2	
60 55.0 56.4 23.5 70 55.0 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 1.585E-05 -0.001483 -0.109225 64.903594	50	55.0	57.9	23.9	
70 55.0 55.0 23.2 80 55.0 55.0 23.2 100 55.0 55.0 23.2 1.585E-05 -0.001483 -0.109225 64.903594 X= 28.00 Y= 61.03 0 0 0 55 X= 28.00 Y= 55.00 3.861E-06 -0.000361 -0.026601 25.589599	55	55.0	57.1	23.7	
80 55.0 55.0 23.2 100 55.0 55.0 23.2 1.585E-05 -0.001483 -0.109225 64.903594 X= 28.00 Y= 61.03 0 0 55 X= 28.00 V= 55.00 3.861E-06 -0.00361 -0.026601 25.589599	60	55.0	56.4	23.5	
100 55.0 55.0 23.2 1.585E-05 0.001483 -0.109225 64.903594 X= 28.00 Y= 61.03 0 0 55 X= 28.00 Y= 55.00 3.861E-06 -0.00361 -0.026601 25.589599	70	55.0	55.0	23.2	
1.585E-05 -0.001483 -0.109225 64.903594 X= 28.00 Y= 61.03 0 0 55 X= 28.00 Y= 55.00 3.861E-06 -0.000361 -0.026601 25.589599	80	55.0	55.0	23.2	
X= 28.00 Y= 61.03 0 0 0 55 X= 28.00 Y= 55.00 3.861E-06 -0.00361 -0.026601 25.589599	100	55.0	55.0	23.2	
0 0 0 55 X= 28.00 Y= 55.00 3.861E-06 -0.000361 -0.026601 25.589599		1.585E-05	-0.001483	-0.109225	64.903594
X= 28.00 Y= 55.00 3.861E-06 -0.00361 -0.026601 25.589599		X=	28.00	Y=	61.03
3.861E-06 -0.000361 -0.026601 25.589599		0	0	0	55
		X=	28.00	Y=	55.00
X= 90.00 Y= 23.08		3.861E-06	-0.000361	-0.026601	25.589599
		X=	90.00	Y=	23.08

heat Load	ing			
OAT	DAT	Occ	Unocc	
0	85.0	85.0%	85.0%	
10	85.0	76.8%	76.8%	
20	85.0	68.5%	68.5%	
30	85.0	60.3%	60.3%	
40	85.0	52.0%	52.0%	
50	85.0	43.8%	43.8%	
55	85.0	39.6%	39.6%	
60	85.0	35.5%	35.5%	
70	85.0	27.3%	27.3%	
80	85.0	19.0%	19.0%	
100	85.0	2.5%	2.5%	
	0	0	0	85
	X=	0.00	Y=	85.00
	2.195E-21	-2.61E-19	-0.00825	0.85
	X=	0.00	Y=	0.85
	2.195E-21	-2.61E-19	-0.00825	0.85
	χ=	55.00	Υ=	0.40
	% of CF	M to Reheat	100.0%	

Calculated By: CLF

1/2/17 18:00

1/2/17 19:00

Formulas

19.1 55.0 57.7

55.0

50.0

19.3

D: Based on Simulation

E: Design CFM x Fan Simulation
F: ((E / Fan CFM Output) Fan Affinity) x Fan Kw

G: 1.08 x (D - B) x E / 1,000,000

H: 4.5 x (C - Coil Enthalpy) x E / 1,000,000

J: Based on Simulation

K: Based on Simulation

L: 1.08 x (K - I) x E x % CFM to Reheat / 1,000,000

40567

23.8

GHB	
AHS-L- 1, 2 & 3	
Existing	
8.0	93.9

Date: 44287.474

Building: Medical Research Building - Kronberg

MIN	1.0	3.9	1.8	55.0	54.6	23.1	40567.1	11.6	0.0	0.0	54.6	85.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUM	36600	496470	194424	481800	501243		558244006	208459	4154	7670			6636					0.0		0		0.0	0.0
COM		Outside dry-	Specific					Supply Fan	Preheat	Cooling	100001		Reheat	<u> </u>									<u> </u>
Time Stamp	Туре	buib temp (F)	Enthalpy (Btu/lb)	Preheat Setpoint	SAT STP (degF)	Enthalpy Setpoint	Supply Air CFM	Usage (kWh)	Usage (mmBtu)	Usage (mmBtu)	DAT (degF)	Reheat DAT (degF)	Usage (mmBtu)										
1/1/17 0:00	7.0	41.0	14.4	55.0	59.0	24.2	40567	12	0.6	0.0	55.0	85.0	0.7										
1/1/17 1:00	7.0	37.9	12.6	55.0	59.5	24.3	40567	12	0.7	0.0			0.7										
1/1/17 2:00	7.0	37.0	11.9	55.0	59.6	24.3	40567	12	0.8	0.0			0.7										
1/1/17 3:00	7.0	34.0	11.2	55.0	60.1	24.4	40567	12	0.9	0.0	55.0	85.0	0.7										
1/1/17 4:00	7.0	33.1	11.0	55.0	60.2	24.5	40567	12	1.0	0.0	55.0	85.0	0.8										
1/1/17 5:00	7.0	28.9	9.8	55.0	60.9	24.6	40567	12	1.1	0.0	55.0	85.0	0.8										
1/1/17 6:00	7.0	30.9	10.5	55.0	60.6	24.5	83323	34	2.2	0.0	55.0	85.0	1.6										
1/1/17 7:00	7.0	32.0	10.7	55.0	60.4	24.5	83323	34	2.1	0.0	55.0	85.0	1.6										
1/1/17 8:00	7.0	32.0	11.0	55.0	60.4	24.5	83323	34	2.1	0.0	55.0	85.0	1.6										
1/1/17 9:00	7.0	35.1	11.7	55.0	59.9	24.4	83323	34	1.8	0.0			1.5										
1/1/17 10:00	7.0	37.0	12.3	55.0	59.6	24.3	83323	34	1.6	0.0	55.0	85.0	1.5										
1/1/17 11:00	7.0	41.0	13.3	55.0	59.0	24.2	83323	34	1.3	0.0		85.0	1.4										
1/1/17 12:00	7.0	43.0	13.9	55.0	58.7	24.1	83323	34	1.1	0.0			1.3										
1/1/17 13:00	7.0	45.0	14.6	55.0	58.4	24.0	83323	34	0.9	0.0			1.3										
1/1/17 14:00	7.0	46.0	14.6	55.0	58.3	24.0	83323	34	0.8	0.0			1.3										
1/1/17 15:00	7.0	46.9	15.0	55.0	58.2	23.9	83323	34	0.7	0.0			1.3										
1/1/17 16:00	7.0	46.9	15.0	55.0	58.2	23.9	83323	34	0.7	0.0			1.3										
1/1/17 17:00	7.0	44.1	14.5	55.0	58.6	24.0	83323	34	1.0	0.0			1.3										
1/1/17 18:00 1/1/17 19:00	7.0 7.0	43.0 42.1	14.2 14.0	55.0 55.0	58.7 58.9	24.1 24.1	83323 40567	34 12	1.1	0.0			1.3 0.7										
1/1/17 19:00	7.0	39.9	13.6	55.0	59.2	24.1	40567	12	0.6	0.0			0.7										
1/1/17 20:00	7.0	39.9	13.4	55.0	59.2	24.2	40567	12	0.7	0.0			0.7										
1/1/17 22:00	7.0	41.0	14.1	55.0	59.0	24.2	40567	12	0.6	0.0			0.7										
1/1/17 23:00	7.0	44.1	14.1	55.0	58.6	24.2	40567	12	0.5	0.0			0.6										
1/2/17 0:00	8.0	45.0	15.2	55.0	58.4	24.0	40567	12	0.4	0.0			0.6										
1/2/17 1:00	8.0	44.1	15.0	55.0	58.6	24.0	40567	12	0.5	0.0			0.6										
1/2/17 2:00	8.0	43.0	15.1	55.0	58.7	24.1	40567	12	0.5	0.0			0.7										
1/2/17 3:00	8.0	42.1	15.2	55.0	58.9	24.1	40567	12	0.6	0.0			0.7										
1/2/17 4:00	8.0	42.1	15.5	55.0	58.9	24.1	40567	12	0.6	0.0	55.0	85.0	0.7										
1/2/17 5:00	8.0	42.1	15.5	55.0	58.9	24.1	40567	12	0.6	0.0	55.0	85.0	0.7										
1/2/17 6:00	8.0	42.1	15.5	55.0	58.9	24.1	83323	34	1.2	0.0	55.0	85.0	1.4										
1/2/17 7:00	8.0	42.1	15.5	55.0	58.9	24.1	83323	34	1.2	0.0	55.0	85.0	1.4										
1/2/17 8:00	8.0	42.1	15.7	55.0	58.9	24.1	83323	34	1.2	0.0	55.0	85.0	1.4										
1/2/17 9:00	8.0	43.0	15.9	55.0	58.7	24.1	83323	34	1.1	0.0	55.0	85.0	1.3										
1/2/17 10:00	8.0	44.1	16.4	55.0	58.6	24.0	83323	34	1.0	0.0	55.0	85.0	1.3										
1/2/17 11:00	8.0	46.0	17.3	55.0	58.3	24.0	83323	34	0.8	0.0			1.3										
1/2/17 12:00	8.0	46.9	17.5	55.0	58.2	23.9	83323	34	0.7	0.0			1.3										
1/2/17 13:00	8.0	48.9	18.5	55.0	57.9	23.9	83323	34	0.5	0.0			1.2										
1/2/17 14:00	8.0	50.0	19.1	55.0	57.7	23.8	83323	34	0.4	0.0			1.2										
1/2/17 15:00	8.0	51.1	19.4	55.0	57.6	23.8	83323	34	0.4	0.0			1.2										
1/2/17 16:00	8.0	51.1	19.4	55.0	57.6	23.8	83323	34	0.4	0.0			1.2										
1/2/17 17:00	8.0	50.0	19.1	55.0	57.7	23.8	83323	34	0.4	0.0	55.0	85.0	1.2										

85.0

85.0

0.0

55.0

1.2

0.6

Building: Medical Research Building - Kronberg

Date: 4/1/2021
Calculated By: CLF
Reviewed By: GHB
System:

Scenario: Proposed System

Fan Motor Eff: 90% Fan kW: 233.1 Max Fan Flow: 300,000

Fan Affinity Law Adjsut: 1.5
Lab Airflow CFM Reduction

Occupied Design Ariflow 83,323 CFM Unoccupied Design Airflow 40,567 CFM

Occupied Airflow Reduction 15,384 CFM Unoccupied Airflow Reduction 1,017 CFM

Summary of Use
Preheat

Preheat Usage 3,604 mmBtu Cooling Usage 6562 mmBtu Reheat Usage 5743 mmBtu Supply Fan Usage 164014 kWh

Miso System Info
Cooling Shutoff 55 degF
Cooling Shutoff 5 May
Cooling Shutoff 10 October

OAT Load % Occ Unocc 68.0 0 68.0 0.00% 10 68.0 68.0 0.00% 20 68.0 68.0 0.00% 30 68.0 0.00% 68.0 40 68.0 68.0 0.00% 50 68.0 68.0 0.00% 55 68.0 68.0 0.00% 60 69.2 69.2 0.00% 70 71.6 71.6 0.00% 0.00% 80 74.0 74.0 90 74.0 74.0 0.00%

Scheduling / Population load (1=0cc 0=Un0cc) Schedule Population Population Days1-5 Days1-5 Days6,7,8 Days6,7,8 0 100% 0 100% 0 100% 0 100% 100% 100% 0 100% 0 100% 0 0 100% 0 100% 0 100% 100% 100% 100% 100% 100% 100% 100% 10 1 100% 100% 11 100% 100% 12 100% 100% 13 100% 100% 14 100% 100% 15 100% 100% 16 100% 100% 17 100% 100% 18 100% 100% 19 100% 100% 20 100% 100% 0 Ω 21 0 100% 100% 22 100% 100% 0 0 23 0 100% 0 100% 24 0 100% 0 100%

System Setpoint Si	mulations			
OAT	PHT STP	DAT STP	DAH STP	
0	55.0	65.0	25.6	
10	55.0	63.6	25.3	
20	55.0	62.1	24.9	
30	55.0	60.7	24.6	
40	55.0	59.3	24.2	
50	55.0	57.9	23.9	
55	55.0	57.1	23.7	
60	55.0	56.4	23.5	
70	55.0	55.0	23.2	
80	55.0	55.0	23.2	
100	55.0	55.0	23.2	
	1.585E-05	-0.001483	-0.109225	64.903594
	X=	28.00	Y=	61.03
	0	0	0	55
	X=	28.00	Y=	55.00
	3.861E-06	-0.000361	-0.026601	25.589599
	X=	90.00	Y=	23.08

eheat Loadi	ng			
OAT	DAT	Occ	Unocc	
0	85.0	85.0%	85.0%	
10	85.0	76.8%	76.8%	
20	85.0	68.5%	68.5%	
30	85.0	60.3%	60.3%	
40	85.0	52.0%	52.0%	
50	85.0	43.8%	43.8%	
55	85.0	39.6%	39.6%	
60	85.0	35.5%	35.5%	
70	85.0	27.3%	27.3%	
80	85.0	19.0%	19.0%	
100	85.0	2.5%	2.5%	
	0	0	0	85
	X=	0.00	Y=	85.00
	2.195E-21	-2.61E-19	-0.00825	0.85
	X=	0.00	Y=	0.85
	2.195E-21	-2.61E-19	-0.00825	0.85
	X=	55.00	Υ=	0.40
	% of CF	M to Reheat	100.0%	

Building: Medical Research Building - Kronberg

Date: 44287.474
Calculated By: CLF

Reviewed By: GHB

System: 0

Scenario: Proposed System

Formulas

D: Based on Simulation

E: Design CFM x Fan Simulation
F: ((E/ Fan CFM Output) Fan Affinity) x Fan Kw
G: 1.08 x (D - B) x E / 1,000,000

H: 4.5 x (C - Coil Enthalpy) x E / 1,000,000

J: Based on Simulation

K: Based on Simulation

L: 1.08 x (K - I) x E x % CFM to Reheat / 1,000,000

Marco 10 10 10 10 10 10 10 1	FORMULA INDEX	A	В	С	D	F -	F -	G	н	1 -	1 -	к	1 -	М	Ν	0 -	р	0	R	S	т _	11 -	ν	w _
May 10 33 14 50 54 523 59445 112 00 00 00 00 00 00 0				40.8		645	25.5		25.1	37	51	75.0	85.0	18	., 00	000		9 00	., 00	0.0		000	• 00	., 00
Section Type																								
The Station Type Color by but Type																								0.0
	30W											+65054												
MAINTENN 70 710	Time Stamp		bulb	Enthalpy					Usage	Usage	Usage	DAT (degF)		Usage										
1/1/17 100 70 379 122 550 586 243 39500 11 0.8 0.0 550 850 07 1/1/17 200 70 370 119 550 586 243 39500 11 0.8 0.0 550 850 07 1/1/17 200 70 370 310 111 550 586 243 39500 11 0.8 0.0 550 850 07 1/1/17 200 70 70 320 111 550 661 24.4 39500 11 0.8 0.0 550 850 07 1/1/17 200 70 320 107 550 664 245 67088 25 11 0.0 0 550 850 13 1/1/17 800 70 300 107 550 664 245 67088 25 11 0.0 0 550 850 13 1/1/17 800 70 320 107 550 664 245 67088 25 11 0.0 0 550 850 13 1/1/17 800 70 320 107 550 864 245 67088 25 17 0.0 550 850 13 1/1/17 100 70 310 123 550 864 245 67088 25 17 0.0 550 850 850 13 1/1/17 100 70 310 133 550 864 245 67088 25 17 0.0 550 850 850 12 1/1/17 1100 70 41.0 133 550 864 242 67088 25 10 0.0 550 850 11 1/1/17 1200 70 440 133 550 867 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 133 550 867 242 67088 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 134 550 864 245 67088 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 134 550 864 245 67088 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 134 550 867 842 240 67088 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 550 850 11 1/1/17 1200 70 440 140 550 867 847 241 67888 25 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1/1/17 0:00	7.0			EE O	50.0	24.0	20550				EE O	9F.0											
1/1/17 1																								
1/1/17 00 7.0 340 112 58.0 602 24.5 39590 11 09 00 58.0 85.0 07 1/1/17 00 7.0 28 9 08 58.0 602 24.5 39590 11 11 11 00 55.0 85.0 0.8 1/1/17 00 7.0 28 9 08 58.0 602 24.5 39590 11 11 11 00 55.0 85.0 0.8 1/1/17 00 7.0 39 10.8 58.0 602 24.5 67588 25 11 09 00 55.0 85.0 13 1/1/17 00 7.0 39 10 10 85.0 86.0 602 24.5 67588 25 11 00 85.0 86.0 13 1/1/17 80 7.0 39 11 10 55.0 86.0 24.1 67588 25 12 10 00 55.0 85.0 13 1/1/17 80 7.0 39 11 10 55.0 86.0 24.1 67588 25 12 10 00 55.0 85.0 13 1/1/17 100 7.0 37.0 123 58.0 58.0 24.1 67588 25 12 00 55.0 85.0 12 1/1/17 100 7.0 40 1133 55.0 50.0 58.0 24.2 67588 25 12 00 55.0 85.0 12 1/1/17 100 7.0 40 1133 55.0 50.0 88.7 241 67588 25 10 00 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.0 67588 25 10 00 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.0 67588 25 10 00 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.0 67588 25 10 00 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.0 67588 25 10 00 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.0 67588 25 10 00 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.0 67588 25 10 00 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.0 67588 25 0.9 0.0 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.0 67588 25 0.9 0.0 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.0 67588 25 0.9 0.0 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.1 87589 25 10 00 00 55.0 85.0 11 1/1/17 100 7.0 40 1140 58.0 38.4 24.1 87589 25 10 00 00 55.0 85.0 10 1/1/17 100 7.0 40 1140 58.0 58.0 58.0 24.1 87589 25 10 00 00 55.0 85.0 10 1/1/17 100 7.0 40 1140 58.0 58.0 58.0 24.1 87589 25 10 00 00 55.0 85.0 10 1/1/17 100 7.0 40 1140 58.0 58.0 58.0 24.1 87589 25 10 00 00 55.0 85.0 10 1/1/17 100 7.0 40 1140 58.0 58.0 58.0 24.1 87589 25 10 00 00 55.0 85.0 10 1/1/17 100 80 41.1 140 55.0 58.0 58.0 24.1 87589 25 10 00 00 55.0 85.0 10 1/1/17 100 80 41.1 140 55.0 58.0 58.0 24.1 87589 25 10 00 00 55.0 85.0 10 1/1/17 100 80 41.1 140 55.0 58.0 58.0 24.1 87589 25 10 00 00 55.0 85.0 10 1/1/17 100 80 41.1 140 55.0 58.0 58.0 24.1 87589 25 10 00 00 55.0 85.0 10 1/1/17 100 80 40 41.1 150 80.0 88																								
14/11 1500 70 288 98 90.0 60.9 24.6 9789 25 1.0 0.0 80.0 80.0 1.3 1.0																								
1/1/17 1/1 1																								
1/1/17/17/17/17/17/17/17/17/17/17/17/17/																								
Multi 800																								
1/1/17 1																								
My13 1000 70 370 123 55.0 586 24.3 67838 25 13 0.0 55.0 85.0 12 My13 1200 7.0 43.0 139 55.0 58.7 24.1 67938 25 0.9 0.0 55.0 85.0 11 My13 1200 7.0 43.0 13.9 55.0 58.7 24.1 67938 25 0.9 0.0 55.0 85.0 11 My13 1200 7.0 46.0 14.6 55.0 58.3 24.0 67938 25 0.7 0.0 55.0 85.0 1.0 My13 1200 7.0 46.9 15.0 55.0 88.2 23.0 67938 25 0.7 0.0 55.0 85.0 1.0 My13 1200 7.0 44.9 15.0 58.6 88.8 29.0 9.0 55.0 85.0 1.0 My13 1200 7.0 42.1 14.0 55.0 85.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																								
U/L/11100 7.0 41.0 13.3 55.0 59.0 24.2 67838 25 10 00 55.0 85.0 11 U/L/11300 7.0 45.0 14.6 55.0 88.7 24.1 67838 25 0.7 0.0 55.0 85.0 11 U/L/11500 7.0 45.0 14.6 55.0 88.2 24.0 67938 25 0.7 0.0 55.0 85.0 10 U/L/11500 7.0 46.9 15.0 55.0 58.2 23.9 67938 25 0.6 0.0 55.0 85.0 10 U/L/117600 7.0 44.1 14.5 55.0 38.2 23.9 67938 25 0.8 0.0 55.0 85.0 10 U/L/117600 7.0 44.1 14.5 55.0 38.2 24.9 67938 25 0.9 0.0 85.0 85.0 11 U/L/117600 7.0 42.1																								
1/1/17/12/00 7.0 43.0 13.9 56.0 58.7 24.1 6798 25 0.9 0.0 55.0 85.0 11 1/1/17/14/00 7.0 46.0 14.6 55.0 58.3 24.0 67988 25 0.7 0.0 55.0 85.0 10 1/1/17/16/00 7.0 46.9 15.0 55.0 58.2 23.9 67988 25 0.6 0.0 55.0 85.0 10 1/1/17/16/00 7.0 46.9 15.0 55.0 58.2 23.9 67988 25 0.6 0.0 55.0 85.0 10 1/1/17/16/00 7.0 46.9 15.0 58.2 23.9 67988 25 0.6 0.0 55.0 85.0 11 1/1/17/16/00 7.0 43.0 14.2 55.0 58.7 24.1 67988 25 0.9 0.0 55.0 88.0 11 1/1/17/16/00 7.0 39.9 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																								
\(\frac{1}{1}\frac{1}{11}\frac{1}{10}\toldo{0} & 46.0 & 46.6 & 55.0 & 58.4 & 24.0 & 67938 & 25 & 0.7 & 0.0 & 55.0 & 85.0 & 1.0 \\ \frac{1}{1}\frac{1}{11}\frac{1}{16}\toldo{0} & 7.0 & 46.0 & 46.0 & 55.0 & 58.2 & 23.9 & 67938 & 25 & 0.6 & 0.0 & 55.0 & 85.0 & 1.0 \\ \frac{1}{1}\frac{1}{11}\frac{1}{15}\toldo{0} & 7.0 & 46.9 & 15.0 & 55.0 & 58.2 & 23.9 & 67938 & 25 & 0.6 & 0.0 & 55.0 & 85.0 & 1.0 \\ \frac{1}{1}\frac{1}{11}\frac{1}{15}\toldo{0} & 7.0 & 46.9 & 15.0 & 55.0 & 58.2 & 23.9 & 67938 & 25 & 0.6 & 0.0 & 55.0 & 85.0 & 1.0 \\ \frac{1}{1}\frac{1}{11}\frac{1}{11}\toldo{0} & 7.0 & 44.1 & 14.5 & 55.0 & 58.6 & 24.0 & 67938 & 25 & 0.8 & 0.0 & 55.0 & 85.0 & 1.1 \\ \frac{1}{1}\frac{1}{11}\frac{1}{11}\toldo{0} & 7.0 & 44.1 & 14.5 & 55.0 & 58.6 & 24.0 & 67938 & 25 & 0.8 & 0.0 & 55.0 & 85.0 & 1.1 \\ \frac{1}{1}\frac{1}{11}\frac{1}\toldo{0} & 7.0 & 42.1 & 14.0 & 55.0 & 88.9 & 24.1 & 3955.0 & 11 & 0.6 & 0.0 & 55.0 & 85.0 & 0.6 \\ \frac{1}{1}\frac{1}{1}\frac{1}{11}\frac{1}{12}\toldo{0} & 7.0 & 39.9 & 13.6 & 55.0 & 99.2 & 24.2 & 3955.0 & 11 & 0.6 & 0.0 & 55.0 & 85.0 & 0.7 \\ \frac{1}{1}\frac{1}{11}\frac{1}{12}\toldo{0} & 7.0 & 39.9 & 13.4 & 55.0 & 99.2 & 24.2 & 3955.0 & 11 & 0.6 & 0.0 & 55.0 & 85.0 & 0.7 \\ \frac{1}{1}\frac{1}{1}\frac{1}{12}\toldo{0} & 7.0 & 39.9 & 13.4 & 55.0 & 99.2 & 24.2 & 3955.0 & 11 & 0.6 & 0.0 & 55.0 & 85.0 & 0.7 \\ \frac{1}{1}\frac{1}{1}\frac{1}{12}\toldo{0} & 7.0 & 44.1 & 14.8 & 55.0 & 58.6 & 24.0 & 3955.0 & 11 & 0.6 & 0.0 & 55.0 & 85.0 & 0.6 \\ \frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\toldo{0} & 8.0 & 45.0 & 15.2 & 55.0 & 85.4 & 24.0 & 3955.0 & 11 & 0.5 & 0.0 & 55.0 & 85.0 & 0.6 \\ \frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\toldo{0} & 8.0 & 45.0 & 15.2 & 55.0 & 85.4 & 24.0 & 3955.0 & 11 & 0.5 & 0.0 & 55.0 & 85.0 & 0.6 \\ \frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}																								
14/11/16/00 7/0 469 150 550 583 240 67938 25 07 00 550 850 10 14/11/16/00 7/0 469 150 550 582 239 67938 25 06 00 550 850 10 14/11/16/00 7/0 469 150 550 582 239 67938 25 06 00 550 850 10 14/11/16/00 7/0 469 150 550 582 239 67938 25 06 00 550 850 10 14/11/18/00 7/0 430 142 550 587 241 67938 25 08 00 550 850 11 14/11/18/00 7/0 430 142 550 587 241 67938 25 08 00 550 850 11 14/11/19/00 7/0 430 142 550 587 241 67938 25 08 00 550 850 11 14/11/19/00 7/0 399 136 550 592 242 39850 11 06 00 550 850 07 14/11/19/00 7/0 399 138 550 592 242 39850 11 06 00 550 850 07 14/11/12/00 7/0 399 138 550 592 242 39850 11 06 00 550 850 07 14/11/12/00 7/0 399 138 550 592 242 39850 11 06 00 550 850 07 14/11/12/00 7/0 410 141 850 580 242 39850 11 06 00 550 850 07 14/11/12/00 7/0 410 141 850 580 242 39850 11 06 00 550 850 07 14/11/12/00 7/0 410 141 850 580 242 39850 11 06 00 550 850 07 14/11/12/00 7/0 410 141 850 580 242 39850 11 06 00 550 850 07 14/11/12/00 8/0 410 141 850 580 242 39850 11 06 00 550 850 07 14/11/10 8/0 450 152 550 884 240 39850 11 05 00 550 850 06 14/2/11/00 8/0 441 150 550 886 240 39850 11 05 00 550 850 06 14/2/11/00 8/0 441 150 550 886 240 39850 11 05 00 550 850 06 14/2/11/00 8/0 441 155 550 887 241 39850 11 05 00 550 850 06 14/2/11/10 8/0 4/1 155 550 889 241 39850 11 05 00 550 850 06 14/2/11/10 8/0 4/1 155 550 889 241 39850 11 05 00 550 850 06 14/2/11/10 8/0 4/1 155 550 889 241 67938 25 00 00 550 850 06 14/2/11/10 8/0 4/1 155 550 889 241 67938 25 00 00 550 850 10 14/2/11/10 8/0 4/1 155 550 889 241 67938 25 00 00 550 850 10 14/2/11/10 8/0 4/1 155 550 889 241 67938 25 00 00 550 850 10 14/2/11/10 8/0 4/1 155 550 850 850 677 241 67938 25 00 00 550 850 10 14/2/11/10 8/0 4/1 155 550 850 850 677 241 67938 25 00 00 550 850 10 14/2/11/10 8/0 4/1 155 550 850 850 677 241 67938 25 00 00 550 850 10 14/2/11/10 8/1 8/1 8/1 8/1 8/1 8/1 8/1 8/1 8/1 8/1																								
$ \begin{array}{c} 1/1/11500 & 70 & 469 & 15.0 & 55.0 & 58.2 & 239 & 67938 & 25 & 0.6 & 0.0 & 55.0 & 85.0 & 1.0 \\ 1/1/11760 & 7.0 & 44.1 & 14.5 & 55.0 & 58.6 & 24.0 & 67938 & 25 & 0.8 & 0.0 & 55.0 & 85.0 & 1.0 \\ 1/1/11780 & 7.0 & 44.1 & 14.5 & 55.0 & 58.6 & 24.0 & 67938 & 25 & 0.8 & 0.0 & 55.0 & 85.0 & 1.1 \\ 1/1/11780 & 7.0 & 44.1 & 14.5 & 55.0 & 58.6 & 24.0 & 67938 & 25 & 0.8 & 0.0 & 55.0 & 85.0 & 1.1 \\ 1/1/117800 & 7.0 & 42.1 & 14.0 & 55.0 & 58.9 & 24.1 & 39850 & 11 & 0.8 & 0.0 & 55.0 & 85.0 & 0.6 \\ 1/1/117200 & 7.0 & 39.9 & 13.6 & 55.0 & 59.2 & 24.2 & 39850 & 11 & 0.8 & 0.0 & 55.0 & 85.0 & 0.7 \\ 1/1/117200 & 7.0 & 39.9 & 13.4 & 55.0 & 59.2 & 24.2 & 39850 & 11 & 0.8 & 0.0 & 55.0 & 85.0 & 0.7 \\ 1/1/1172200 & 7.0 & 41.0 & 41.1 & 55.0 & 59.2 & 24.2 & 39850 & 11 & 0.8 & 0.0 & 55.0 & 85.0 & 0.7 \\ 1/1/117200 & 7.0 & 41.0 & 41.1 & 55.0 & 59.2 & 24.2 & 39850 & 11 & 0.8 & 0.0 & 55.0 & 85.0 & 0.7 \\ 1/1/117200 & 7.0 & 41.0 & 41.1 & 55.0 & 59.2 & 24.2 & 39850 & 11 & 0.8 & 0.0 & 55.0 & 85.0 & 0.7 \\ 1/1/117200 & 7.0 & 41.0 & 41.1 & 55.0 & 58.6 & 24.0 & 39850 & 11 & 0.5 & 0.0 & 55.0 & 85.0 & 0.7 \\ 1/2/117000 & 8.0 & 45.0 & 15.2 & 55.0 & 58.6 & 24.0 & 39850 & 11 & 0.5 & 0.0 & 55.0 & 85.0 & 0.6 \\ 1/2/11700 & 8.0 & 44.1 & 15.0 & 55.0 & 58.6 & 24.0 & 39850 & 11 & 0.5 & 0.0 & 55.0 & 85.0 & 0.6 \\ 1/2/11700 & 8.0 & 44.1 & 15.0 & 55.0 & 58.6 & 24.0 & 39850 & 11 & 0.5 & 0.0 & 55.0 & 85.0 & 0.6 \\ 1/2/117400 & 8.0 & 42.1 & 15.5 & 55.0 & 58.9 & 24.1 & 39850 & 11 & 0.6 & 0.0 & 55.0 & 85.0 & 0.6 \\ 1/2/117800 & 8.0 & 42.1 & 15.5 & 55.0 & 58.9 & 24.1 & 39850 & 11 & 0.6 & 0.0 & 55.0 & 85.0 & 0.6 \\ 1/2/117800 & 8.0 & 42.1 & 15.5 & 55.0 & 58.9 & 24.1 & 39850 & 11 & 0.6 & 0.0 & 55.0 & 85.0 & 0.6 \\ 1/2/117800 & 8.0 & 42.1 & 15.5 & 55.0 & 58.9 & 24.1 & 67938 & 25 & 0.9 & 0.0 & 55.0 & 85.0 & 1.1 \\ 1/2/117800 & 8.0 & 42.1 & 15.5 & 55.0 & 58.9 & 24.1 & 67938 & 25 & 0.9 & 0.0 & 55.0 & 85.0 & 1.1 \\ 1/2/117800 & 8.0 & 43.0 & 15.1 & 50.0 & 55.6 & 23.8 & 67938 & 25 & 0.4 & 0.0 & 55.0 & 85.0 & 1.0 \\ 1/2/117800 & 8.0 & 46.0 & 17.3 & 55.0 & 58.2 & 29.9 & 67938 & 25 &$																								
14/17 1500																								
14/171700 7.0 441 145 55.0 58.8 24.0 67338 25 0.8 0.0 55.0 85.0 11 14/171700 7.0 43.0 44.2 55.0 58.7 24.1 67338 25 0.9 0.0 55.0 85.0 11 14/171700 7.0 42.1 14.0 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 14/171700 7.0 39.9 13.6 55.0 59.2 24.2 39550 11 0.6 0.0 55.0 85.0 0.7 14/1717200 7.0 39.9 13.4 55.0 59.2 24.2 39550 11 0.6 0.0 55.0 85.0 0.7 14/171200 7.0 41.0 14.1 55.0 59.0 24.2 39550 11 0.6 0.0 55.0 85.0 0.7 14/171200 7.0 41.0 14.1 55.0 59.0 24.2 39550 11 0.6 0.0 55.0 85.0 0.7 14/171200 7.0 41.0 14.1 55.0 55.0 58.4 24.0 39550 11 0.5 0.0 55.0 85.0 0.7 14/27100 8.0 45.0 15.2 55.0 58.4 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 14/271700 8.0 45.0 15.2 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 14/271700 8.0 44.1 15.0 55.0 58.6 24.1 39550 11 0.5 0.0 55.0 85.0 0.6 14/271700 8.0 44.1 15.5 55.0 58.9 24.1 39550 11 0.5 0.0 55.0 85.0 0.6 14/2717800 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.5 0.0 55.0 85.0 0.6 14/2717800 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 14/2717800 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 14/2717800 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 14/2717800 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 14/2717800 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 14/2717800 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 14/2717800 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 14/2717800 8.0 42.1 15.5 55.0 58.9 24.1 67338 25 0.9 0.0 55.0 85.0 1.1 14/2717800 8.0 42.1 15.5 55.0 58.9 24.1 67338 25 0.9 0.0 55.0 85.0 1.1 14/2717800 8.0 44.1 16.4 55.0 56.0 58.7 74.1 67338 25 0.9 0.0 55.0 85.0 1.1 14/2717800 8.0 46.0 17.3 55.0 58.9 24.1 67338 25 0.9 0.0 55.0 85.0 1.1 14/2717800 8.0 46.0 17.3 55.0 58.9 24.1 67338 25 0.9 0.0 55.0 85.0 1.1 14/2717100 8.0 46.0 17.3 55.0 58.9 24.1 67338 25 0.9 0.0 55.0 85.0 1.0 14/2717100 8.0 56.0 57.7 23.8 67338 25 0.4 0.0 55.0 85.0 1.0 14/2717100 8.0 56.0 57.7 23.8 67338 25 0.4 0.0 55.0 85.0 1.0 14/2717100 8.0 56.0 57.7 23.8 67338 25 0.4 0.0 55.0 85.0 1.0 14/2717100 8.0 56.0 57.																								
11/17 1800																								
1/1/11/900 7.0 42.1 14.0 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/1/17/21/21/21/21/21/21/21/21/21/21/21/21/21/																								
1/1/17/2000 7.0 39.9 13.6 55.0 59.2 24.2 39550 11 0.6 0.0 55.0 85.0 0.7 1/1/17/2200 7.0 41.0 14.1 55.0 59.0 24.2 39550 11 0.6 0.0 55.0 85.0 0.7 1/1/17/2300 7.0 41.0 14.1 55.0 59.0 24.2 39550 11 0.6 0.0 55.0 85.0 0.7 1/1/17/2300 7.0 44.1 14.8 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/000 8.0 45.0 15.2 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/200 8.0 44.1 15.0 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/200 8.0 44.1 15.0 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/200 8.0 42.1 15.5 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 0.6 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17/200 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17/200 8.0 48.9 18.5 55.0 58.6 24.0 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17/200 8.0 48.9 18.5 55.0 58.2 23.9 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17/200 8.0 48.9 18.5 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17/200 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17/200 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17/200 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17/200 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17/200 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0																								
\$\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{2}\frac{1}{10}\frac{1}{1}\frac{1}{2}\frac{1}{1}\frac{1}{2}\frac{1}{1}\frac{1}{2}\frac{1}{																								
\(\frac{1}{1}\frac{1}{1}\frac{7}{2}\frac{200}{1} & 7.0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qqqq \qqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqqq																								
1/1/17/2300 7.0 44.1 14.8 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/100 8.0 45.0 15.2 55.0 58.4 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/100 8.0 44.1 15.0 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/17/100 8.0 43.0 15.1 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17/17/17/17/17/17/17/17/17/17/17/17/17/																								
1/2/17 0:00 8.0 45.0 15.2 55.0 58.4 24.0 39550 11 0.4 0.0 55.0 85.0 0.6 1/2/17 1:00 8.0 44.1 15.0 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17 1:00 8.0 43.0 15.1 55.0 58.7 24.1 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17 1:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 1:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 1:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 1:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 1:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 1:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 1/2/1																								
1/2/17 1:00 8.0 44.1 15.0 55.0 58.6 24.0 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17 3:00 8.0 42.1 15.2 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 5:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 5:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 5:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 6:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 6:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 1.0 1/2/17 6:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.7 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.7 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 1/2 0:0 8.0 42.1 15.7 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 1/2 0:0 8.0 44.1 16.4 55.0 58.6 24.0 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 1:00 8.0 46.0 17.3 55.0 58.6 24.0 67938 25 0.8 00 55.0 85.0 1.1 1/2/17 1:00 8.0 46.0 17.3 55.0 58.2 23.9 67938 25 0.8 00 55.0 85.0 1.0 1/2/17 1:00 8.0 48.9 18.5 55.0 58.2 23.9 67938 25 0.8 00 55.0 85.0 1.0 1/2/17 1:00 8.0 48.9 18.5 55.0 57.9 23.9 67938 25 0.8 00 55.0 85.0 1.0 1/2/17 1:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 00 55.0 85.0 1.0 1/2/17 1:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 00 55.0 85.0 1.0 1/2/17 1:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.4 00 55.0 85.0 1.0 1/2/17 1:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.4 00 55.0 85.0 1.0 1/2/17 1:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 00 55.0 85.0 1.0 1/2/17 1:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 00 55.0 85.0 1.0 1/2/17 1:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 00 55.0 85.0 1.0 1.0 1/2/17 1:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 00 55.0 85.0 1.0 1.0 1/2/17 1:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 00 55.0 85.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1																								
1/2/17 2:00 8.0 43.0 15.1 55.0 58.7 24.1 39550 11 0.5 0.0 55.0 85.0 0.6 1/2/17 3:00 8.0 42.1 15.2 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 5:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 5:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 6:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 7:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.7 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 9:00 8.0 42.1 15.7 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 9:00 8.0 42.1 15.7 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 10:00 8.0 44.1 16.4 55.0 58.6 24.0 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 10:00 8.0 44.1 16.4 55.0 58.6 24.0 67938 25 0.8 0.0 55.0 85.0 1.1 1/2/17 10:00 8.0 48.9 17.5 55.0 58.2 24.0 67938 25 0.8 0.0 55.0 85.0 1.1 1/2/17 11:00 8.0 48.9 17.5 55.0 58.2 24.0 67938 25 0.8 0.0 55.0 85.0 1.1 1/2/17 11:00 8.0 48.9 18.5 55.0 58.2 24.0 67938 25 0.8 0.0 55.0 85.0 1.0 1/2/17 11:00 8.0 48.9 18.5 55.0 58.2 23.9 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 11:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 15:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 16:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 16:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0																								
1/2/17 3:00 8.0 42.1 15.2 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 4:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 6:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 6:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 7:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.7 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 9:00 8.0 43.0 15.9 55.0 58.7 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 10:00 8.0 44.1 16.4 55.0 58.6 24.0 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 11:00 8.0 46.9 17.5 55.0 58.2 23.9 67938 25 0.8 0.0 55.0 85.0 1.1 1/2/17 12:00 8.0 46.9 17.5 55.0 58.2 23.9 67938 25 0.6 0.0 55.0 85.0 1.0 1/2/17 13:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 15:00 8.0 50.1 19.4 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 16:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 16:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0																								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																								
1/2/17 5:00 8.0 42.1 15.5 55.0 58.9 24.1 39550 11 0.6 0.0 55.0 85.0 0.6 1/2/17 6:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.7 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.7 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 9:00 8.0 43.0 15.9 55.0 58.7 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 10:00 8.0 44.1 16.4 55.0 58.6 24.0 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 11:00 8.0 46.0 17.3 55.0 58.2 23.9 67938 25 0.7 0.0 55.0 85.0 1.1 1/2/17 12:00 8.0 46.9 17.5 55.0 58.2 23.9 67938 25 0.6 0.0 55.0 85.0 1.0 1/2/17 13:00 8.0 48.9 18.5 55.0 57.9 23.9 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 14:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 15:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 15:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 16:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9																								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																								
1/2/17 7:00 8.0 42.1 15.5 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 8:00 8.0 42.1 15.7 55.0 58.9 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 9:00 8.0 43.0 15.9 55.0 58.7 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 10:00 8.0 44.1 16.4 55.0 58.6 24.0 67938 25 0.8 0.0 55.0 85.0 1.1 1/2/17 11:00 8.0 46.0 17.3 55.0 58.3 24.0 67938 25 0.8 0.0 55.0 85.0 1.1 1/2/17 12:00 8.0 46.9 17.5 55.0 58.2 23.9 67938 25 0.7 0.0 55.0 85.0 1.0 1/2/17 13:00 8.0 48.9 18.5 55.0 57.9 23.9 67938 25 0.6 0.0 55.0 85.0 1.0 1/2/17 14:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 15:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 16:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 16:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0																								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																								
1/2/17 9:00 8.0 43.0 15.9 55.0 58.7 24.1 67938 25 0.9 0.0 55.0 85.0 1.1 1/2/17 10:00 8.0 44.1 16.4 55.0 58.6 24.0 67938 25 0.8 0.0 55.0 85.0 1.1 1/2/17 11:00 8.0 46.0 17.3 55.0 58.3 24.0 67938 25 0.8 0.0 55.0 85.0 1.0 1/2/17 12:00 8.0 46.9 17.5 55.0 58.2 23.9 67938 25 0.6 0.0 55.0 85.0 1.0 1/2/17 13:00 8.0 48.9 18.5 55.0 57.9 23.9 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 14:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 15:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 16:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9																								
1/2/17 10:00 8.0 44.1 16.4 55.0 58.6 24.0 67938 25 0.8 0.0 55.0 85.0 1.1 1/2/17 11:00 8.0 46.0 17.3 55.0 58.3 24.0 67938 25 0.7 0.0 55.0 85.0 1.0 1/2/17 13:00 8.0 46.9 17.5 55.0 58.2 23.9 67938 25 0.6 0.0 55.0 85.0 1.0 1/2/17 13:00 8.0 48.9 18.5 55.0 57.9 23.9 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 14:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 16:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																								
1/2/17 11:00 8.0 46.0 17.3 55.0 58.3 24.0 67938 25 0.7 0.0 55.0 85.0 1.0 1/2/17 12:00 8.0 46.9 17.5 55.0 58.2 23.9 67938 25 0.6 0.0 55.0 85.0 1.0 1/2/17 13:00 8.0 48.9 18.5 55.0 57.9 23.9 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 14:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 15:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 15:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 16:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 17:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 17:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 10 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 10 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 10 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 10 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 10 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 10 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 10 10 10 10 10 10 10 10 10 10 10 10 10																								
1/2/17 13:00 8.0 48.9 18.5 55.0 57.9 23.9 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 14:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 15:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 16:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 17:00 8.0 50.0 19.1 55.0 57.6 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0																								
1/2/17 14:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 15:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 16:00 8.0 50.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0																								
1/2/17 15:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 16:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 17:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 10																								
1/2/17 16:00 8.0 51.1 19.4 55.0 57.6 23.8 67938 25 0.3 0.0 55.0 85.0 0.9 1/2/17 17:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0																								
1/2/17 17:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0 1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0																								
1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 67938 25 0.4 0.0 55.0 85.0 1.0																								
	1/2/17 18:00	8.0	50.0	19.1	55.0	57.7	23.8	39550	25 11	0.4	0.0	55.0	85.0	0.6										

Building: Medical Research Building - Kronberg

Date: 4/1/2021
Calculated By: CLF
Reviewed By: GHB
System:

Scenario: Proposed System

Fan Info

 Fan Label
 SF

 Fan HP:
 125.0

 Fan QTY:
 3.0

 Calculated Load Factor:
 75%

 Fan Motor Eff:
 90%

Fan kW: 233.1 Max Fan Flow: 300,000

Fan Affinity Law Adjsut: 1.5

Lab Airflow CFM Reduction
Occupied Design Ariflow 83,323 CFM
Unoccupied Design Airflow 40,567 CFM

Occupied Airflow Reduction 14,304 CFM Unoccupied Airflow Reduction 5,206 CFM

Summary of Use

Preheat Usage 3,500 mmBtu Cooling Usage 6437 mmBtu Reheat Usage 5587 mmBtu Supply Fan Usage 159945 kWh

Misc System Info

Cooling Shutoff 55 degF
Cooling Shutoff 5 May
Cooling Shutoff 10 October

OAT Load % Occ Unocc 68.0 0 68.0 0.00% 10 68.0 68.0 0.00% 20 68.0 68.0 0.00% 30 0.00% 68.0 68.0 40 68.0 68.0 0.00% 50 68.0 68.0 0.00% 55 68.0 68.0 0.00% 60 69.2 69.2 0.00% 70 71.6 71.6 0.00% 0.00% 80 74.0 74.0 90 74.0 74.0 0.00%

Scheduling / Population load (1=0cc 0=Un0cc) Population Schedule Population Days1-5 Days1-5 Days6,7,8 Days6,7,8 0 100% 0 100% 0 100% 0 100% 100% 100% 0 100% 0 100% 0 0 100% 0 100% 0 100% 100% 100% 100% 100% 100% 100% 100% 10 1 100% 100% 11 100% 100% 12 100% 100% 13 100% 100% 14 100% 100% 15 100% 100% 16 100% 100% 17 100% 100% 18 100% 100% 19 100% 100% 20 100% 100% Ο Ω 21 100% 100% 22 100% 100% 0 0 23 0 100% 0 100% 24 0 100% 0 100%

System Setpoint Si	mulations			
OAT	PHT STP	DAT STP	DAH STP	
0	55.0	65.0	25.6	
10	55.0	63.6	25.3	
20	55.0	62.1	24.9	
30	55.0	60.7	24.6	
40	55.0	59.3	24.2	
50	55.0	57.9	23.9	
55	55.0	57.1	23.7	
60	55.0	56.4	23.5	
70	55.0	55.0	23.2	
80	55.0	55.0	23.2	
100	55.0	55.0	23.2	
	1.585E-05	-0.001483	-0.109225	64.903594
	X=	28.00	Y=	61.03
	0	0	0	55
	X=	28.00	Y=	55.00
	3.861E-06	-0.000361	-0.026601	25.589599
	X=	90.00	Y=	23.08

eheat Load	ing			
OAT	DAT	Occ	Unocc	
0	85.0	85.0%	85.0%	
10	85.0	76.8%	76.8%	
20	85.0	68.5%	68.5%	
30	85.0	60.3%	60.3%	
40	85.0	52.0%	52.0%	
50	85.0	43.8%	43.8%	
55	85.0	39.6%	39.6%	
60	85.0	35.5%	35.5%	
70	85.0	27.3%	27.3%	
80	85.0	19.0%	19.0%	
100	85.0	2.5%	2.5%	
	0	0	0	85
	X=	0.00	Y=	85.00
	2.195E-21	-2.61E-19	-0.00825	0.85
	X=	0.00	Y=	0.85
	2.195E-21	-2.61E-19	-0.00825	0.85
	χ=	55.00	Y=	0.40
	% of CF	M to Reheat	100.0%	

Building: Medical Research Building - Kronberg

Date: 44287.474

Calculated By: CLF Reviewed By: GHB

System: 0 Scenario: Proposed System **Formulas**

D: Based on Simulation

E: Design CFM x Fan Simulation
F: ((E/ Fan CFM Output) Fan Affinity) x Fan Kw
G: 1.08 x (D - B) x E / 1,000,000

H: 4.5 x (C - Coil Enthalpy) x E / 1,000,000 J: Based on Simulation

K: Based on Simulation

L: 1.08 x (K - I) x E x % CFM to Reheat / 1,000,000

FORMULAINDEX A B C D E F G H I J K L M N O P Q MAX 8.0 93.9 40.8 55.0 64.5 25.5 69019.0 25.7 3.7 5.2 75.9 85.0 1.8 0.0 0.0 0.0 0.0 SUM 36600 499470 194424 481800 501243 207772 469471578 159945 3500 6437 489054 734600 5587 0 0 0 0 0 TIme Stamp Type Dulb Gib (Burb) bulb (P bulb) (Burb) (B	R S 0.0 0.0 0	S 0.0 0.0 0	T 0.0 0.0 0	U 0.0 0.0 0	V 0.0 0.0 0	W 0.0 0.0 0
MIN 10 3.9 1.8 5.0 54.6 23.1 35361.5 9.4 0.0 0.0 54.6 85.0 0.1 0.0 0.0 0.0 0.0 MIN 3660 496470 194424 481800 501243 207772 469471578 159945 3500 64.37 489054 744600 5587 0 0 0 0 MIN 3660 496470 194424 481800 501243 207772 469471578 159945 3500 64.37 489054 744600 5587 0 0 0 0 MIN 3660 496470 194424 481800 501243 207772 469471578 159945 3500 64.37 489054 744600 5587 0 0 0 0 MIN 3660 496470 194424 481800 501243 207772 469471578 159945 3500 64.37 489054 744600 5587 0 0 0 MIN 3660 496470 194424 481800 501243 207772 469471578 159945 3500 64.37 489054 744600 5587 0 0 0 MIN 3660 496470 194424 481800 1944	0.0	0.0	0.0	0.0	0.0	
SUM 3660 496470 194424 481800 501243 207772 469471578 159945 3500 6437 489054 744600 5587 0 0 0 0 Time Stamp Type Outside dry bulls Specific Enthalpy (Btu/ls) (B						0.0
Time Stamp Type Dutside dry- boulb Enthalpy Enthalpy (Btu/lb) Freheat SAT STP Setpoint CFM Setpoint CFM Usage (NMP) Usage (N	0	0	0	0	0	0
Time Stamp Type						
Type						
1/1/17 0:00 7.0 41.0 14.4 55.0 59.0 24.2 35362 9 0.7 0.0 55.0 85.0 0.6 1/1/17 0:00 7.0 37.9 12.6 55.0 59.5 24.3 35362 9 0.7 0.0 55.0 85.0 0.6 1/1/17 0:00 7.0 37.0 11.9 55.0 59.6 24.3 35362 9 0.7 0.0 55.0 85.0 0.6						
1/1/17 1:00 7.0 37.9 12.6 55.0 59.5 24.3 35362 9 0.7 0.0 55.0 85.0 0.6 1/1/17 2:00 7.0 37.0 11.9 55.0 59.6 24.3 35362 9 0.7 0.0 55.0 85.0 0.6						
1/1/17 2:00 7.0 37.0 11.9 55.0 59.6 24.3 35362 9 0.7 0.0 55.0 85.0 0.6						
1/1/173:00 7.0 34.0 11.2 55.0 60.1 24.4 35362 9 0.8 0.0 55.0 85.0 0.7						
1/1/17 4:00 7.0 33.1 11.0 55.0 60.2 24.5 35362 9 0.8 0.0 55.0 85.0 0.7						
1/1/17 5:00 7.0 28.9 9.8 55.0 60.9 24.6 35362 9 1.0 0.0 55.0 85.0 0.7						
1/1/17 6:00 7.0 30.9 10.5 55.0 60.6 24.5 69019 26 1.8 0.0 55.0 85.0 1.3						
1/1/177:00 7.0 32.0 10.7 55.0 60.4 24.5 69019 26 1.7 0.0 55.0 85.0 1.3						
1/1/17 8:00 7.0 32.0 11.0 55.0 60.4 24.5 69019 26 1.7 0.0 55.0 85.0 1.3						
1/1/17 9:00 7.0 35.1 11.7 55.0 59.9 24.4 69019 26 1.5 0.0 55.0 85.0 1.3						
1/1/17 10:00 7.0 37.0 12.3 55.0 59.6 24.3 69019 26 1.3 0.0 55.0 85.0 1.2						
1/1/17 11:00 7.0 41.0 13.3 55.0 59.0 24.2 69019 26 1.0 0.0 55.0 85.0 1.1						
1/1/17 12:00 7.0 43.0 13.9 55.0 58.7 24.1 69019 26 0.9 0.0 55.0 85.0 1.1						
1/1/17 13:00 7.0 45.0 14.6 55.0 58.4 24.0 69019 26 0.7 0.0 55.0 85.0 1.1						
1/1/17 14:00 7.0 46.0 14.6 55.0 58.3 24.0 69019 26 0.7 0.0 55.0 85.0 1.1						
1/1/17 15:00 7.0 46.9 15.0 55.0 58.2 23.9 69019 26 0.6 0.0 55.0 85.0 1.0						
1/1/17 16:00 7.0 46.9 15.0 55.0 58.2 23.9 69019 26 0.6 0.0 55.0 85.0 1.0						
1/1/17 17:00 7.0 44.1 14.5 55.0 58.6 24.0 69019 26 0.8 0.0 55.0 85.0 1.1						
1/1/17 18:00 7.0 43.0 14.2 55.0 58.7 24.1 69019 26 0.9 0.0 55.0 85.0 1.1						
1/1/17 19:00 7.0 42.1 14.0 55.0 58.9 24.1 35362 9 0.5 0.0 55.0 85.0 0.6						
1/1/17 20:00 7.0 39.9 13.6 55.0 59.2 24.2 35362 9 0.6 0.0 55.0 85.0 0.6						
1/1/17 21:00 7.0 39.9 13.4 55.0 59.2 24.2 35362 9 0.6 0.0 55.0 85.0 0.6						
1/1/17 22:00 7.0 41.0 14.1 55.0 59.0 24.2 35362 9 0.5 0.0 55.0 85.0 0.6						
1/1/17 23:00 7.0 44.1 14.8 55.0 58.6 24.0 35362 9 0.4 0.0 55.0 85.0 0.6						
1/2/17 0:00 8.0 45.0 15.2 55.0 58.4 24.0 35362 9 0.4 0.0 55.0 85.0 0.5						
1/2/17 1:00 8.0 44.1 15.0 55.0 58.6 24.0 35362 9 0.4 0.0 55.0 85.0 0.6						
1/2/17/2:00 8.0 43.0 15.1 55.0 58.7 24.1 35362 9 0.5 0.0 55.0 85.0 0.6						
1/2/17 3:00 8.0 42.1 15.2 55.0 58.9 24.1 35362 9 0.5 0.0 55.0 85.0 0.6						
1/2/174:00 8.0 42.1 15.5 55.0 58.9 24.1 35362 9 0.5 0.0 55.0 85.0 0.6						
1/2/17.5:00 8.0 42.1 15.5 55.0 58.9 24.1 35362 9 0.5 0.0 55.0 85.0 0.6						
1/2/17 6:00 8.0 42.1 15.5 55.0 58.9 24.1 69019 26 1.0 0.0 55.0 85.0 1.1						
1/2/17.700 8.0 42.1 15.5 55.0 58.9 24.1 69019 26 1.0 0.0 55.0 85.0 1.1						
1/2/17 8:00 8.0 42.1 15.7 55.0 58.9 24.1 69019 26 1.0 0.0 55.0 85.0 1.1						
1/2/17 9:00 8.0 43.0 15.9 55.0 58.7 24.1 69019 26 0.9 0.0 55.0 85.0 1.1						
1/2/17 10:00 8.0 44.1 16.4 55.0 58.6 24.0 69019 26 0.8 0.0 55.0 85.0 1.1						
1/2/17 11:00 8.0 46.0 17.3 55.0 58.3 24.0 69019 26 0.7 0.0 55.0 85.0 1.1						
1/2/17 12:00 8.0 46.9 17.5 55.0 58.2 23.9 69019 26 0.6 0.0 55.0 85.0 1.0						
1/2/17 13:00 8.0 48.9 18.5 55.0 57.9 23.9 69019 26 0.5 0.0 55.0 85.0 1.0						
1/2/17 14:00 8.0 50.0 19.1 55.0 57.7 23.8 69019 26 0.4 0.0 55.0 85.0 1.0						
1/2/17 15:00 8.0 51.1 19.4 55.0 57.6 23.8 69019 26 0.3 0.0 55.0 85.0 1.0						
1/2/17 16:00 8.0 51.1 19.4 55.0 57.6 23.8 69019 26 0.3 0.0 55.0 85.0 1.0						
1/2/17 17:00 8.0 50.0 19.1 55.0 57.7 23.8 69019 26 0.4 0.0 55.0 85.0 1.0						
1/2/17 18:00 8.0 50.0 19.1 55.0 57.7 23.8 69019 26 0.4 0.0 55.0 85.0 1.0						
1/2/17 19:00 8.0 50.0 19.3 55.0 57.7 23.8 35362 9 0.2 0.0 55.0 85.0 0.5						

Technical Appendix 2

Lab Airflow Optimization ECM

Scope of Work (Cost Estimate & Scope of Work)

- Kornberg
- Del Monte
- BMEO

wendel DIRECT MATERIAL & LABOR | COST ESTIMATE

Project : University of Rochester | BMEO

Project #: 402805

Measure: ECM 3 | Lab HVAC Systems

Date: 04/02/21

Estimated by: GHB
Checked by: JGD

Approved by: JGD

Vendor Quotes: No

Subcontractor Pricing: No

Item No.	Description	Material	Labor	Other ¹	Subtotal Cost
1	1.1 Lab HVAC Systems				\$0.00
2	A. Occupied Airflow ACH Reduction	\$0.00	\$87,750.00	\$0.00	\$87,750.00
3	B. Unoccupied Airflow ACH Reduction	\$0.00	\$43,875.00	\$0.00	\$43,875.00

3.0	General Costs: Bonds	\$0.00	\$0.00	\$1,611.00	\$1,611.00
3.1	General Costs: Other	\$0.00	\$0.00	\$0.00	\$0.00
				0.11	
				Subtotal:	\$133,236

Contingency: 5.0% \$6,662
Escalation Reserve: 5.0% \$6,662
Engineering Procurement & Construction MGMT: 25.0% \$33,309

Total: \$179,869

Notes

¹ Other inclues misc. material and equipment necessary for installation, communication, insurances, permits, bonding. Prior to final pricing and subcontract execution these values will be required to be itemized by the bidder.

ECM 3: Lab HVAC Systems

The following is a General Scope of Work for the University of Rochester Energy Conservation Master Plan. The intent of this document is to provide a general outline of the project scope of work for developing firm project costs. Project Design Documents, including construction and permit sets, will be developed following approval of the proposed project by University of Rochester.

Project Job Site(s)

No.	Building Name
1	BMEO

*** NOT FOR CONSTRUCTION ***

The scope of this project consists of providing all labor and material, along with providing all equipment necessary to complete and make fully operational the systems defined in this specification. The project is intended to follow University of Rochester design guidelines. All products, procedures, and completed systems are intended to comply with ASHRAE standards. While this document does not include specification details, the final project manual will be produced that includes specifications that are aligned with University of Rochester design standards.

It is our expectation that the subcontractor submitting a quotation is familiar with the University of Rochester design standards and has accounted for the impact these standards have on pricing, including but not limited, material, labor and general conditions.

1.0 General

- A. **Documents** | At the start of construction, submit manufacturer's product data for materials (including but not limited to: sensors, actuators, controllers, cabinets, wire & conduit), P&ID drawings, coordination & layout drawings, and other commonly required submittals per University of Rochester standards.
- B. **Documents |** Maintaining of all Project Record Documents as detailed in this Contract Document.
- C. **Documents |** Document and <u>Submit</u> a summary of existing conditions including digital photos of the job site prior to the start of work.
 - a. Examine sizes and conditions of existing equipment.
- D. Material Handling | Label all control wiring.
- E. Material Handling | Delivery of the material and equipment to job site.
- F. **Material Handling |** A location within the facility will be identified for the subcontractor to store all material and equipment. The subcontract is required to keep this area organized and accessible as well as free of any loose material or garbage.
- G. Material Handling | Provide moving, storage and protection for all University of Rochester's existing equipment, furniture and cabinetry on job site to perform contract work. Protect floor in areas used to store furniture.
- H. **Installation Requirements |** Provide all associated equipment, and all particulars/specialties needed to make the provided equipment fully functional and perform its intended use.
- I. Installation Requirements | Install all equipment per manufacturer's instructions
- J. Installation Requirements | Paint and finish as needed to match preconstruction conditions.
- K. **Installation Requirements** | Subcontractor is responsible for all cutting and patching associated with the work.
- L. **Permits |** Subcontractor with Contractor approval will submit application for electric service permits if necessary. The Subcontractor will pay the cost of the permits.
- M. **Permits** | Building permit fees will be paid by Wendel.
- N. **Inspections & Codes |** All electrical work must be performed by a licensed electrical contractor and <u>include a valid underwriters certification</u> at the completion of the project as part of the close out O&M package.
- O. Inspections & Codes | Provide all electrical connections required in accordance with all Federal, State, and Local Codes.

- P. Inspections & Codes | Field verify all voltages prior to ordering any equipment.
- Q. Installation Requirements | Removal of all waste generated by Work per EPA requirements, University of Rochester standards, and local authority regulations.
- R. **Inspections & Codes |** Test, adjust, and balance all equipment and materials provided, or modified under this Subcontract.
- S. Inspections & Codes | Provide all mechanical connections required in accordance with all Federal, State, and Local Codes.
- T. Coordination | Coordination of equipment and utility service shutdowns with 2-weeks notice to the facility and Wendel. All work requiring a shutdown will be completed during normal business hours.
- U. **Closeout |** Provide operator training and operation manuals
- V. Closeout | Starting Systems
 - 1. Coordinate schedule for start-up of various equipment and systems.
 - 2. Notify Wendel and facility seven days prior to start-up of each item.
 - 3. Verify that each piece of equipment or system has been checked for proper lubrication, drive rotation, belt tension, control sequence, or other conditions which may cause damage.
 - 4. Verify that tests, meter readings, and specified electrical characteristics agree with those required by the equipment or system manufacturer.
 - 5. Verify wiring and support components for equipment are complete and tested. Execute start-up under supervision of responsible Contractor's personnel in accordance with manufacturers' instructions.
 - 6. Provide manufacturer authorized representative to be present at site to inspect, check and approve equipment or system installation prior to start-up, and to supervise placing equipment or system in operation.
- W. **Commissioning** | Subcontractor shall assign representatives with expertise and authority to act on its behalf to participate in and perform commissioning process activities under the direction of Wendel. Wendel will develop commissioning procedures the subcontractor will be responsible to execute the procedure under Wendel's supervision.
- X. **Trending |** All points connected to the building management system shall be trended and have data stored for three years at a minimum of one (1) hour intervals. All trends shall be remotely accessible by Wendel or another authorized and University of Rochester approved third party.
- Y. **Trending |** Trended data will be viewable in tabular and graphic form in conjunction with current BMS formatting standards at University of Rochester. Subcontractor to integrate into existing BMS. This data will also have the ability to be exported into a csv. Formatted file.
- Z. **OVERALL SYSTEM |** The new control points added shall fully integrate into the existing building management system. The required integration shall include the creation of custom graphics and the compilation and display of all devices and objects on the existing Siemens interface. All graphic displays will reside on the existing Siemens interface and be modified accordingly. In addition, the system shall perform the said integration through the use of BACnet/IP communications).
- AA. **Key Definition |** Provide furnish and install
- BB. Key Definition | Wendel maybe referred to as, Wendel, Contractor, or Design/Builder

1.1 Lab Airflow Optimization - OCCUPIED

For Laboratory spaces as outlined in the table below:

Room	Fume Hood Qty	GEX Qty	Supply Qty
B102A	0	1	1
B102B	0	1	1
B104	0	1	1
B103	0	1	1
Suite B109	1	4	4
Suite 110	1	4	4
103	1	1	1
104	0	1	1
222	1	1	1
Suite 224	0	2	2
226	1	1	1
227	1	1	1
228	0	1	1
230	0	1	1
Suite 232	1	4	4
Suite 237	1	3	4
239	0	1	1
Suite 321	0	3	3
324	1	1	1
326	0	1	1
Suite 329	1	4	4
Suite 333	1	4	4
Suite 336	1	5	5
339	1	1	1
420	1	1	1
422	0	1	1
Suite 425	1	3	3
428	0	1	1
429	1	1	1
431	0	1	1
Suite 434	1	3	3
Suite 438	1	3	3
Suite 521	1	3	3
Suite 525	1	3	3
528	0	1	1

Room	Fume Hood Qty	GEX Qty	Supply Qty
530	1	1	1
531	0	1	1
Suite 534	1	3	3
Suite 538	0	3	3

- 1. **General Exhaust Air Flow Control |** Rebalance each lab general exhaust damper to maintain a lab total exhaust equal to 8 air changes per hour in each lab. In labs where the total fume hood exhaust is greater than or equal to 8 air changes per hour, the lab general exhaust airflow will be set to zero cfm.
- 2. **Supply Air Flow Control** | Recalibrate supply air volume damper so the lab maintains a negative airflow differential relative to total lab exhaust. (Airflow differential to be determined in Airflow Testing & Balancing, intent to match existing differential)
- 3. **Air Flow Testing & Balancing |** Provide Pre & Post Retrofit air flow testing and balancing, by a certified TAB specialist, for each control box. Provide TAB report to Wendel prior to substantial completion. Include final TAB report in close out document package.

1.2 Lab Airflow Optimization – UNOCCUPIED

- A. For Laboratory spaces as outlined in the table in 1.1:
- 1. **General Exhaust Air Flow Control |** Rebalance each lab general exhaust damper to maintain a lab total exhaust equal to 4 air changes per hour during UNOCCUPIED periods in each lab. In labs where the total fume hood exhaust is greater than or equal to 4 air changes per hour, the lab general exhaust airflow will be set to zero cfm.
- 2. **Supply Air Flow Control** | Recalibrate supply air volume damper so the lab maintains a negative airflow differential relative to total lab exhaust. (Airflow differential to be determined in Airflow Testing & Balancing, intent to match existing differential)
- 3. **Air Flow Testing & Balancing |** Provide Pre & Post Retrofit air flow testing and balancing, by a certified TAB specialist, for each control box. Provide TAB report to Wendel prior to substantial completion. Include final TAB report in close out document package.

wendel DIRECT MATERIAL & LABOR | COST ESTIMATE

Project : University of Rochester | KMRB

Project #: 402805

Measure: ECM 3 | Lab HVAC Systems

Date: 04/02/21

Estimated by: GHB

Checked by: JGD

Approved by: JGD Vendor Quotes: No

Subcontractor Pricing: No

				ontractor i nomigi	
Item No.	Description	Material	Labor	Other ¹	Subtotal Cost
1	1.1 Lab HVAC Systems				\$0.00
2	A. Occupied Airflow ACH Reduction	\$0.00	\$191,250.00	\$0.00	\$191,250.00
3	B. Unoccupied Airflow ACH Reduction	\$0.00	\$95,625.00	\$0.00	\$95,625.00
3.0	General Costs: Bonds	\$0.00	\$0.00	\$1,611.00	\$1,611.00
3.1	General Costs: Other	\$0.00	\$0.00	\$0.00	\$0.00
				Subtotal:	\$288,486

Contingency: 5.0% \$14,424
Engineering Procurement & Construction MGMT: 25.0% \$72,122

Total: \$389,456

Notes

¹ Other inclues misc. material and equipment necessary for installation, communication, insurances, permits, bonding. Prior to final pricing and subcontract execution these values will be required to be itemized by the bidder.

ECM 3: Lab HVAC Systems

The following is a General Scope of Work for the University of Rochester Energy Conservation Master Plan. The intent of this document is to provide a general outline of the project scope of work for developing firm project costs. Project Design Documents, including construction and permit sets, will be developed following approval of the proposed project by University of Rochester.

Project Job Site(s)

No.	Building Name
1	KMRB

*** NOT FOR CONSTRUCTION ***

The scope of this project consists of providing all labor and material, along with providing all equipment necessary to complete and make fully operational the systems defined in this specification. The project is intended to follow University of Rochester design guidelines. All products, procedures, and completed systems are intended to comply with ASHRAE standards. While this document does not include specification details, the final project manual will be produced that includes specifications that are aligned with University of Rochester design standards.

It is our expectation that the subcontractor submitting a quotation is familiar with the University of Rochester design standards and has accounted for the impact these standards have on pricing, including but not limited, material, labor and general conditions.

1.0 General

- A. **Documents |** At the start of construction, submit manufacturer's product data for materials (including but not limited to: sensors, actuators, controllers, cabinets, wire & conduit), P&ID drawings, coordination & layout drawings, and other commonly required submittals per University of Rochester standards.
- B. **Documents |** Maintaining of all Project Record Documents as detailed in this Contract Document.
- C. **Documents |** Document and <u>Submit</u> a summary of existing conditions including digital photos of the job site prior to the start of work.
 - a. Examine sizes and conditions of existing equipment.
- D. Material Handling | Label all control wiring.
- E. Material Handling | Delivery of the material and equipment to job site.
- F. **Material Handling |** A location within the facility will be identified for the subcontractor to store all material and equipment. The subcontract is required to keep this area organized and accessible as well as free of any loose material or garbage.
- G. Material Handling | Provide moving, storage and protection for all University of Rochester's existing equipment, furniture and cabinetry on job site to perform contract work. Protect floor in areas used to store furniture.
- H. **Installation Requirements** | Provide all associated equipment, and all particulars/specialties needed to make the provided equipment fully functional and perform its intended use.
- I. Installation Requirements | Install all equipment per manufacturer's instructions
- J. Installation Requirements | Paint and finish as needed to match preconstruction conditions.
- K. **Installation Requirements** | Subcontractor is responsible for all cutting and patching associated with the work.
- L. **Permits |** Subcontractor with Contractor approval will submit application for electric service permits if necessary. The Subcontractor will pay the cost of the permits.
- M. **Permits** | Building permit fees will be paid by Wendel.
- N. Inspections & Codes | All electrical work must be performed by a licensed electrical contractor and include a valid underwriters certification at the completion of the project as part of the close out O&M package.
- O. Inspections & Codes | Provide all electrical connections required in accordance with all Federal, State, and Local Codes.

- P. Inspections & Codes | Field verify all voltages prior to ordering any equipment.
- Q. **Installation Requirements** | Removal of all waste generated by Work per EPA requirements, University of Rochester standards, and local authority regulations.
- R. Inspections & Codes | Test, adjust, and balance all equipment and materials provided, or modified under this Subcontract.
- S. Inspections & Codes | Provide all mechanical connections required in accordance with all Federal, State, and Local Codes.
- T. **Coordination |** Coordination of equipment and utility service shutdowns with 2-weeks notice to the facility and Wendel. All work requiring a shutdown will be completed during normal business hours.
- U. Closeout | Provide operator training and operation manuals
- V. Closeout | Starting Systems
 - 1. Coordinate schedule for start-up of various equipment and systems.
 - 2. Notify Wendel and facility seven days prior to start-up of each item.
 - 3. Verify that each piece of equipment or system has been checked for proper lubrication, drive rotation, belt tension, control sequence, or other conditions which may cause damage.
 - 4. Verify that tests, meter readings, and specified electrical characteristics agree with those required by the equipment or system manufacturer.
 - 5. Verify wiring and support components for equipment are complete and tested. Execute start-up under supervision of responsible Contractors' personnel in accordance with manufacturers' instructions.
 - 6. Provide manufacturer authorized representative to be present at site to inspect, check and approve equipment or system installation prior to start-up, and to supervise placing equipment or system in operation.
- W. **Commissioning |** Subcontractor shall assign representatives with expertise and authority to act on its behalf to participate in and perform commissioning process activities under the direction of Wendel. Wendel will develop commissioning procedures the subcontractor will be responsible to execute the procedure under Wendel's supervision.
- X. **Trending |** All points connected to the building management system shall be trended and have data stored for three years at a minimum of one (1) hour intervals. All trends shall be remotely accessible by Wendel or another authorized and University of Rochester approved third party.
- Y. **Trending |** Trended data will be viewable in tabular and graphic form in conjunction with current BMS formatting standards at University of Rochester. Subcontractor to integrate into existing BMS. This data will also have the ability to be exported into a csv. Formatted file.
- Z. **OVERALL SYSTEM** | The new control points added shall fully integrate into the existing building management system. The required integration shall include the creation of custom graphics and the compilation and display of all devices and objects on the existing Schneider Electric EcoStruxure interface. All graphic displays will reside on the existing Schneider Electric EcoStruxure interface and be modified accordingly. In addition, the system shall perform the said integration through the use of BACnet/IP communications).
- AA. **Key Definition |** Provide furnish and install
- BB. Key Definition | Wendel maybe referred to as, Wendel, Contractor, or Design/Builder

1.1 Lab Airflow Optimization - OCCUPIED

. For Laboratory spaces as outlined in the table below:

Room	Fume Hood Qty	GEX Qty	Supply Qty
1-9905 / 1-9911 / 1-9915	1	7	7
1-9872 / 1-9878 / 1-9892	2	10	10
1-9858 / 1-9852 / 1-9538	1	11	11
1-9855	1	1	1
1-9804 / 1-9812	3	6	7
1-9807 / 1-9809	1	1	2
1-9816 / 1-9828	0	8	8
1-9823	0	4	4
1-9839	0	4	4
1-9811 / 1-9813	0	1	1
1-9825	0	0	1
1-9825A	0	1	1
1-9826	0	1	1
1-9827 / 1-9829	0	1	1
1-9837	0	1	1
1-9847	0	1	1
1-9845	0	1	1
1-9803 / 1-9805	0	1	1
1-9857	0	1	1
1-9859	0	1	1
1-9861 / 1-9863	0	1	1
2-9905 / 2-9915	1	7	7
2-9872 / 2-9878 / 2-9892	2	10	10
2-9861 / 2-9863	0	1	1
2-9859	0	1	1
2-9857	0	1	1
2-9855 A & B	0	1	1
2-9841 & 2-9843	0	1	1
2-9845	0	1	1
2-9847	0	1	1
2-9837	0	1	1
2-9839	0	1	1
2-9827 / 2-9829	0	1	1
2-9825	0	1	1

Room	Fume Hood Qty	GEX Qty	Supply Qty
2-9626	0	1	1
2-9803	0	1	0
2-9805	0	0	1
2-9807	0	1	1
2-9809	0	1	1
2-9813	0	1	1
2-9819	0	1	1
2-9838 / 2-9852 / 2-9858	2	10	11
2-9804 / 2-9812 / 2-9616 / 2- 9828	2	14	14
2-9823	1	2	2
3-9905 / 3-9915	1	8	6
3-9872 / 3-9878 / 3-9892	2	11	10
3-9861 & 3-9863	0	1	1
3-9859	0	1	1
3-9626	0	1	1
3-9803 & 3-9805	0	1	1
3-9807	0	1	1
3-9809	0	1	1
3-9813	0	1	1
3-9825	0	1	1
3-9827 & 3-9829	0	1	1
3-9837	0	1	1
3-9839	0	1	1
3-9843	0	1	1
3-9845	0	1	1
3-9847	0	1	1
3-9848	0	0	1
3-9855	0	1	1
3-9857	0	1	1
3-9838 / 3-9852 / 3-9858	1	11	11
3-9816 / 3-9828	2	7	7
3-9804 / 3-9812	0	8	7
G9383C	0	0	1
G9852 / G9858 / G9838	5	10	11

Room	Fume Hood Qty	GEX Qty	Supply Qty
G9816 / G9828	3	6	6
G9804 / G9812	1	7	7
G9805	0	1	1
G9820	0	1	1
G9823	0	1	1
G9825A	0	1	1
G9821	0	1	1
G9821A	0	1	1
G9821B	0	1	1
G9821C	0	1	1
G9826A	0	1	1
G9827 & G9829	0	1	1
G9837	0	1	1
G9839	0	1	1
G9807 / G9809	0	2	2
G9813	1	1	1
G9843	1	1	1

- 1. **General Exhaust Air Flow Control** | Rebalance each lab general exhaust damper to maintain a lab total exhaust equal to 8 air changes per hour in each lab. In labs where the total fume hood exhaust is greater than or equal to 8 air changes per hour, the lab general exhaust airflow will be set to zero cfm.
- 2. **Supply Air Flow Control** | Recalibrate supply air volume damper so the lab maintains a negative airflow differential relative to total lab exhaust. (Airflow differential to be determined in Airflow Testing & Balancing, intent to match existing differential)
- 3. **Air Flow Testing & Balancing |** Provide Pre & Post Retrofit air flow testing and balancing, by a certified TAB specialist, for each control box. Provide TAB report to Wendel prior to substantial completion. Include final TAB report in close out document package.

1.2 Lab Airflow Optimization – UNOCCUPIED

- A. For Laboratory spaces as outlined in the table in 1.1:
 - 1. **General Exhaust Air Flow Control |** Rebalance each lab general exhaust damper to maintain a lab total exhaust equal to 4 air changes per hour during UNOCCUPIED periods in each lab. In labs where the total fume hood exhaust is greater than or equal to 4 air changes per hour, the lab general exhaust airflow will be set to zero cfm.
 - 2. **Supply Air Flow Control |** Recalibrate supply air volume damper so the lab maintains a negative airflow differential relative to total lab exhaust. (Airflow differential to be determined in Airflow Testing & Balancing, intent to match existing differential)
 - 3. **Air Flow Testing & Balancing |** Provide Pre & Post Retrofit air flow testing and balancing, by a certified TAB specialist, for each control box. Provide TAB report to Wendel prior to substantial completion. Include final TAB report in close out document package.

wendel DIRECT MATERIAL & LABOR | COST ESTIMATE

Project: University of Rochester | Del Monte

Project #: 402805

Measure: ECM 3 | Lab HVAC Systems

Date: 04/02/21

Estimated by: GHB Checked by: JGD

Approved by: JGD Vendor Quotes: No

Subcontractor Pricing: No

Item No.	Description	Material	Labor	Other ¹	Subtotal Cost
1	1.1 Lab HVAC Systems				\$0.00
2	A. Occupied Airflow ACH Reduction	\$0.00	\$112,500.00	\$0.00	\$112,500.00
3	B. Unoccupied Airflow ACH Reduction	\$0.00	\$56,250.00	\$0.00	\$56,250.00

3.0	General Costs: Bonds	\$0.00	\$0.00	\$1,611.00	\$1,611.00
3.1	General Costs: Other	\$0.00	\$0.00	\$0.00	\$0.00
				0.11	
				Subtotal:	\$170,361

Contingency: 5.0% \$8,518
Escalation Reserve: 5.0% \$8,518
Engineering Procurement & Construction MGMT: 25.0% \$42,590

Total: \$229,987

Notes

¹ Other inclues misc. material and equipment necessary for installation, communication, insurances, permits, bonding. Prior to final pricing and subcontract execution these values will be required to be itemized by the bidder.

ECM 3: Lab HVAC Systems

The following is a General Scope of Work for the University of Rochester Energy Conservation Master Plan. The intent of this document is to provide a general outline of the project scope of work for developing firm project costs. Project Design Documents, including construction and permit sets, will be developed following approval of the proposed project by University of Rochester.

Project Job Site(s)

No.	Building Name
1	Del Monte

*** NOT FOR CONSTRUCTION ***

The scope of this project consists of providing all labor and material, along with providing all equipment necessary to complete and make fully operational the systems defined in this specification. The project is intended to follow University of Rochester design guidelines. All products, procedures, and completed systems are intended to comply with ASHRAE standards. While this document does not include specification details, the final project manual will be produced that includes specifications that are aligned with University of Rochester design standards.

It is our expectation that the subcontractor submitting a quotation is familiar with the University of Rochester design standards and has accounted for the impact these standards have on pricing, including but not limited, material, labor and general conditions.

1.0 General

- A. **Documents** | At the start of construction, submit manufacturer's product data for materials (including but not limited to: sensors, actuators, controllers, cabinets, wire & conduit), P&ID drawings, coordination & layout drawings, and other commonly required submittals per University of Rochester standards.
- B. **Documents |** Maintaining of all Project Record Documents as detailed in this Contract Document.
- C. **Documents |** Document and <u>Submit</u> a summary of existing conditions including digital photos of the job site prior to the start of work.
 - a. Examine sizes and conditions of existing equipment.
- D. Material Handling | Label all control wiring.
- E. Material Handling | Delivery of the material and equipment to job site.
- F. **Material Handling |** A location within the facility will be identified for the subcontractor to store all material and equipment. The subcontract is required to keep this area organized and accessible as well as free of any loose material or garbage.
- G. **Material Handling |** Provide moving, storage and protection for all University of Rochester's existing equipment, furniture and cabinetry on job site to perform contract work. Protect floor in areas used to store furniture.
- H. **Installation Requirements** | Provide all associated equipment, and all particulars/specialties needed to make the provided equipment fully functional and perform its intended use.
- I. Installation Requirements | Install all equipment per manufacturer's instructions
- J. Installation Requirements | Paint and finish as needed to match preconstruction conditions.
- K. **Installation Requirements |** Subcontractor is responsible for all cutting and patching associated with the work.
- L. **Permits |** Subcontractor with Contractor approval will submit application for electric service permits if necessary. The Subcontractor will pay the cost of the permits.
- M. **Permits** | Building permit fees will be paid by Wendel.
- N. Inspections & Codes | All electrical work must be performed by a licensed electrical contractor and include a valid underwriters certification at the completion of the project as part of the close out O&M package.
- O. Inspections & Codes | Provide all electrical connections required in accordance with all Federal, State, and Local Codes.

- P. Inspections & Codes | Field verify all voltages prior to ordering any equipment.
- Q. **Installation Requirements** | Removal of all waste generated by Work per EPA requirements, University of Rochester standards, and local authority regulations.
- R. Inspections & Codes | Test, adjust, and balance all equipment and materials provided, or modified under this Subcontract.
- S. Inspections & Codes | Provide all mechanical connections required in accordance with all Federal, State, and Local Codes.
- T. **Coordination |** Coordination of equipment and utility service shutdowns with 2-weeks notice to the facility and Wendel. All work requiring a shutdown will be completed during normal business hours.
- U. Closeout | Provide operator training and operation manuals
- V. Closeout | Starting Systems
 - 1. Coordinate schedule for start-up of various equipment and systems.
 - 2. Notify Wendel and facility seven days prior to start-up of each item.
 - 3. Verify that each piece of equipment or system has been checked for proper lubrication, drive rotation, belt tension, control sequence, or other conditions which may cause damage.
 - 4. Verify that tests, meter readings, and specified electrical characteristics agree with those required by the equipment or system manufacturer.
 - 5. Verify wiring and support components for equipment are complete and tested. Execute start-up under supervision of responsible Contractors' personnel in accordance with manufacturers' instructions.
 - 6. Provide manufacturer authorized representative to be present at site to inspect, check and approve equipment or system installation prior to start-up, and to supervise placing equipment or system in operation.
- W. **Commissioning** | Subcontractor shall assign representatives with expertise and authority to act on its behalf to participate in and perform commissioning process activities under the direction of Wendel. Wendel will develop commissioning procedures the subcontractor will be responsible to execute the procedure under Wendel's supervision.
- X. **Trending |** All points connected to the building management system shall be trended and have data stored for three years at a minimum of one (1) hour intervals. All trends shall be remotely accessible by Wendel or another authorized and University of Rochester approved third party.
- Y. **Trending |** Trended data will be viewable in tabular and graphic form in conjunction with current BMS formatting standards at University of Rochester. Subcontractor to integrate into existing BMS. This data will also have the ability to be exported into a csv. Formatted file.
- Z. **OVERALL SYSTEM** | The new control points added shall fully integrate into the existing building management system. The required integration shall include the creation of custom graphics and the compilation and display of all devices and objects on the existing Schneider Electric EcoStruxure interface. All graphic displays will reside on the existing Schneider Electric EcoStruxure interface and be modified accordingly. In addition, the system shall perform the said integration through the use of BACnet/IP communications).
- AA. **Key Definition |** Provide furnish and install
- BB. Key Definition | Wendel maybe referred to as, Wendel, Contractor, or Design/Builder

1.1 Lab Airflow Optimization - OCCUPIED

For Laboratory spaces as outlined in the table below:

Room	Fume Hood Qty	GEX Qty	Supply Qty
1-11006	0	1	1
1-11001	4	5	5
1-11002	0	1	1
1-11301 (S)	2	3	3
1-11301 (N)	2	3	3
1-11311	2	6	7
1-11310	0	1	1
1-11306	0	1	1
1-11304	0	1	1
1-11353	0	1	1
1-11308	0	1	1
1-11320	0	1	1
1-11316	0	1	1
1-11314	0	1	1
1-11312	1	0	1
1-11318	0	2	2
1-11322	0	1	1
2-11001	1	6	6
2-11002	0	1	1
2-11301 (S)	1	3	3
2-11301 (N)	0	3	3
2-11311	1	5	5
2-11310	0	1	1
2-11306 (S)	0	1	1
2-11306 (N)	0	1	1
2-11304	0	1	1
2-11302	1	0	1
2-11350	0	1	0
2-11322	0	2	2
2-11318	0	1	1
2-11314	0	1	1
2-11312	1	0	1
2-11320	0	1	1

Room	Fume Hood Qty	GEX Qty	Supply Qty
3-11006	0	1	1
3-11001	4	4	4
3-11002	0	2	1
3-11301	1	4	3
3-11311	6	7	6
3-11310	0	1	1
3-11353	0	1	1
3-11308	1	0	1
3-11306	0	1	1
3-11304	1	0	1
3-11302	0	2	1
3-11320	0	2	2
3-11318	0	1	1
3-11316	0	1	1
3-11314	0	1	1
3-11312	1	1	1
3-11322	1	0	1

- 1. **General Exhaust Air Flow Control |** Rebalance each lab general exhaust damper to maintain a lab total exhaust equal to 8 air changes per hour in each lab. In labs where the total fume hood exhaust is greater than or equal to 8 air changes per hour, the lab general exhaust airflow will be set to zero cfm.
- 2. **Supply Air Flow Control** | Recalibrate supply air volume damper so the lab maintains a negative airflow differential relative to total lab exhaust. (Airflow differential to be determined in Airflow Testing & Balancing, intent to match existing differential)
- 3. **Air Flow Testing & Balancing |** Provide Pre & Post Retrofit air flow testing and balancing, by a certified TAB specialist, for each control box. Provide TAB report to Wendel prior to substantial completion. Include final TAB report in close out document package.

1.2 Lab Airflow Optimization – UNOCCUPIED

- A. For Laboratory spaces as outlined in the table in 1.1:
- 1. **General Exhaust Air Flow Control |** Rebalance each lab general exhaust damper to maintain a lab total exhaust equal to 4 air changes per hour during UNOCCUPIED periods in each lab. In labs where the total fume hood exhaust is greater than or equal to 4 air changes per hour, the lab general exhaust airflow will be set to zero cfm.
- 2. **Supply Air Flow Control** | Recalibrate supply air volume damper so the lab maintains a negative airflow differential relative to total lab exhaust. (Airflow differential to be determined in Airflow Testing & Balancing, intent to match existing differential)
- 3. **Air Flow Testing & Balancing |** Provide Pre & Post Retrofit air flow testing and balancing, by a certified TAB specialist, for each control box. Provide TAB report to Wendel prior to substantial completion. Include final TAB report in close out document package.

Technical Appendix 3

Heat Recovery Heat Pump ECM

Calculations (Savings Summary & Calculation)

- Kornberg
- Del Monte
- BMEO

Scope of Work (Cost Estimate & Scope of Work)

- Kornberg
- Del Monte
- BMEO

Technical Appendix 3

Heat Recovery Heat Pump ECM

Calculations (Savings Summary & Calculation)

- Kornberg
- Del Monte
- BMEO

UNIVERSITY OF ROCHESTER

Heat Recovery Heat Pump

KMRB

Building Utility Impact					
Building Level	Energy Savings				
Electrical Energy Savings	(2,627)	mmBtu/Year			
Chilled Water Savings	5,662	mmBtu/Year			
Steam Savings	8,173	mmBtu/Year			
Total Energy Savings	11,207	mmBtu/Year			
Building Leve	l Utility Savings				
Electrical Energy Savings	(770,069)	kWh/Year			
Chilled Water Savings	471,812	Ton-Hour/Year			
Steam Savings	8,173	klbs/Year			
Water Savings	-	kGal/Year			
Annual O&M Savings (\$)					
Operational & Maintenance Savings	-\$3,150	Per Year			

ECM - 1 - HEAT RECOVERY CHILLER

Project Name: University of Rochester

Building: Kornberg Medical Research Building

Date: 4/1/2021

EEM Heat Recovery Chiller

Calculated By: RGK
Reviewed By: SDM

Summary of Existing Systems Used for Calculation

Existing System Summary

Adjusted Baseline CHW Use 28,270 mmBTU Adjusted Baseline HW Use 51,283 mmBTU

Proposed System Summary

HRC Cooling 5,665 mmBTU 22,609 mmBTU 22,609 mmBTU 8,173 mmBTU 43,111 mmBTU HRC Pump Usage HRC Electrical Usage 5,665 mmBTU 22,609 mmBTU 43,111 mmBTU -35,428 kWh -734,641 kWh

Summary of EEM Savings

Heat Recovery Chiller Savings Summary

District CHW Savings 5,662 mmBTU
Electrical Savings -770,069 kWh
Heating Savings 8,173 mmBTU

Total Savings: 11,207 mmBTU

Total Current Usage: 106,771

% Savings: 10%

Building: Kornberg Medical Research Building

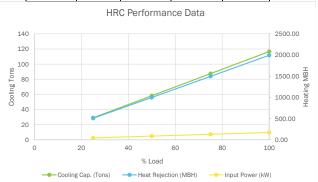
Date: 4/1/2021

EEM: Heat Recovery Chiller

Scenerio: HRC
Calculated By: RGK
Reviewed By: SDM

System Enable Setpoints					
CHW Enable Temp	0	deg F			
HW Enable Temp	0	deg F			
Month Start	January	1			
Month End	December	12			
to the contract of the contract of	100/	0/			

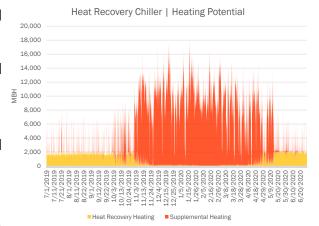
LOADING CHECK 100.00% Load Safety Factor 100.00%

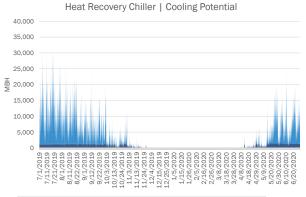

Baseline Load Simulation						
OAT	HWST (°F)					
-10	180					
0	180					
10	172					
20	164					
30	156					
40	148					
50	140					
60	140					
70	140					
80	140					
90	140					
	0.0001632	-0.012587	-0.490909	177.8555		
	X=	80.00	Y=	141.57		
	#VALUE	#VALUE	#VALUE	#VALUE		
	X=	10.00	Y=	#VALUE		

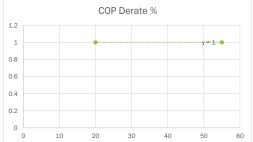
Existing Energy Summary		
A	djusted Baseline CHW Use	28,270 mmBTU
	Adjusted Baseline HW Use	51,283 mmBTU

Proposed Energy Summary

HRC Electrical Usage -734,641 kWh


Heat Recovery Chiller Performance Data							
% Load	Cooling Cap. (Tons)	Input Power (kW)	Heat Rejection (MBH)	Base COP			
25.00	29.14	46.77	509.40	2.19			
50.00	58.26	87.87	999.00	2.33			
75.00	87.42	130.86	1495.50	2.35			
100.00	116.55	174.48	1994.10	2.35			




1

Pump Label CHW Pumps HW Pumps Motor HP Motor Eff 0.91 0.91 Pump GPM 280 199 Pump Eff 85.0% 85.0% 6.23 4.44 Ft. Hd. 75 75 1 1 5.1 3.6 Control Type CV CV

Affintiy Law Adj.

Building: Kornberg Medical Research Building

Date: 4/1/2021

EEM: Heat Recovery Chiller

Scenerio: HRC
Calculated By: RGK
Reviewed By: SDM

Reviewed By:	SDIVI																	
FORMULA INDEX													М					
MAX	93.0	43.7	20032.1	2003.2	18028.9	100.0	1994.1	18028.9	40.1	4.0	36117.2	116.6	1398.6	34922.0	174.5	5.1	3.6	0.0
MIN	2.0	1.3	87.6	8.8	78.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUM	437,579	164,551	56,981,472	5,698,147	51,283,324	404,802	8,172,712	43,110,720	31,412	3,141	28,270,446	472,119	5,665,426	22,608,697	734,641	20,683	14,745	0
Time Stamp	Outside dry- bulb temp (F)	Specific Enthalpy (btu/lbm)	Baseline Steam Usage (MBH)	ECM Steam Savings (MBH)	Adjusted Baseline HW Load (MBH)	% HRC Heating Load above OAT Enable Temp	HRC Heating (MBH)	Supp Heating from Hxers (MBH)	Baseline CHW (mmBTU)	ECM CHW Savings (mmBtu)	Adjusted Baseline CHW Load (MBH)	HRC Cooling Load (tons)	HRC Cooling (MBH)	Supp Cooling from CHW plant (MBH)	HRC Electrical Load (kW)	HRC Chilled Water Pumps (kW)	HRC Hot Water Pumps (kW)	
7/1/19 0:00	59.0	23.9	1,750.482	175.048	1575.43	79.00	1,575.4	0.1	1.76	0.18	1,587.28	92.1	1,105.1	482.2	137.8	4.0	2.9	
7/1/19 1:00	59.0	23.9	2,125.211	212.521	1912.69	95.92	1,912.7	0.0	2.41	0.24	2,166.69	111.8	1,341.6	825.1	167.4	4.9	3.5	
7/1/19 2:00	58.0	23.8	1,894.265	189.426	1704.84	85.49	1,704.8	0.0	2.13	0.21	1,912.73	99.7	1,195.9	716.9	149.2	4.4	3.1	
7/1/19 3:00	57.0	23.2	1,684.174	168.417	1515.76	76.01	1,515.7	0.1	4.17	0.42	3,754.90	88.6	1,063.2	2,691.7	132.6	3.9	2.8	
7/1/19 4:00	57.0	23.2	1,593.105	159.311	1433.79	71.90	1,433.8	0.0	12.13	1.21	10,914.06	83.8	1,005.7	9,908.4	125.5	3.7	2.6	
7/1/19 5:00	55.0	22.3	6,782.167	678.217	6103.95	100.00	1,994.1	4,109.9	3.54	0.35	3,190.23	116.6	1,398.6	1,791.6	174.5	5.1	3.6	
7/1/19 6:00	58.0	24.1	1,986.316	198.632	1787.68	89.65	1,787.7	0.0	1.90	0.19	1,714.47	104.5	1,254.0	460.5	156.4	4.6	3.3	
7/1/19 7:00	62.0	25.4	5,700.677	570.068	5130.61	100.00	1,994.1	3,136.5	4.53	0.45	4,074.89	116.6	1,398.6	2,676.3	174.5	5.1	3.6	
7/1/19 8:00	68.0	27.3	5,547.855	554.786	4993.07	100.00	1,994.1	2,999.0	3.69	0.37	3,324.66	116.6	1,398.6	1,926.1	174.5	5.1	3.6	
7/1/19 9:00	71.0	28.0	2,036.663	203.666	1833.00	91.92	1,833.0	0.0	15.88	1.59	14,292.77	107.1	1,285.7	13,007.0	160.4	4.7	3.3	
7/1/19 10:00	76.0	28.2	1,991.974	199.197	1792.78	89.90	1,792.8	0.0	8.73	0.87	7,860.00	104.8	1,257.5	6,602.5	156.9	4.6	3.3	
7/1/19 11:00	76.0	28.5	2,964.491	296.449	2668.04	100.00	1,994.1	673.9	10.30	1.03	9,266.25	116.6	1,398.6	7,867.6	174.5	5.1	3.6	
7/1/19 12:00	77.0	28.8	1,772.569	177.257	1595.31	80.00	1,595.2	0.1	10.00	1.00	8,999.17	93.3	1,119.0	7,880.1	139.6	4.1	2.9	
7/1/19 13:00	79.0	29.6	1,870.979	187.098	1683.88	84.44	1,683.8	0.0	12.76	1.28	11,481.69	98.4	1,181.2	10,300.5	147.3	4.3	3.1	
7/1/19 14:00	79.0	29.3	1,856.459	185.646	1670.81	83.79	1,670.8	0.0	6.15	0.62	5,535.76	97.7	1,172.0	4,363.8	146.2	4.3	3.1	
7/1/19 15:00	79.0	30.5	1,783.501	178.350	1605.15	80.50	1,605.1	0.1	14.66	1.47	13,193.49	93.8	1,125.9	12,067.6	140.4	4.1	2.9	
7/1/19 16:00	79.0	30.1	1,855.031	185.503	1669.53	83.72	1,669.5	0.0	13.40	1.34	12,057.27	97.6	1,171.1	10,886.2	146.1	4.3	3.0	
7/1/19 17:00	79.0	30.1	1,772.899	177.290	1595.61	80.02	1,595.5	0.1	14.30	1.43	12,868.84	93.3	1,119.2	11,749.6	139.6	4.1	2.9	
7/1/19 18:00	79.0	30.5	1,992.380	199.238	1793.14	89.92	1,793.2	0.0	12.32	1.23	11,089.50	104.8	1,257.8	9,831.7	156.9	4.6	3.3	
7/1/19 19:00	78.0	27.1	1,866.298	186.630	1679.67	84.23	1,679.6	0.0	16.83	1.68	15,148.56	98.2	1,178.2	13,970.4	147.0	4.3	3.1	
7/1/19 20:00	75.0	26.2	1,794.113	179.411	1614.70	80.97	1,614.6	0.1	6.59	0.66	5,932.77	94.4	1,132.6	4,800.1	141.3	4.1	2.9	
7/1/19 21:00	71.0	25.5	1,910.979	191.098	1719.88	86.25	1,719.9	0.0	11.79	1.18	10,606.81	100.5	1,206.4	9,400.4	150.5	4.4	3.1	
7/1/19 22:00	67.0	25.9	1,660.738	166.074	1494.66	74.95	1,494.6	0.1	8.91	0.89	8,016.44	87.4	1,048.4	6,968.0	130.8	3.8	2.7	
7/1/19 23:00	67.0	25.6	1,597.569	159.757	1437.81	72.10	1,437.8	0.0	1.99	0.20	1,789.16	84.0	1,008.5	780.7	125.8	3.7	2.6	
7/2/19 0:00	66.0	25.7	3,190.687	319.069	2871.62	100.00	1,994.1	877.5	6.65	0.66	5,984.18	116.6	1,398.6	4,585.6	174.5	5.1	3.6	
7/2/19 1:00	67.0	26.4	1,648.951	164.895	1484.06	74.42	1,484.0	0.1	3.93	0.39	3,538.27	86.7	1,041.0	2,497.3	129.9	3.8	2.7	
7/2/19 2:00	67.0	27.2	1,693.318	169.332	1523.99	76.42	1,523.9	0.1	9.25	0.92	8,323.12	89.1	1,069.0	7,254.1	133.3	3.9	2.8	
7/2/19 3:00	68.0	27.7	1,622.109	162.211	1459.90	73.21	1,459.8	0.1	6.45	0.65	5,806.48	85.3	1,024.0	4,782.5	127.7	3.7	2.7	
7/2/19 4:00	68.0	28.2	1,547.573	154.757	1392.82	69.85	1,392.8	0.0	6.51	0.65	5,861.21	81.4	976.9	4,884.3	121.9	3.6	2.5	
7/2/19 5:00	68.0	28.2	1,805.784	180.578	1625.21	81.50	1,625.1	0.1	4.96	0.50	4,460.03	95.0	1,140.0	3,320.0	142.2	4.2	3.0	
7/2/19 6:00	69.0	28.9	1,762.671	176.267	1586.40	79.55	1,586.3	0.1	4.11	0.41	3,702.45	92.7	1,112.8	2,589.7	138.8	4.1	2.9	
7/2/19 7:00	68.0	30.1	3,598.443	359.844	3238.60	100.00	1,994.1	1,244.5	4.62	0.46	4,156.16	116.6	1,398.6	2,757.6	174.5	5.1	3.6	
7/2/19 8:00	72.0	31.6	7,609.598	760.960	6848.64	100.00	1,994.1	4,854.5	13.80	1.38	12,417.51	116.6	1,398.6	11,018.9	174.5	5.1	3.6	
7/2/19 9:00	74.0	32.0	3,761.762	376.176	3385.59	100.00	1,994.1	1,391.5	9.69	0.97	8,717.65	116.6	1,398.6	7,319.1	174.5	5.1	3.6	

UNIVERSITY OF ROCHESTER

Heat Recovery Heat Pump

Del Monte

Building Utility Impact					
Building Level	Energy Savings				
Electrical Energy Savings	(1,904)	mmBtu/Year			
Chilled Water Savings	4,062	mmBtu/Year			
Steam Savings	5,876	mmBtu/Year			
Total Energy Savings	8,034	mmBtu/Year			
Building Leve	l Utility Savings				
Electrical Energy Savings	(557,929)	kWh/Year			
Chilled Water Savings	338,507	Ton-Hour/Year			
Steam Savings	5,876	klbs/Year			
Water Savings	-	kGal/Year			
Annual O&M Savings (\$)					
Operational & Maintenance Savings	-\$2,520	Per Year			

ECM - 1 - HEAT RECOVERY CHILLER

Project Name: University of Rochester

Building: Del Monte

Date: 10/12/2020

EEM Heat Recovery Chiller

Calculated By: RGK
Reviewed By: SDM

Summary of Existing Systems Used for Calculation

Existing System Summary

Adjusted Baseline CHW Use 15,075 mmBTU Adjusted Baseline HW Use 27,980 mmBTU

Proposed System Summary

HRC Cooling 4,063 mmBTU
Supplemental Cooling 11,013 mmBTU
HRC Heating 5,877 mmBTU
Supplemental Heating 22,104 mmBTU
HRC Pump Usage -25,400 kWh
HRC Electrical Usage -532,529 kWh

Summary of EEM Savings

Heat Recovery Chiller Savings Summary

District CHW Savings 4,062 mmBTU
Electrical Savings -557,929 kWh
Heating Savings 5,876 mmBTU

Total Savings: 8,034 mmBTU

Total Current Usage: 59,280

% Savings: 14%

Building: Del Monte Date: 10/12/2020

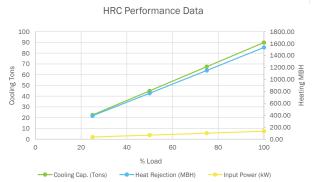
EEM: Heat Recovery Chiller

Scenerio: HRC
Calculated By: RGK
Reviewed By: SDM

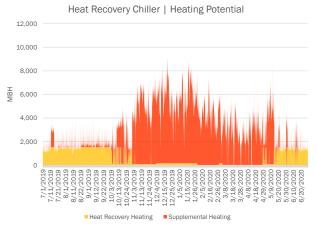
System Enable Setpoints		
CHW Enable Temp	0	deg F
HW Enable Temp	0	deg F
Month Start	January	1
Month End	December	12
Interactive Savings	10%	%

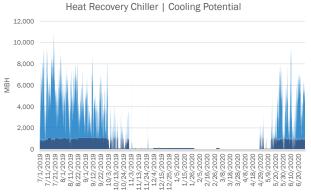
LOADING CHECK 100.00% Load Safety Factor 100.00%

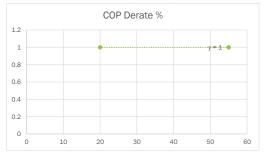
Baseline Load Simulation						
OAT	HWST (°F)					
-10	140					
0	140					
10	140					
20	140					
30	140					
40	140					
50	140					
60	140					
70	140					
80	140					
90	140					
	0	0	0	140		
	X=	80.00	Υ=	140.00		
	#VALUE	#VALUE	#VALUE	#VALUE		
	X=	10.00	Y=	#VALUE		


Existing Energy Summary		
	Adjusted Baseline CHW Use	15,075 mmBTU
	Adjusted Baseline HW Use	27,980 mmBTU

Proposed Energy Summary


HRC Cooling 4,063 mmBTU
Supplemental Cooling 11,013 mmBTU
HRC Heating 5,877 mmBTU
Supplemental Heating 22,104 mmBTU


HRC Pump Usage -25,400 kWh
HRC Electrical Usage -532,529 kWh


Heat Recovery Chiller Performance Data							
% Load	Cooling Cap. (Tons)	Input Power (kW)	Heat Rejection (MBH)	Base COP			
25.00	22.47	35.85	392.00	2.20			
50.00	44.94	67.32	769.00	2.35			
75.00	67.41	100.30	1151.00	2.36			
100.00	89.87	133.70	1535.00	2.36			

y Chiller Pump Information						
Pump Label	CHW Pumps	HW Pumps				
Motor HP	60	15				
Motor Eff	0.91	0.91				
Pump GPM	216	154				
Pump Eff	85.0%	85.0%				
BHP	4.81	3.42				
Ft. Hd.	75	75				
QTY	1	1				
kW	3.9	2.8				
Control Type	CV	CV				
Affintiy Law Adj.	1	1				

Building: Del Monte Date: 10/12/2020

EEM: Heat Recovery Chiller

Scenerio: HRC
Calculated By: RGK
Reviewed By: SDM

Reviewed by:	JUIVI																	
FORMULA INDEX													М					
MAX	93.0	43.7	11030.7	1103.1	9927.6	100.0	1535.0	9850.1	12.2	1.2	10953.2	89.9	1078.4	10072.4	133.7	3.9	2.8	0.0
MIN	2.0	1.3	6.8	0.7	6.1	0.3	27.6	0.0	0.0	0.0	3.4	0.3	3.5	0.0	7.3	0.0	0.0	0.0
SUM	437,579	164,551	31,088,454	3,108,845	27,979,609	376,652	5,877,015	22,103,701	16,750	1,675	15,075,387	338,546	4,062,546	11,013,306	532,529	14,839	10,561	0
Time Stamp	Outside dry- buib temp (F)	Specific Enthalpy (btu/lbm)	Baseline Steam Usage (MBH)	ECM Steam Savings (MBH)	Adjusted Baseline HW Load (MBH)	% HRC Heating Load above OAT Enable Temp	HRC Heating (MBH)	Supp Heating from Hxers (MBH)	Baseline CHW (mmBTU)	ECM CHW Savings (mmBtu)	Adjusted Baseline CHW Load (MBH)	HRC Cooling Load (tons)	HRC Cooling (MBH)	Supp Cooling from CHW plant (MBH)	HRC Electrical Load (kW)	HRC Chilled Water Pumps (kW)	HRC Hot Water Pumps (kW)	
7/1/19 0:00	59.0	23.9	2,316.7	231.665	2,085.0	100.0	1,535.0	550.0	3.6	0.4	3,284.7	89.9	1,078.4	2,206.3	133.7	3.9	2.8	
7/1/19 1:00	59.0	23.9	1,396.3	139.625	1256.63	81.86	1,256.4	0.3	1.50	0.15	1,348.28	73.6	882.9	465.3	109.5	3.2	2.3	
7/1/19 2:00	58.0	23.8	1,347.8	134.775	1212.98	70.11	1,076.0	137.0	0.84	0.08	756.07	63.0	756.2	0.0	93.8	2.8	2.0	
7/1/19 3:00	57.0	23.2	1,367.4	136.737	1230.63	80.17	1,230.4	0.3	3.80	0.38	3,423.22	72.1	864.7	2,558.5	107.2	3.2	2.2	
7/1/19 4:00	57.0	23.2	1,399.2	139.922	1259.30	82.04	1,259.0	0.3	1.50	0.15	1,345.64	73.7	884.8	460.8	109.7	3.2	2.3	
7/1/19 5:00	55.0	22.3	1,487.3	148.728	1338.55	87.20	1,338.4	0.2	2.42	0.24	2,178.42	78.4	940.5	1,237.9	116.6	3.4	2.4	
7/1/19 6:00	58.0	24.1	1,631.9	163.193	1468.74	49.22	757.2	711.5	0.59	0.06	530.84	44.2	530.9	0.0	66.3	1.9	1.4	
7/1/19 7:00	62.0	25.4	1,641.1	164.113	1477.01	48.99	753.7	723.3	0.59	0.06	528.37	44.0	528.4	0.0	66.0	1.9	1.4	
7/1/19 8:00	68.0	27.3	1,911.6	191.162	1720.46	100.00	1,535.0	185.5	2.62	0.26	2,360.93	89.9	1,078.4	1,282.5	133.7	3.9	2.8	
7/1/19 9:00	71.0	28.0	1,620.0	161.998	1457.98	94.98	1,457.9	0.1	3.92	0.39	3,532.22	85.4	1,024.4	2,507.9	127.0	3.7	2.7	
7/1/19 10:00	76.0	28.2	1,731.4	173.141	1558.27	100.00	1,535.0	23.3	4.07	0.41	3,663.60	89.9	1,078.4	2,585.2	133.7	3.9	2.8	
/1/19 11:00	76.0	28.5	1,545.5	154.550	1390.95	90.62	1,390.8	0.1	3.67	0.37	3,299.09	81.4	977.3	2,321.8	121.2	3.6	2.5	
7/1/19 12:00	77.0	28.8	1,513.2	151.325	1361.92	88.72	1,361.8	0.2	5.07	0.51	4,559.55	79.7	956.9	3,602.6	118.7	3.5	2.5	
7/1/19 13:00	79.0	29.6	1,516.9	151.689	1365.20	88.94	1,365.0	0.2	4.91	0.49	4,420.80	79.9	959.2	3,461.6	118.9	3.5	2.5	
7/1/19 14:00	79.0	29.3	1,444.7	144.475	1300.27	84.71	1,300.0	0.2	2.07	0.21	1,861.32	76.1	913.6	947.7	113.3	3.3	2.4	
7/1/19 15:00	79.0	30.5	1,806.3	180.627	1625.64	100.00	1,535.0	90.6	3.99	0.40	3,588.39	89.9	1,078.4	2,509.9	133.7	3.9	2.8	
7/1/19 16:00	79.0	30.1	1,394.2	139.423	1254.80	81.75	1,254.5	0.3	6.89	0.69	6,203.78	73.5	881.7	5,322.1	109.3	3.2	2.3	
7/1/19 17:00	79.0	30.1	1,335.1	133.513	1201.62	78.28	1,201.4	0.3	6.16	0.62	5,543.65	70.4	844.3	4,699.3	104.7	3.1	2.2	
7/1/19 18:00	79.0	30.5	1,308.2	130.818	1177.37	76.70	1,177.1	0.3	5.02	0.50	4,518.68	68.9	827.3	3,691.4	102.6	3.0	2.2	
7/1/19 19:00	78.0	27.1	1,311.6	131.158	1180.42	76.90	1,180.2	0.3	4.07	0.41	3,663.62	69.1	829.4	2,834.2	102.8	3.0	2.2	
//1/19 20:00	75.0	26.2	1,317.8	131.783	1186.05	77.27	1,185.8	0.3	3.52	0.35	3,164.53	69.4	833.4	2,331.2	103.3	3.0	2.2	
7/1/19 21:00	71.0	25.5	1,339.2	133.916	1205.24	78.52	1,205.0	0.3	5.36	0.54	4,820.19	70.6	846.9	3,973.3	105.0	3.1	2.2	
7/1/19 22:00	67.0	25.9	3,037.4	303.737	2733.63	100.00	1,535.0	1,198.6	3.57	0.36	3,216.26	89.9	1,078.4	2,137.8	133.7	3.9	2.8	
7/1/19 23:00	67.0	25.6	1,411.8	141.183	1270.64	82.78	1,270.4	0.2	2.09	0.21	1,881.70	74.4	892.8	988.9	110.7	3.3	2.3	
7/2/19 0:00	66.0	25.7	1,411.3	141.125	1270.13	82.74	1,269.9	0.2	1.92	0.19	1,732.40	74.4	892.4	840.0	110.7	3.3	2.3	
7/2/19 1:00	67.0	26.4	1,375.6	137.559	1238.03	80.65	1,237.8	0.3	2.86	0.29	2,577.64	72.5	869.9	1,707.8	107.9	3.2	2.3	
7/2/19 2:00	67.0	27.2	1,408.0	140.800	1267.20	82.55	1,267.0	0.2	2.12	0.21	1,905.85	74.2	890.4	1,015.5	110.4	3.3	2.3	
7/2/19 3:00	68.0	27.7	1,326.2	132.620	1193.58	77.76	1,193.3	0.3	3.90	0.39	3,506.28	69.9	838.7	2,667.6	104.0	3.1	2.2	
7/2/19 4:00	68.0	28.2	1,286.1	128.608	1157.47	75.41	1,157.2	0.3	5.63	0.56	5,064.36	67.8	813.3	4,251.1	100.8	3.0	2.1	
7/2/19 5:00	68.0	28.2	1,288.7	128.867	1159.80	75.56	1,159.5	0.3	3.84	0.38	3,452.13	67.9	814.9	2,637.2	101.0	3.0	2.1	
7/2/19 6:00	69.0	28.9	1,438.1	143.808	1294.27	84.32	1,294.0	0.2	4.18	0.42	3,758.44	75.8	909.4	2,849.0	112.8	3.3	2.4	
7/2/19 7:00	68.0	30.1	3,050.4	305.040	2745.36	100.00	1,535.0	1,210.4	5.01	0.50	4,508.04	89.9	1,078.4	3,429.6	133.7	3.9	2.8	
7/2/19 8:00	72.0	31.6	1,543.7	154.374	1389.37	90.51	1,389.2	0.1	5.93	0.59	5,335.44	81.3	976.2	4,359.3	121.0	3.6	2.5	

UNIVERSITY OF ROCHESTER

Heat Recovery Heat Pump

BMEO

Building U	tility Impact	
Building Level	Energy Savings	
Electrical Energy Savings	(1,530)	mmBtu/Year
Chilled Water Savings	3,273	mmBtu/Year
Steam Savings	4,733	mmBtu/Year
Total Energy Savings	6,476	mmBtu/Year
Building Leve	l Utility Savings	
Electrical Energy Savings	(448,516)	kWh/Year
milled Water Savings eam Savings 4,733 mmBtu/Year stal Energy Savings 6,476 mmBtu/Year Building Level Utility Savings ectrical Energy Savings (448,516) kWh/Year nilled Water Savings 272,723 Ton-Hour/Year eam Savings 4,733 klbs/Year ater Savings Annual O&M Savings (\$)		
Steam Savings	4,733	klbs/Year
Water Savings	-	kGal/Year
Annual O&N	// Savings (\$)	
Operational & Maintenance Savings	-\$1,890	Per Year

ECM - 1 - HEAT RECOVERY CHILLER

Project Name: University of Rochester

Building: Goergen Hall - Biomedical Engineering and Optics

Date: 4/1/2021

EEM Heat Recovery Chiller

Calculated By: RGK
Reviewed By: SDM

Summary of Existing Systems Used for Calculation

Existing System Summary

Adjusted Baseline CHW Use 7,291 mmBTU
Adjusted Baseline HW Use 15,242 mmBTU

Proposed System Summary

HRC Cooling 3,274 mmBTU
Supplemental Cooling 4,018 mmBTU
HRC Heating 4,734 mmBTU
Supplemental Heating 10,509 mmBTU
HRC Pump Usage -20,474 kWh
HRC Electrical Usage -428,042 kWh

Summary of EEM Savings

Heat Recovery Chiller Savings Summary

District CHW Savings 3,273 mmBTU
Electrical Savings -448,516 kWh
Heating Savings 4,733 mmBTU

Total Savings: 6,476 mmBTU

Total Current Usage: 73,684

% Savings: 9%

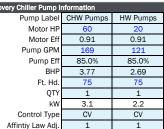
Building: Goergen Hall - Biomedical Engineering and Optics

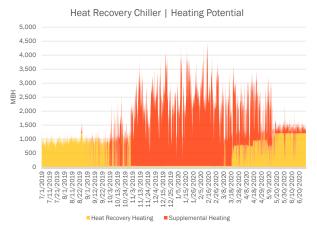
Date: 4/1/2021

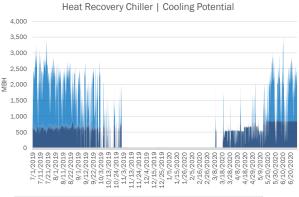
EEM: Heat Recovery Chiller

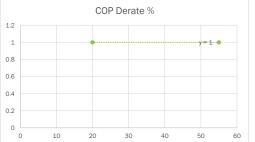
Scenerio: HRC
Calculated By: RGK
Reviewed By: SDM

> LOADING CHECK 100.00% Load Safety Factor 100.00%


Baseline Load Simu	ılation			
OAT	HWST (°F)			
-10	140			
0	140			
10	140			
20	140			
30	140			
40	140			
50	140			
60	140			
70	140			
80	140			
90	140			
	0	0	0	140
	X=	80.00	Υ=	140.00
	#VALUE	#VALUE	#VALUE	#VALUE
	X=	10.00	Y=	#VALUE


Existing Energy Summary		
	Adjusted Baseline CHW Use	7,291 mmBTU
	Adjusted Baseline HW Use	15,242 mmBTU


> HRC Pump Usage -20,474 kWh HRC Electrical Usage -428,042 kWh


Heat Recovery	Chiller Perforn	nance Data			
% Load	Cooling Cap. (Tons)	Input Power (kW)	Heat Rejection (MBH)	Base COP	
25.00	17.63	28.28	308.10	2.19	
50.00	35.26	53.11	604.40	2.33	
75.00	52.90	79.11	904.70	2.35	
100.00	70.53	105.50	1206.00	2.35	

Building: Goergen Hall - Biomedical Engineering and Optics

Date: 4/1/2021

EEM: Heat Recovery Chiller

Scenerio: HRC Calculated By: RGK Reviewed By: SDM

FORMULA INDEX	А	В	С	D	Е	F	G	Н		J	K	L	М	N	0	Р	Q	R
MAX	93.0	43.7	5038.2	503.8	4534.4	100.0	1206.0	4507.3	3.9	0.4	3549.8	70.5	846.4	2954.0	105.5	3.1	2.2	0.0
MIN	2.0	1.3	56.8	5.7	51.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUM	437,579	164,551	16,936,096	1,693,610	15,242,486	386,672	4,733,998	10,509,011	8,101	810	7,290,881	272,826	3,273,911	4,018,209	428,042	11,956	8,518	
Time Stamp	Outside dry- bulb temp (F)	Specific Enthalpy (btu/lbm)	Baseline Steam Usage (MBH)	ECM Steam Savings (MBH)	Adjusted Baseline HW Load (MBH)	above OAT Enable Temp	HRC Heating (MBH)	Supp Heating from Hxers (MBH)	Baseline CHW (mmBTU)	ECM CHW Savings (mmBtu)	Adjusted Baseline CHW Load (MBH)	HRC Cooling Load (tons)	(МВН)	Supp Cooling from CHW plant (MBH)	HRC Electrical Load (kW)	HRC Chilled Water Pumps (kW)		
7/1/19 0:00	59.0	23.9	1,078.805	107.880	970.92	80.51	971.1	0.0	1.54	0.15	1,387.99	56.8	681.4	706.6	84.9	2.5	1.8	
7/1/19 1:00	59.0	23.9	1,164.369	116.437	1047.93	86.89	1,048.1	0.0	1.32	0.13	1,191.46	61.3	735.5	456.0	91.7	2.7	1.9	
7/1/19 2:00	58.0	23.8	1,064.148	106.415	957.73	79.41	957.9	0.0	1.23	0.12	1,105.48	56.0	672.2	433.3	83.8	2.5	1.7	
7/1/19 3:00	57.0	23.2	1,072.802	107.280	965.52	80.06	965.7	0.0	1.15	0.11	1,030.54	56.5	677.6	352.9	84.4	2.5	1.8	
7/1/19 4:00	57.0	23.2	1,192.062	119.206	1072.86	88.96	1,073.0	0.0	1.01	0.10	905.88	62.7	753.0	152.9	93.8	2.8	2.0	
7/1/19 5:00	55.0	22.3	1,146.823	114.682	1032.14	85.58	1,032.3	0.0	0.88	0.09	792.26	60.4	724.4	67.9	90.3	2.6	1.9	
7/1/19 6:00	58.0	24.1	1,341.102	134.110	1206.99	82.36	993.4	213.6	0.77	0.08	697.06	58.1	697.1	0.0	86.9	2.5	1.8	
7/1/19 7:00	62.0	25.4	1,197.583	119.758	1077.82	89.37	1,078.0	0.0	1.06	0.11	958.08	63.0	756.5	201.6	94.3	2.8	2.0	
7/1/19 8:00	68.0	27.3 28.0	1,246.279	124.628 109.642	1121.65 986.78	93.01 81.82	1,121.8	0.0	1.30 1.69	0.13 0.17	1,173.03	65.6 57.7	787.2 692.6	385.8 827.5	98.1	2.9 2.5	2.0	
7/1/19 9:00	71.0 76.0		1,096.422			75.65	987.0	0.0			1,520.03	57.7	640.3		86.3 79.8		1.8	
7/1/19 10:00 7/1/19 11:00		28.2 28.5	1,013.658	101.366	912.29 904.15	75.65	912.5 904.4	0.0	1.98	0.20 0.21	1,784.60	53.4		1,144.3 1,229.4	79.8 79.1	2.3	1.7 1.7	
7/1/19 11:00	76.0 77.0	28.8	1,004.614	100.461 101.890	917.01	76.04	917.2	0.0	2.07 2.18	0.21	1,863.98 1.965.29	53.6	634.6 643.6	1,321.7	80.2	2.3	1.7	
7/1/19 12:00	77.0	29.6	948.487	94.849	853.64	70.78	853.9	0.0	2.18	0.22	2,060.48	49.9	599.1	1,461.4	74.7	2.4	1.6	
7/1/19 14:00	79.0	29.3	970.685	97.068	873.62	72.44	873.8	0.0	2.48	0.25	2,235.52	51.1	613.1	1,401.4	76.4	2.2	1.6	
7/1/19 15:00	79.0	30.5	863.423	86.342	777.08	64.43	777.5	0.0	2.66	0.27	2,392.13	45.4	545.3	1,846.8	68.0	2.0	1.4	
7/1/19 16:00	79.0	30.1	906.250	90.625	815.62	67.63	815.9	0.0	2.73	0.27	2,453.54	47.7	572.4	1,881.1	71.4	2.1	1.5	
7/1/19 17:00	79.0	30.1	936.157	93.616	842.54	69.86	842.8	0.0	2.73	0.27	2,456.61	49.3	591.3	1,865.3	73.7	2.2	1.5	
7/1/19 18:00	79.0	30.5	997.779	99.778	898.00	74.46	898.2	0.0	2.71	0.27	2,438.19	52.5	630.2	1,807.9	78.5	2.3	1.6	
7/1/19 19:00	78.0	27.1	943.341	94.334	849.01	70.40	849.3	0.0	2.77	0.28	2,493,46	49.7	595.8	1.897.6	74.3	2.2	1.6	
7/1/19 20:00	75.0	26.2	900.227	90.023	810.20	67.18	810.5	0.0	2.16	0.22	1,940.72	47.4	568.6	1,372.1	70.9	2.1	1.5	
7/1/19 21:00	71.0	25.5	983.197	98.320	884.88	73.37	885.1	0.0	2.18	0.22	1,965.29	51.8	621.0	1,344.3	77.4	2.3	1.6	
7/1/19 22:00	67.0	25.9	1,001.806	100.181	901.63	74.76	901.8	0.0	1.99	0.20	1,793.33	52.7	632.8	1,160.5	78.9	2.3	1.6	
7/1/19 23:00	67.0	25.6	1,027.093	102.709	924.38	76.65	924.6	0.0	1.82	0.18	1,633.65	54.1	648.8	984.9	80.8	2.4	1.7	
7/2/19 0:00	66.0	25.7	1,062.807	106.281	956.53	79.31	956.7	0.0	1.75	0.17	1,572.23	55.9	671.3	900.9	83.7	2.5	1.7	
7/2/19 1:00	67.0	26.4	1,067.975	106.798	961.18	79.70	961.4	0.0	1.75	0.17	1,572.23	56.2	674.6	897.6	84.1	2.5	1.8	
7/2/19 2:00	67.0	27.2	1,082.865	108.286	974.58	80.81	974.8	0.0	1.67	0.17	1,498.53	57.0	684.0	814.5	85.2	2.5	1.8	
7/2/19 3:00	68.0	27.7	1,091.423	109.142	982.28	81.45	982.5	0.0	1.68	0.17	1,510.82	57.4	689.4	821.4	85.9	2.5	1.8	
7/2/19 4:00	68.0	28.2	1,118.096	111.810	1006.29	83.44	1,006.5	0.0	1.97	0.20	1,768.76	58.9	706.2	1,062.5	88.0	2.6	1.8	
7/2/19 5:00	68.0	28.2	1,067.575	106.757	960.82	79.67	961.0	0.0	2.12	0.21	1,910.02	56.2	674.3	1,235.7	84.0	2.5	1.8	
7/2/19 6:00	69.0	28.9	1,106.469	110.647	995.82	82.57	996.0	0.0	2.19	0.22	1,971.43	58.2	698.9	1,272.5	87.1	2.6	1.8	
7/2/19 7:00	68.0	30.1	1,385.272	138.527	1246.74	100.00	1,206.0	40.7	2.30	0.23	2,069.70	70.5	846.4	1,223.3	105.5	3.1	2.2	
7/2/19 8:00	72.0	31.6	1,136.651	113.665	1022.99	84.82	1,023.2	0.0	2.55	0.25	2,290.79	59.8	718.0	1,572.8	89.5	2.6	1.9	
7/2/19 9:00	74.0	32.0	1,149.656	114.966	1034.69	85.80	1,034.9	0.0	2.64	0.26	2,373.70	60.5	726.2	1,647.5	90.5	2.7	1.9	

Technical Appendix 3

Heat Recovery Heat Pump ECM

Scope of Work (Cost Estimate & Scope of Work)

- Kornberg
- Del Monte
- BMEO

wendel DIRECT MATERIAL & LABOR | COST ESTIMATE

Project: University of Rochester | KMRB Project #: 402805

Measure: ECM 5 | Heat Recovery Systems Approved by: JGD Date: 04/01/21 Vendor Quotes: No Subcontractor Pricing: No

Item No.	Description	Material	Labor	Other ¹	Subtotal Cost
	1.1 Equipment				\$0.00
	A. Heat Recovery Chiller (RL Kistler Budget)	\$176,400.00	\$0.00	\$0.00	\$176,400.00
	B. Chilled Water Pumps	\$6,300.00	\$0.00	\$0.00	\$6,300.00
	C. Hot Water Pumps	\$6,300.00	\$0.00	\$0.00	\$6,300.00
	D. Variable Frequency Drives	\$9,324.00	\$0.00	\$0.00	\$9,324.00
	E. In-line Relief Fan	\$2,205.00	\$0.00	\$0.00	\$2,205.00
	F. Specialties	\$63,000.00	\$0.00	\$0.00	\$63,000.00
	1.2 Rigging & Equipment Setting				\$0.00
	A. Receiving & Storage	\$0.00	\$1,071.00	\$0.00	\$1,071.00
	B. Delivery	\$0.00	\$1,512.00	\$0.00	\$1,512.00
	C. Concrete Equipment Pads	\$1,134.00	\$2,394.00	\$0.00	\$3,528.00
	D. Crane & Rigging	\$0.00	\$1,008.00	\$2,520.00	\$3,528.00
	1.3 Piping				\$0.00
	A. Chilled Water Piping	\$0.00	\$0.00	\$113,400.00	\$113,400.00
	B. Hot Water Piping	\$0.00	\$0.00	\$113,400.00	\$113,400.00
	C. Core Drilling	\$0.00	\$5,040.00	\$0.00	\$5,040.00
	D. Insulation (Piping & Pumps)	\$5,670.00	\$9,450.00	\$0.00	\$15,120.00
	1.4 Electrical				\$0.00
	A. Electrical Chase / Conduit Installation	\$12,768.00	\$14,112.00	\$0.00	\$26,880.00
	B. Heat Recovery Chiller Breaker & Feeders	\$10,710.00	\$9,450.00	\$0.00	\$20,160.00
	C. CHW / HW Pumps Breakers & Feeders	\$11,592.00	\$12,600.00	\$0.00	\$24,192.00
	D. BAS Controls Electrical Connections	\$567.00	\$1,512.00	\$0.00	\$2,079.00
	E. Refrigerant Relief Fan Service	\$2,646.00	\$2,268.00	\$0.00	\$4,914.00
	1.5 Controls				\$0.00
	A. Heat Recovery Chiller Points	\$7,560.00	\$7,560.00	\$0.00	\$15,120.00
	B. CHW / HW Pumps VFD Points	\$12,096.00	\$12,096.00	\$0.00	\$24,192.00
	C. ASHRAE 15 System	\$10,080.00	\$15,120.00	\$0.00	\$25,200.00
	D. Misc. Control / Monitoring Points	\$9,072.00	\$9,072.00	\$0.00	\$18,144.00
	E. Modulating Control Valves	\$6,300.00	\$0.00	\$0.00	\$6,300.00
	1.6 Refrigerant Relief System				\$0.00
	A. Sidewall Louvers	\$2,772.00	\$4,410.00	\$0.00	\$7,182.00
	B. Ductwork	\$4,410.00	\$6,930.00	\$0.00	\$11,340.00
	C. Wall Penetrations	\$0.00	\$4,410.00	\$0.00	\$4,410.00
	1.7 Start-up / Commissioning				\$0.00
	A. CHW / HW Pump & Motor Alignments	\$0.00	\$3,780.00	\$0.00	\$3,780.00
	B. Testing & Balancing Services	\$0.00	\$1,890.00	\$0.00	\$1,890.00
	C. Factory Start-Up	\$0.00	\$4,410.00	\$0.00	\$4,410.00
	1.8 Warranty				\$0.00
	A. 2-Year Parts & Labor Warranty	\$0.00	\$0.00	\$25,200.00	\$25,200.00
3.0	General Costs: Bonds	\$0.00	\$0.00	\$15,655.94	\$15,655.94
3.1	General Costs: Other	\$0.00	\$0.00	\$7,827.97	\$7,827.97
				Subtotal:	\$769,005

Contingency: 5.0% \$38,450 5.0% Escalation Reserve: \$38,450

Engineering Procurement & Construction MGMT: 25.0% \$192,251

Estimated by: GHB

Checked by: JGD

Notes

¹ Other inclues misc. material and equipment necessary for installation, communication, insurances, permits, bonding. Prior to final pricing and subcontract execution these values will be required to be itemized by the bidder.

ECM 5: Heat Recovery Systems

The following is a General Scope of Work for the University of Rochester Energy Conservation Master Plan. The intent of this document is to provide a general outline of the project scope of work for developing firm project costs. Project Design Documents, including construction and permit sets, will be developed following approval of the proposed project by University of Rochester.

Project Job Site(s)

No.		Building Name
1	KMRB	

*** NOT FOR CONSTRUCTION ***

The scope of this project consists of providing all labor and material, along with providing all equipment necessary to complete and make fully operational the systems defined in this specification. The project is intended to follow University of Rochester design guidelines. All products, procedures, and completed systems are intended to comply with ASHRAE standards. While this document does not include specification details, the final project manual will be produced that includes specifications that are aligned with University of Rochester design standards.

It is our expectation that the subcontractor submitting a quotation is familiar with the University of Rochester design standards and has accounted for the impact these standards have on pricing, including but not limited, material, labor and general conditions.

1.0 General

- A. **Documents |** At the start of construction, submit manufacturer's product data for materials (including but not limited to: sensors, actuators, controllers, cabinets, wire & conduit), P&ID drawings, coordination & layout drawings, and other commonly required submittals per University of Rochester standards.
- B. **Documents |** Maintaining of all Project Record Documents as detailed in this Contract Document.
- C. **Documents |** Document and <u>Submit</u> a summary of existing conditions including digital photos of the job site prior to the start of work.
 - a. Examine sizes and conditions of existing equipment.
- D. Material Handling | Label all control wiring.
- E. Material Handling | Delivery of the material and equipment to job site.
- F. Material Handling | A location within the facility will be identified for the subcontractor to store all material and equipment. The subcontract is required to keep this area organized and accessible as well as free of any loose material or garbage.
- G. Material Handling | Provide moving, storage and protection for all University of Rochester's existing equipment, furniture and cabinetry on job site to perform contract work. Protect floor in areas used to store furniture.
- H. **Installation Requirements** | Provide all associated equipment, and all particulars/specialties needed to make the provided equipment fully functional and perform its intended use.
- I. Installation Requirements | Install all equipment per manufacturer's instructions
- J. Installation Requirements | Paint and finish as needed to match preconstruction conditions.
- K. Installation Requirements | Subcontractor is responsible for all cutting and patching associated with the work.
- L. **Permits** | Subcontractor with Contractor approval will submit application for electric service permits if necessary. The Subcontractor will pay the cost of the permits.
- M. **Permits** | Building permit fees will be paid by Wendel.
- N. **Inspections & Codes |** All electrical work must be performed by a licensed electrical contractor and <u>include a valid underwriters certification</u> at the completion of the project as part of the close out O&M package.
- O. **Inspections & Codes |** Provide all electrical connections required in accordance with all Federal, State, and Local Codes.
- P. Inspections & Codes | Field verify all voltages prior to ordering any equipment.

- Q. **Installation Requirements** | Removal of all waste generated by Work per EPA requirements, University of Rochester standards, and local authority regulations.
- R. Inspections & Codes | Test, adjust, and balance all equipment and materials provided, or modified under this Subcontract.
- S. Inspections & Codes | Provide all mechanical connections required in accordance with all Federal, State, and Local Codes.
- T. **Coordination |** Coordination of equipment and utility service shutdowns with 2-weeks notice to the facility and Wendel. All work requiring a shutdown will be completed during normal business hours.
- U. Closeout | Provide operator training and operation manuals
- V. Closeout | Starting Systems
 - 1. Coordinate schedule for start-up of various equipment and systems.
 - 2. Notify Wendel and facility seven days prior to start-up of each item.
 - 3. Verify that each piece of equipment or system has been checked for proper lubrication, drive rotation, belt tension, control sequence, or other conditions which may cause damage.
 - 4. Verify that tests, meter readings, and specified electrical characteristics agree with those required by the equipment or system manufacturer.
 - 5. Verify wiring and support components for equipment are complete and tested. Execute start-up under supervision of responsible Contractors' personnel in accordance with manufacturers' instructions.
 - 6. Provide manufacturer authorized representative to be present at site to inspect, check and approve equipment or system installation prior to start-up, and to supervise placing equipment or system in operation.
- W. **Commissioning |** Subcontractor shall assign representatives with expertise and authority to act on its behalf to participate in and perform commissioning process activities under the direction of Wendel. Wendel will develop commissioning procedures the subcontractor will be responsible to execute the procedure under Wendel's supervision.
- X. **Trending |** All points connected to the building management system shall be trended and have data stored for three years at a minimum of one (1) hour intervals. All trends shall be remotely accessible by Wendel or another authorized and University of Rochester approved third party.
- Y. **Trending** | Trended data will be viewable in tabular and graphic form in conjunction with current BMS formatting standards at University of Rochester. Subcontractor to integrate into existing BMS. This data will also have the ability to be exported into a csv. Formatted file.
- Z. **OVERALL SYSTEM** | The new control points added shall fully integrate into the existing building management system. The required integration shall include the creation of custom graphics and the compilation and display of all devices and objects on the existing Schneider Electric EcoStruxure interface. All graphic displays will reside on the existing Schneider Electric EcoStruxure interface and be modified accordingly. In addition, the system shall perform the said integration through the use of BACnet/IP communications).
- AA. **Key Definition |** Provide furnish and install
- BB. Key Definition | Wendel maybe referred to as, Wendel, Contractor, or Design/Builder

1.1 ECM 5 | Heat Recovery System

A. Heat Recovery Chiller

1. <u>Install</u> Heat Recovery Chiller 150 nominal tons with a condenser water leaving temperature of 140°F and a chilled water supply temperature of 44°F. New heat recovery chiller shall utilized R410a refrigerant.

[CUT SHEET PROVIDED

B. Chilled Water Loop Modifications

1. Primary HR Cooling Loop Pump & Motor | Provide two (2) base mounted pump and motor sets with a capacity of 280 gpm at 55ft of head and premium efficiency motor with 7.5 Hp and class G insulation. Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation.

[CUT SHEET PROVIDED

- 2. 4" Chilled Water Pipe | Provide 200 linear feet of schedule 40 steel 4 chilled water pipe. Refer to Exhibit D for layout and schematic. Include valves, mounting and through penetrations. Note pipe length is for the total length of both supply and return piping, it also does not include fitting factors. Provide pipe insulation on all new piping per the State of New York Energy Conservation Code.
- 3. Strainer & Filter | Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- **4. Expansion Tank |** Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 5. Air Separator | Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 6. Refill / Purge / Water Treatment | All existing loops should be isolated either through the use of shutoff valve or frozen with new valves installed. The intent is to NOT drain any existing system beyond what is necessary to perform the work. All new work will be filled, the water will be treated and the system will be vented of air.
- 7. **Balance** | Provide hydronic balancing of the new equipment and interconnections to each loop.

C. Hot Water Loop Modifications

1. **Primary HR Cooling Loop Pump & Motor |** Provide two (2) base mounted pump and motor sets with a capacity of 399 gpm at 65 ft of head and premium efficiency motor with 10 Hp and class G insulation. Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation.

[CUT SHEET PROVIDED

- 2. **6" Hot Water Water Pipe |** Provide 200 linear feet of schedule 40 steel 6 hot water pipe. Refer to Exhibit D for layout and schematic. Include valves, mounting and through penetrations. Note pipe length is for the total length of both supply and return piping, it also does not include fitting factors. Provide pipe insulation on all new piping per the State of New York Energy Conservation Code.
- 3. **Strainer & Filter |** Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 4. **Expansion Tank |** Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.

- 5. Air Separator | Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 6. Refill / Purge / Water Treatment | All existing loops should be isolated either through the use of shutoff valve or frozen with new valves installed. The intent is to NOT drain any existing system beyond what is necessary to perform the work. All new work will be filled, the water will be treated and the system will be vented of air.
- 7. **Balance |** Provide hydronic balancing of the new equipment and interconnections to each loop.

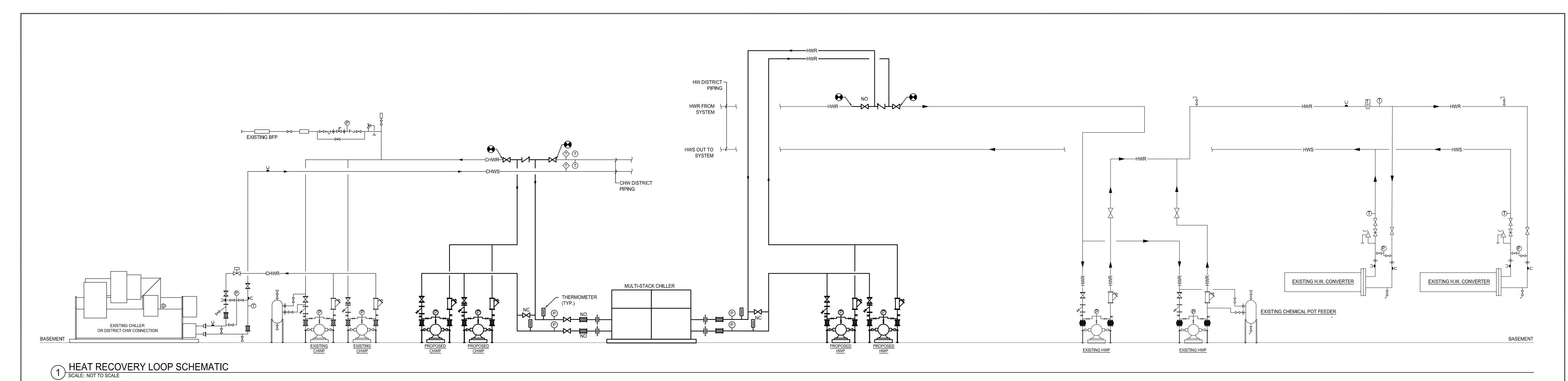
D. Refrigerant Alarm & Exhaust

- 1. **Refrigerant Alarm** | Provide new refrigerant alarm with appropriate sensors, annunciators, strobes, signage, etc. as required per the local & state code.
- 2. **Refrigerant Ventilation |** Provide new inline exhaust fan, ductwork, specialties, controls, and wall penetration in existing chase for new refrigerant exhaust system.

DI. Electrical | Pumps & Fans

- 1. New VSD | Install ABB VFD with integrated bypass for Hp as noted for Primary HR Cooling Loop and Heat Rejection Primary Loop Pumps. Provide mounting, power wire as noted in table below, EMT conduit, through penetrations, electrical connections and specialties.
- 2. **Controls VSD |** Provide connection of VSD to building management system. Provide control points including, % speed, Hz, kW, with up to three years or trending in 1 hour intervals. Provide mounting, control wire, power wire, EMT conduit, through penetrations, electrical connections and specialties.
- 3. **Refrigerant Fan |** Install new combination motor starter / disconnect to serve new refrigerant exhaust fan.

DII. Electrical | Power Distribution


- 1. **Chiller Connection |** Provide new 450A breaker in the power switchgear. Provide 480V 450A disconnect, including mounting and verification of clearances. Provide two (2) sets of 250 Kcmil wire plus ground in 4 conduit including hangers, supports, through penetrations, terminations and other specialties.
- 2. Panel Board for Pumps | Provide new 20A 480V breaker in existing distribution gear for Primary HR Cooling Loop Pump. For each pump, provide three (3) #12 conductors plus ground in 3/4 conduit. Provide mounting, connections, verification of clearances. Connect to new VSD.
- 3. Panel Board for Pumps | Provide new 25A 480V breaker in existing distribution gear for Heat Rejection Primary Loop Pumps. For each pump, provide three (3) #12 conductors plus ground in 3/4 conduit. Provide mounting, connections, verification of clearances. Connect to new VSD.

DIII. Controls

- 1. Heat Recovery System Controls:
 - a. Provide a component panel enclosure with new pneumatic devices and a main controller enclosure.
 - b. Provide 10K thermistor immersion temperature sensors to monitor the hot water supply and return temperature at the chiller, pump loop and each heat exchanger.
 - c. Provide relays for start/stop and current sensors for status at each pump VFD (or starters for the inline pumps) and wire to the new controller.
 - d. Provide controller inputs to monitor each VFD alarm and controller outputs control each VFD speed.
 - e. Provide a new differential pressure sensor for the new lead/lag set of pumps for VFD speed control and wire to the new controller.

- f. Provide and install 10K thermistor immersion temperature sensors to monitor the chilled water supply and return temperature at the chiller, pump loops, water to water heat pump and dry cooler.
- g. Provide relays for start/stop and current sensors for status at each pump VFD and wire to the new controller. This includes the pump VFDs for the water to water heat exchanger.
- h. Provide controller inputs to monitor each VFD alarm and controller outputs control each VFD speed.
- i. Provide a new differential pressure sensor for the CHW side and HW side of the WWHP and wire to the new controller.
- j. Provide point capacity for start/stop, alarm and status at the WWHP master control panel and wire to the new controller.
- k. Provide point capacity for a cooling reset, heating reset and heater alarm at the chiller and wire to the new controller.
- I. Provide a new pneumatic 3-way condenser water bypass valve and run poly tubing in EMT back to the component panel.
- m. Furnish and install a new refrigerant monitor and wire to the new controller.
- n. Provide Programming and Points to achieve the following:
 - (1) HR Chiller Input power in kW
 - (2) Heat Rejection Loop Supply Temp, Return Temp and Pump Speed
 - (3) HR Cooling Loop Supply Temp, Return Temp and Pump Speed
 - (4) Building Chilled Water Loop Supply Temp, Return Temp and Pump Speed
 - (5) Building Hot Water Loop Supply Temp, Return Temp and Pump Speed

BACKFLOW PREVENTER

CHILLED WATER CHILLED WATER RETURN

CHILLED WATER SUPPLY CHILLED WATER CIRCULATING PUMP

HOT WATER HOT WATER RETURN

HOT WATER SUPPLY HOT WATER CIRCULATING PUMP

NORMALLY CLOSED NORMALLY OPEN

HVAC SYMBOLS - PIPING DESIGNATIONS

HVAC ABBREVIATIONS

EXISTING PIPING (REFER TO DESIGNATIONS BELOW FOR TYPE)

PIPING TO BE REMOVED (REFER TO DESIGNATIONS BELOW FOR TYPE)

HOT WATER SUPPLY

HOT WATER RETURN

CHILLED WATER SUPPLY

CHILLED WATER RETURN

CONDENSER WATER SUPPLY CONDENSER WATER RETURN

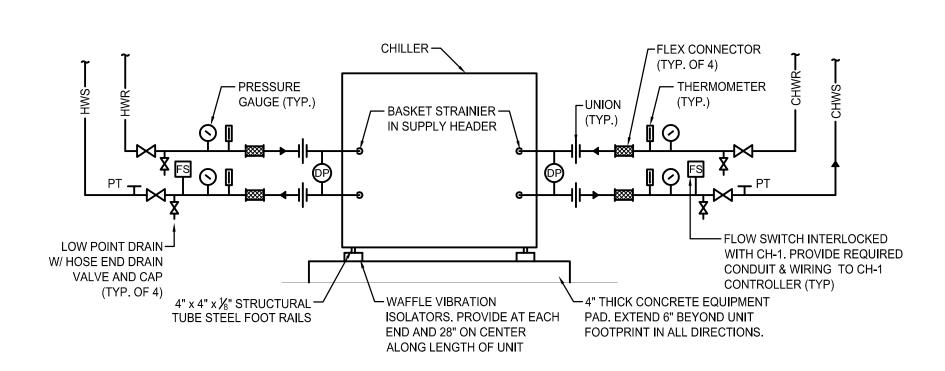
POINT OF CONNECTION

HVAC SYMBOLS - VALVES AND SPECIALTIES

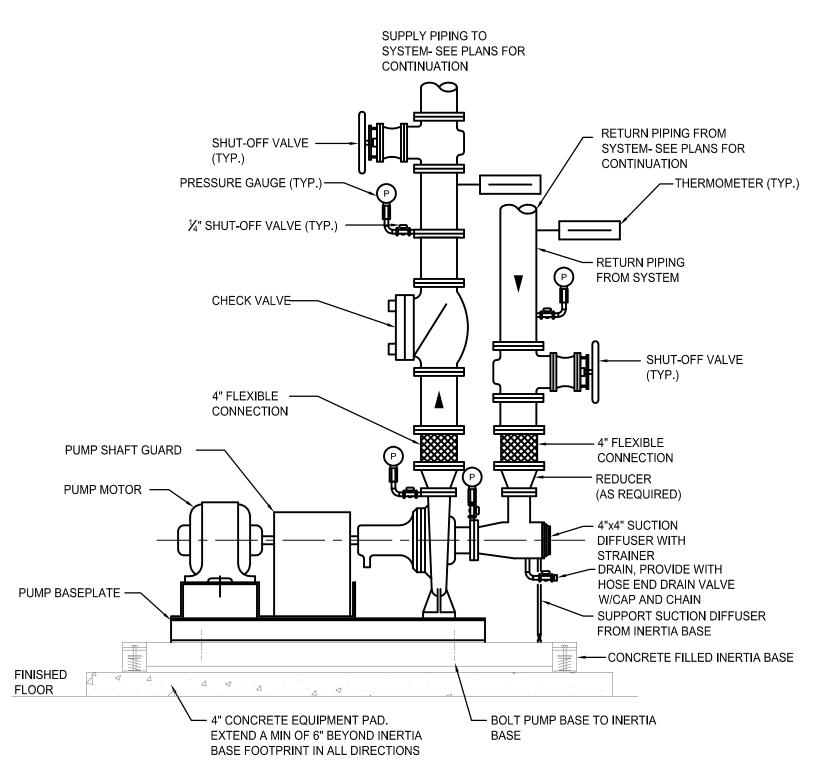
F - FLOW)

SHUT-OFF VALVE (GATE, BALL, ETC.) CHECK VALVE

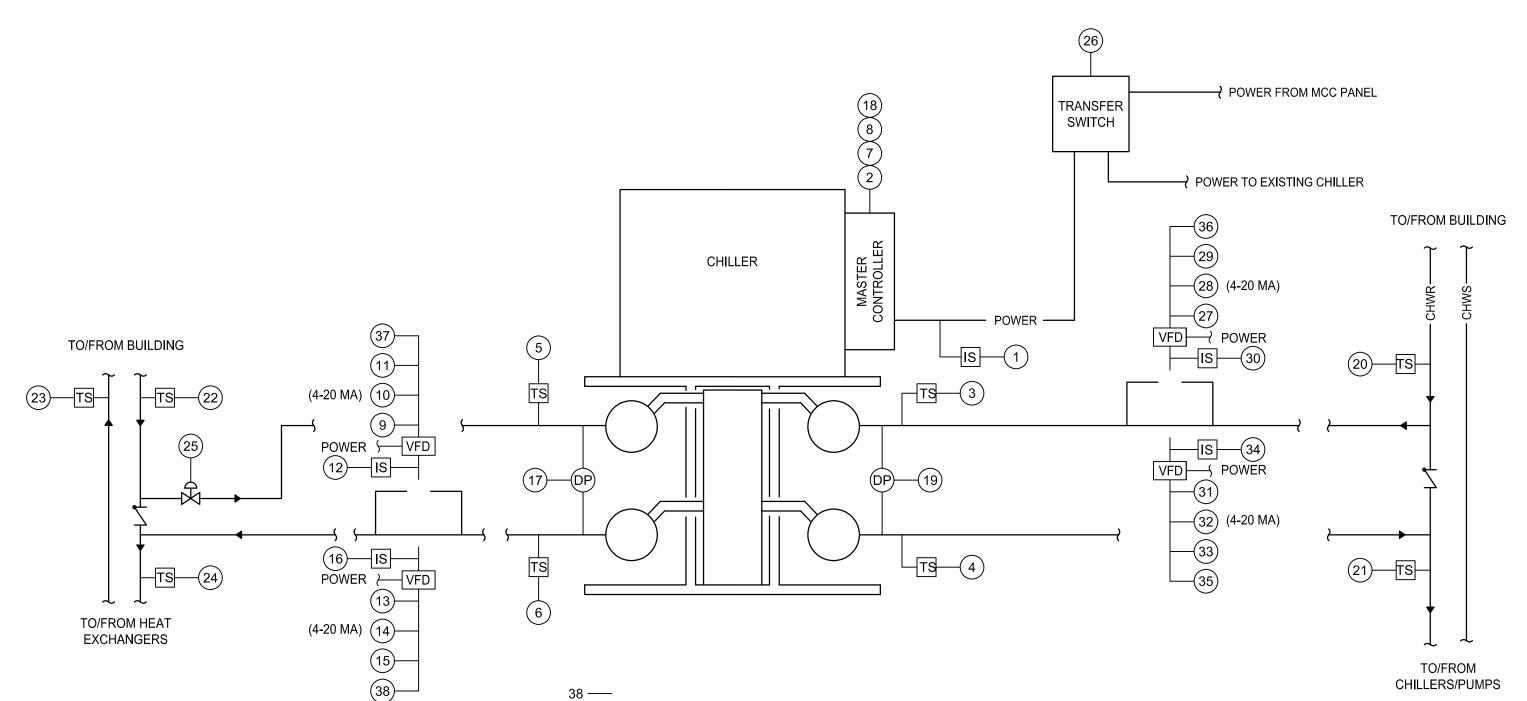
FLEXIBLE CONNECTOR


DIRECTION OF FLOW

SENSOR/SWITCH (X INDICATES P - PRESSURE T - TEMPERATURE


GAUGE (X INDICATES T - TEMPERATURE P - PRESSURE

PRESSURE/TEMPERATURE TAP


CIRCULATING PUMP

2 HEAT RECOVERY CHILLER PIPING DETAIL SCALE: NOT TO SCALE

3 BASE MOUNTED CIRCULATING PUMP SCALE: NOT TO SCALE

	CONTROL POINTS LIST						SOFTWARE POINTS						
SYSTE	YSTEM:												
		ŢŲ	15	ĮΣ	OUTPUT	LUE	-UE	щ			APH		
	HEAT RECOVERY CHILLER	ANALOG INPUT	ANALOG OUTPUT	DIGITAL INPUT	DIGITAL OUT	ANALOG VALUE	DIGITAL VALUE	SCHEDUL	TREND	ALARM	SHOW ON GRAPHIC		
	POINT DESCRIPTION										ਨ		
1	STATUS			Х						Х	Х		
2	ENABLE /DISABLE				Х						Х		
3	CHILLER EVAPORATOR ENTERING WATER TEMP	X				Х			X	Х	Х		
4	CHILLER EVAPORATOR LEAVING WATER TEMP	Х				Х			Х		Х		
5	CHILLER CONDENSER ENTERING WATER TEMP	Х	T			Χ			Х	Х	Х		
6	CHILLER CONDENSER LEAVING WATER TEMP	Х	Ī			Χ			Х		Х		
7	CHILLER ALARM			Х						Х	Х		
8	CHILLED WATER SUPPLY TEMP SETPOINT		X					Х		Х	Х		
9	PUMP START/STOP				Х			Х			Х		
10	SPEED		X				Х				Х		
11	ALARM			Х						Х	Х		
12	STATUS			Х						Х	Х		
13	PUMP START/STOP				Х			Х			Х		
14	SPEED		Х				Х				Х		
15	ALARM			Х						Х	Х		
16	STATUS			Х						Х	Х		
17	DIFFERENTIAL PRESSURE SENSOR EVAPORATOR	Х				Χ		Х			Х		
18	HOT WATER SUUPLY TEMP SETPOINT		Х					Х		Х	Х		
19	DIFFERENTILA PRESSURE SENSOR CONDENSER	Х				Х		Χ			Х		
20	UPSTREAM CHILLED WATER RETURN TEMP	Х				Х			Х	Х	Х		
21	DOWNSTREAM CHILLED WATER RETURN TEMP	Х				Х			Х	Х	Х		
22	UPSTREAM HOT WATER RETURN TEMP	Х				Х			Х	X	_		
23	HOT WATER SUPPLY TEMP	Х				Х			Х	Х	Х		
24	DOWNSTREAM HOT WATER RETURN TEMP	X				Х			X	X	X		
25	HOT WATER RETURN CONTROL VALVE				Х		Х				Х		
26	CHILLER POWER TRANSFER SWITCH		┖		Х		Х		X		Х		
27	PUMP START/STOP				Х			Χ			Х		
28	SPEED		X	-			Х				X		
29	ALARM			X						Х	Х		
30	STATUS		┞	Х						Х	Х		
31	PUMP START/STOP		ļ.,		Х			Χ			Х		
32	SPEED		X	-			Х			<u> </u>	X		
33	ALARM		<u> </u>	X						X	X		
34	STATUS		_	Х		<u>_</u>			<u> </u>	X	X		
35	SPEED FEEDBACK	X	<u> </u>			Х			X	_	Х		
36	SPEED FEEDBACK	X	\vdash			X			X	_	X		
37 38	SPEED FEEDBACK	X	_		$ldsymbol{ld}}}}}}$	X			X		X		

4 HEAT RECOVERY CHILLER CONTROL POINT LIST SCALE: NOT TO SCALE

BID DOCUMENTS DESCRIPTION REVISIONS PREPARED FOR UNIVERSITY OF ROCHESTER UTILITIES AND ENERGY MANAGEMENT DEPT. ROCHESTER, NEW YORK Centerpointe Corporate Park 375 Essjay Road, Suite 200 Williamsville, NY 14221 www.wendelcompanies.com p:716.688.0766 f:716.625.6825 KMRB - Heat Recovery Systems | M-001 DATE OF 05/11/2020 1 OF 1 Archive Drawing Number RGK

Project: University of Rochester | Del Monte

Project #: 402805

Measure: ECM 5 | Heat Recovery Systems

Date: 04/01/21

Estimated by: GHB Checked by: JGD

Approved by: JGD Vendor Quotes: No

Subcontractor Pricing: No

Item No.	Description	Material	Labor	Other ¹	Subtotal Cost
	1.1 Equipment				\$0.00
	A. Heat Recovery Chiller (RL Kistler Budget)	\$141,120.00	\$0.00	\$0.00	\$141,120.00
	B. Chilled Water Pumps	\$5,040.00	\$0.00	\$0.00	\$5,040.00
	C. Hot Water Pumps	\$5,040.00	\$0.00	\$0.00	\$5,040.00
	D. Variable Frequency Drives	\$7,459.20	\$0.00	\$0.00	\$7,459.20
	E. In-line Relief Fan	\$1,764.00	\$0.00	\$0.00	\$1,764.00
	F. Specialties	\$50,400.00	\$0.00	\$0.00	\$50,400.00
	1.2 Rigging & Equipment Setting				\$0.00
	A. Receiving & Storage	\$0.00	\$856.80	\$0.00	\$856.80
	B. Delivery	\$0.00	\$1,209.60	\$0.00	\$1,209.60
	C. Concrete Equipment Pads	\$907.20	\$1,915.20	\$0.00	\$2,822.40
	D. Crane & Rigging	\$0.00	\$806.40	\$2,016.00	\$2,822.40
	1.3 Piping				\$0.00
	A. Chilled Water Piping	\$0.00	\$0.00	\$90,720.00	\$90,720.00
	B. Hot Water Piping	\$0.00	\$0.00	\$90,720.00	\$90,720.00
	C. Core Drilling	\$0.00	\$4,032.00	\$0.00	\$4,032.00
	D. Insulation (Piping & Pumps)	\$4,536.00	\$7,560.00	\$0.00	\$12,096.00
	1.4 Electrical				\$0.00
	A. Electrical Chase / Conduit Installation	\$12,768.00	\$14,112.00	\$0.00	\$26,880.00
	B. Heat Recovery Chiller Breaker & Feeders	\$8,568.00	\$7,560.00	\$0.00	\$16,128.00
	C. CHW / HW Pumps Breakers & Feeders	\$9,273.60	\$10,080.00	\$0.00	\$19,353.60
	D. BAS Controls Electrical Connections	\$453.60	\$1,209.60	\$0.00	\$1,663.20
	E. Refrigerant Relief Fan Service	\$2,116.80	\$1,814.40	\$0.00	\$3,931.20
	1.5 Controls				\$0.00
	A. Heat Recovery Chiller Points	\$6,048.00	\$6,048.00	\$0.00	\$12,096.00
	B. CHW / HW Pumps VFD Points	\$9,676.80	\$9,676.80	\$0.00	\$19,353.60
	C. ASHRAE 15 System	\$8,064.00	\$12,096.00	\$0.00	\$20,160.00
	D. Misc. Control / Monitoring Points	\$7,257.60	\$7,257.60	\$0.00	\$14,515.20
	E. Modulating Control Valves	\$5,040.00	\$0.00	\$0.00	\$5,040.00
	1.6 Refrigerant Relief System				\$0.00
	A. Sidewall Louvers	\$2,217.60	\$3,528.00	\$0.00	\$5,745.60
	B. Ductwork	\$3,528.00	\$5,544.00	\$0.00	\$9,072.00
	C. Wall Penetrations	\$0.00	\$3,528.00	\$0.00	\$3,528.00
	1.7 Start-up / Commissioning				\$0.00
	A. CHW / HW Pump & Motor Alignments	\$0.00	\$3,024.00	\$0.00	\$3,024.00
	B. Testing & Balancing Services	\$0.00	\$1,512.00	\$0.00	\$1,512.00
	C. Factory Start-Up	\$0.00	\$3,528.00	\$0.00	\$3,528.00
	1.8 Warranty				\$0.00
	A. 2-Year Parts & Labor Warranty	\$0.00	\$0.00	\$20,160.00	\$20,160.00
		70.00	73.33	7=0,10000	720,700.00
3.0	General Costs: Bonds	\$0.00	\$0.00	\$12,637.65	\$12,637.65
3.1	General Costs: Bonds General Costs: Other	\$0.00	\$0.00	\$12,637.65	\$12,637.65
3.⊥	deneral costs. Other	\$0.00	\$0.00	φ12,037.05	φ12,037.00
				Subtotal:	\$627,068

Notes

¹ Other inclues misc. material and equipment necessary for installation, communication, insurances, permits, bonding. Prior to final pricing and subcontract execution these values will be required to be itemized by the bidder.

Contingency:

Escalation Reserve:

Engineering Procurement & Construction MGMT:

5.0%

5.0%

25.0%

\$31,353

\$31,353

\$156,767

ECM 5: Heat Recovery Systems

The following is a General Scope of Work for the University of Rochester Energy Conservation Master Plan. The intent of this document is to provide a general outline of the project scope of work for developing firm project costs. Project Design Documents, including construction and permit sets, will be developed following approval of the proposed project by University of Rochester.

Project Job Site(s)

No.	Building Name
1	Del Monte

*** NOT FOR CONSTRUCTION ***

The scope of this project consists of providing all labor and material, along with providing all equipment necessary to complete and make fully operational the systems defined in this specification. The project is intended to follow University of Rochester design guidelines. All products, procedures, and completed systems are intended to comply with ASHRAE standards. While this document does not include specification details, the final project manual will be produced that includes specifications that are aligned with University of Rochester design standards.

It is our expectation that the subcontractor submitting a quotation is familiar with the University of Rochester design standards and has accounted for the impact these standards have on pricing, including but not limited, material, labor and general conditions.

1.0 General

- A. **Documents |** At the start of construction, submit manufacturer's product data for materials (including but not limited to: sensors, actuators, controllers, cabinets, wire & conduit), P&ID drawings, coordination & layout drawings, and other commonly required submittals per University of Rochester standards.
- B. **Documents |** Maintaining of all Project Record Documents as detailed in this Contract Document.
- C. **Documents |** Document and <u>Submit</u> a summary of existing conditions including digital photos of the job site prior to the start of work.
 - a. Examine sizes and conditions of existing equipment.
- D. Material Handling | Label all control wiring.
- E. Material Handling | Delivery of the material and equipment to job site.
- F. Material Handling | A location within the facility will be identified for the subcontractor to store all material and equipment. The subcontract is required to keep this area organized and accessible as well as free of any loose material or garbage.
- G. Material Handling | Provide moving, storage and protection for all University of Rochester's existing equipment, furniture and cabinetry on job site to perform contract work. Protect floor in areas used to store furniture.
- H. **Installation Requirements** | Provide all associated equipment, and all particulars/specialties needed to make the provided equipment fully functional and perform its intended use.
- I. Installation Requirements | Install all equipment per manufacturer's instructions
- J. Installation Requirements | Paint and finish as needed to match preconstruction conditions.
- K. Installation Requirements | Subcontractor is responsible for all cutting and patching associated with the work.
- L. **Permits** | Subcontractor with Contractor approval will submit application for electric service permits if necessary. The Subcontractor will pay the cost of the permits.
- M. **Permits |** Building permit fees will be paid by Wendel.
- N. **Inspections & Codes |** All electrical work must be performed by a licensed electrical contractor and <u>include a valid underwriters certification</u> at the completion of the project as part of the close out O&M package.
- O. **Inspections & Codes |** Provide all electrical connections required in accordance with all Federal, State, and Local Codes.
- P. Inspections & Codes | Field verify all voltages prior to ordering any equipment.

- Q. **Installation Requirements** | Removal of all waste generated by Work per EPA requirements, University of Rochester standards, and local authority regulations.
- R. Inspections & Codes | Test, adjust, and balance all equipment and materials provided, or modified under this Subcontract.
- S. Inspections & Codes | Provide all mechanical connections required in accordance with all Federal, State, and Local Codes.
- T. **Coordination |** Coordination of equipment and utility service shutdowns with 2-weeks notice to the facility and Wendel. All work requiring a shutdown will be completed during normal business hours.
- U. Closeout | Provide operator training and operation manuals
- V. Closeout | Starting Systems
 - 1. Coordinate schedule for start-up of various equipment and systems.
 - 2. Notify Wendel and facility seven days prior to start-up of each item.
 - 3. Verify that each piece of equipment or system has been checked for proper lubrication, drive rotation, belt tension, control sequence, or other conditions which may cause damage.
 - 4. Verify that tests, meter readings, and specified electrical characteristics agree with those required by the equipment or system manufacturer.
 - Verify wiring and support components for equipment are complete and tested. Execute start-up under supervision of responsible Contractors' personnel in accordance with manufacturers' instructions.
 - 6. Provide manufacturer authorized representative to be present at site to inspect, check and approve equipment or system installation prior to start-up, and to supervise placing equipment or system in operation.
- W. **Commissioning |** Subcontractor shall assign representatives with expertise and authority to act on its behalf to participate in and perform commissioning process activities under the direction of Wendel. Wendel will develop commissioning procedures the subcontractor will be responsible to execute the procedure under Wendel's supervision.
- X. **Trending |** All points connected to the building management system shall be trended and have data stored for three years at a minimum of one (1) hour intervals. All trends shall be remotely accessible by Wendel or another authorized and University of Rochester approved third party.
- Y. **Trending |** Trended data will be viewable in tabular and graphic form in conjunction with current BMS formatting standards at University of Rochester. Subcontractor to integrate into existing BMS. This data will also have the ability to be exported into a csv. Formatted file.
- Z. **OVERALL SYSTEM** | The new control points added shall fully integrate into the existing building management system. The required integration shall include the creation of custom graphics and the compilation and display of all devices and objects on the existing Schneider Electric EcoStruxure interface. All graphic displays will reside on the existing Schneider Electric EcoStruxure interface and be modified accordingly. In addition, the system shall perform the said integration through the use of BACnet/IP communications).
- AA. **Key Definition |** Provide furnish and install
- BB. Key Definition | Wendel maybe referred to as, Wendel, Contractor, or Design/Builder

1.1 ECM 5 | Heat Recovery System

A. Heat Recovery Chiller

1. <u>Install</u> Heat Recovery Chiller 120 nominal tons with a condenser water leaving temperature of 140°F and a chilled water supply temperature of 44°F. New heat recovery chiller shall utilized R410a refrigerant.

[CUT SHEET PROVIDED

B. Chilled Water Loop Modifications

1. Primary HR Cooling Loop Pump & Motor | Provide two (2) base mounted pump and motor sets with a capacity of 216 gpm at 55ft of head and premium efficiency motor with 7.5 Hp and class G insulation. Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation.

[CUT SHEET PROVIDED

- 2. 4" Chilled Water Pipe | Provide 200 linear feet of schedule 40 steel 4 chilled water pipe. Refer to Exhibit D for layout and schematic. Include valves, mounting and through penetrations. Note pipe length is for the total length of both supply and return piping, it also does not include fitting factors. Provide pipe insulation on all new piping per the State of New York Energy Conservation Code.
- 3. Strainer & Filter | Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- **4. Expansion Tank |** Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 5. Air Separator | Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 6. Refill / Purge / Water Treatment | All existing loops should be isolated either through the use of shutoff valve or frozen with new valves installed. The intent is to NOT drain any existing system beyond what is necessary to perform the work. All new work will be filled, the water will be treated and the system will be vented of air.
- 7. **Balance** | Provide hydronic balancing of the new equipment and interconnections to each loop.

C. Hot Water Loop Modifications

1. **Primary HR Cooling Loop Pump & Motor |** Provide two (2) base mounted pump and motor sets with a capacity of 307 gpm at 75 ft of head and premium efficiency motor with 10 Hp and class G insulation. Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation.

[CUT SHEET PROVIDED

- 2. **6" Hot Water Water Pipe |** Provide 200 linear feet of schedule 40 steel 6 hot water pipe. Refer to Exhibit D for layout and schematic. Include valves, mounting and through penetrations. Note pipe length is for the total length of both supply and return piping, it also does not include fitting factors. Provide pipe insulation on all new piping per the State of New York Energy Conservation Code.
- 3. **Strainer & Filter |** Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 4. **Expansion Tank |** Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.

- 5. Air Separator | Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 6. Refill / Purge / Water Treatment | All existing loops should be isolated either through the use of shutoff valve or frozen with new valves installed. The intent is to NOT drain any existing system beyond what is necessary to perform the work. All new work will be filled, the water will be treated and the system will be vented of air.
- 7. **Balance** | Provide hydronic balancing of the new equipment and interconnections to each loop.

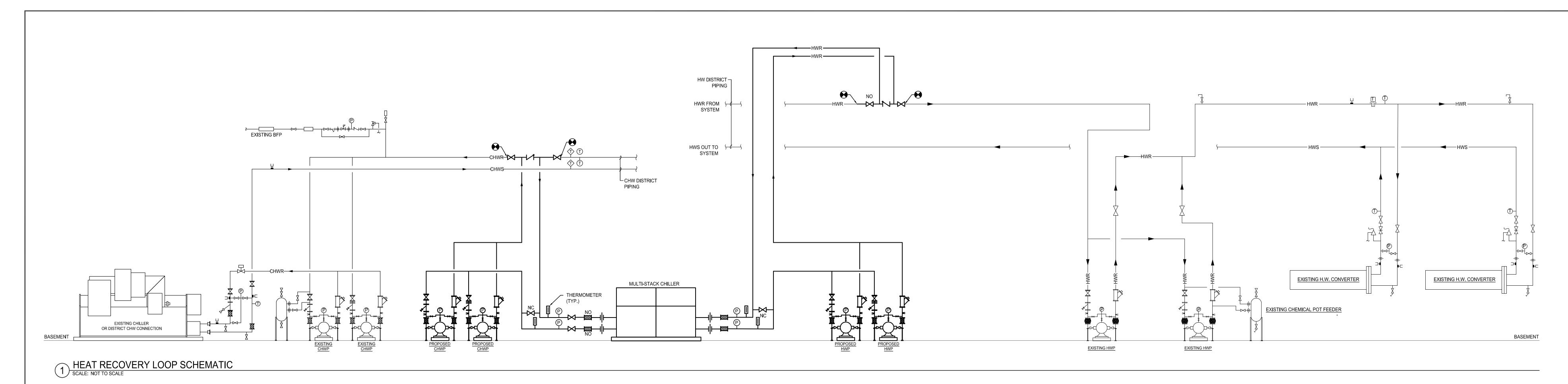
D. Refrigerant Alarm & Exhaust

- 1. **Refrigerant Alarm** | Provide new refrigerant alarm with appropriate sensors, annunciators, strobes, signage, etc. as required per the local & state code.
- 2. **Refrigerant Ventilation |** Provide new inline exhaust fan, ductwork, specialties, controls, and wall penetration in existing chase for new refrigerant exhaust system.

DI. Electrical | Pumps & Fans

- 1. New VSD | Install ABB VFD with integrated bypass for Hp as noted for Primary HR Cooling Loop and Heat Rejection Primary Loop Pumps. Provide mounting, power wire as noted in table below, EMT conduit, through penetrations, electrical connections and specialties.
- 2. **Controls VSD |** Provide connection of VSD to building management system. Provide control points including, % speed, Hz, kW, with up to three years or trending in 1 hour intervals. Provide mounting, control wire, power wire, EMT conduit, through penetrations, electrical connections and specialties.
- 3. **Refrigerant Fan |** Install new combination motor starter / disconnect to serve new refrigerant exhaust fan.

DII. Electrical | Power Distribution


- 1. **Chiller Connection** | Provide new 300A breaker in the power switchgear. Provide 480V 300A disconnect, including mounting and verification of clearances. Provide 350 Kcmil wire and 4 conduit including hangers, supports, through penetrations, terminations and other specialties.
- 2. Panel Board for Pumps | Provide new 20A 480V breaker in existing distribution gear for Primary HR Cooling Loop Pump. For each pump, provide three (3) #12 conductors plus ground in 3/4 conduit. Provide mounting, connections, verification of clearances. Connect to new VSD.
- 3. Panel Board for Pumps | Provide new 25A 480V breaker in existing distribution gear for Heat Rejection Primary Loop Pumps. For each pump, provide three (3) #12 conductors plus ground in 3/4 conduit. Provide mounting, connections, verification of clearances. Connect to new VSD.

DIII. Controls

- 1. Heat Recovery System Controls:
 - a. Provide a component panel enclosure with new pneumatic devices and a main controller enclosure.
 - b. Provide 10K thermistor immersion temperature sensors to monitor the hot water supply and return temperature at the chiller, pump loop and each heat exchanger.
 - c. Provide relays for start/stop and current sensors for status at each pump VFD (or starters for the inline pumps) and wire to the new controller.
 - d. Provide controller inputs to monitor each VFD alarm and controller outputs control each VFD speed.
 - e. Provide a new differential pressure sensor for the new lead/lag set of pumps for VFD speed control and wire to the new controller.
 - f. Provide and install 10K thermistor immersion temperature sensors to monitor the chilled water supply and return temperature at the chiller, pump loops, water to water heat pump and dry cooler.

- g. Provide relays for start/stop and current sensors for status at each pump VFD and wire to the new controller. This includes the pump VFDs for the water to water heat exchanger.
- h. Provide controller inputs to monitor each VFD alarm and controller outputs control each VFD speed.
- i. Provide a new differential pressure sensor for the CHW side and HW side of the WWHP and wire to the new controller.
- j. Provide point capacity for start/stop, alarm and status at the WWHP master control panel and wire to the new controller.
- k. Provide point capacity for a cooling reset, heating reset and heater alarm at the chiller and wire to the new controller.
- I. Provide a new pneumatic 3-way condenser water bypass valve and run poly tubing in EMT back to the component panel.
- m. Furnish and install a new refrigerant monitor and wire to the new controller.
- n. Provide Programming and Points to achieve the following:
 - (1) HR Chiller Input power in kW
 - (2) Heat Rejection Loop Supply Temp, Return Temp and Pump Speed
 - (3) HR Cooling Loop Supply Temp, Return Temp and Pump Speed
 - (4) Building Chilled Water Loop Supply Temp, Return Temp and Pump Speed
 - (5) Building Hot Water Loop Supply Temp, Return Temp and Pump Speed

HVAC ABBREVIATIONS

BACKFLOW PREVENTER CHILLED WATER RETURN CHILLED WATER SUPPLY

CHILLED WATER CIRCULATING PUMP HOT WATER HOT WATER RETURN HOT WATER SUPPLY

HOT WATER CIRCULATING PUMP

NORMALLY CLOSED

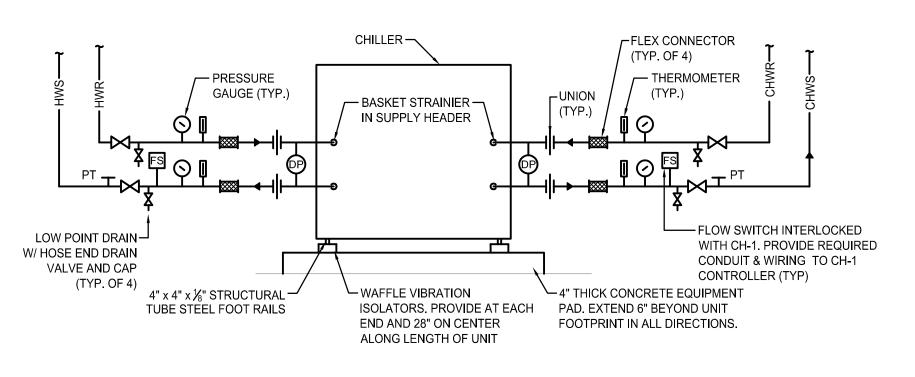
NORMALLY OPEN

HOT WATER RETURN

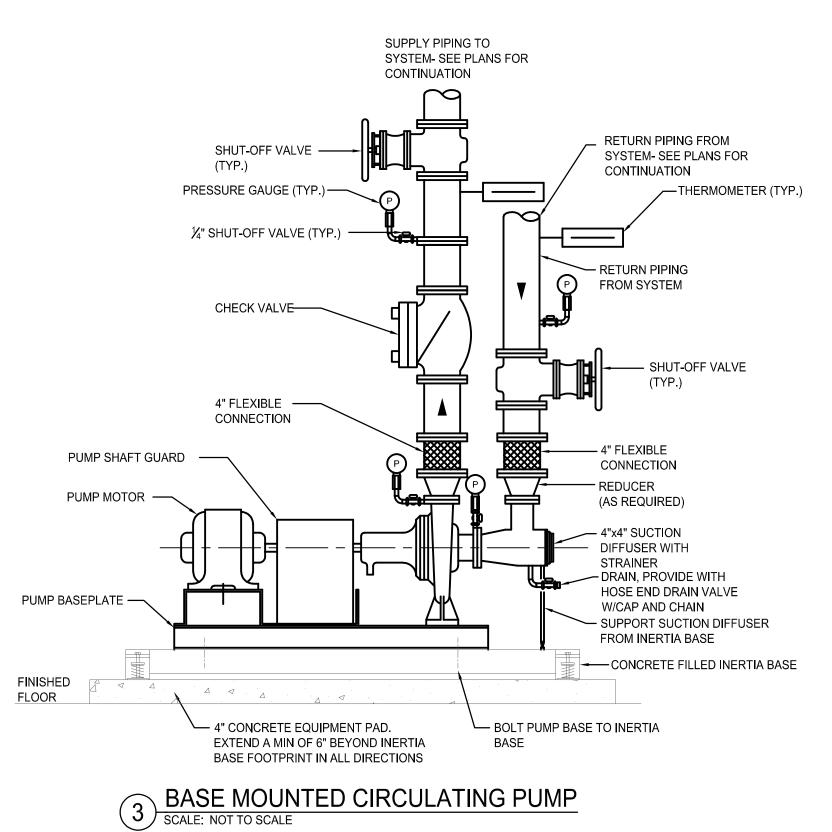
HVAC SYMBOLS - PIPING DESIGNATIONS

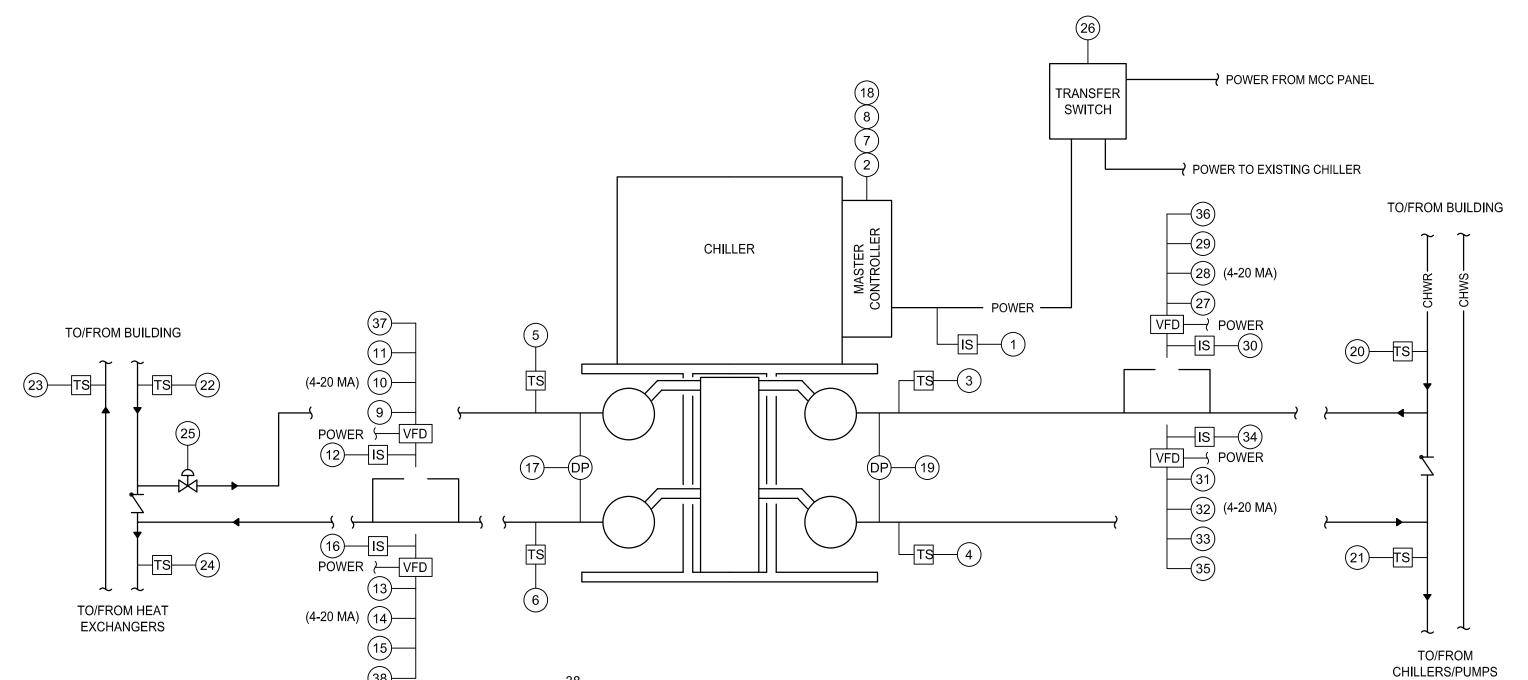
EXISTING PIPING (REFER TO DESIGNATIONS BELOW FOR TYPE) PIPING TO BE REMOVED (REFER TO DESIGNATIONS BELOW FOR TYPE) HOT WATER SUPPLY

CHILLED WATER SUPPLY ——CHWS—— CHILLED WATER RETURN CONDENSER WATER SUPPLY CONDENSER WATER RETURN POINT OF CONNECTION


HVAC SYMBOLS - VALVES AND SPECIALTIES SHUT-OFF VALVE (GATE, BALL, ETC.) CHECK VALVE

FLEXIBLE CONNECTOR DIRECTION OF FLOW


SENSOR/SWITCH (X INDICATES T - TEMPERATURE GAUGE (X INDICATES T - TEMPERATURE P - PRESSURE F - FLOW)


PRESSURE/TEMPERATURE TAP CIRCULATING PUMP

4" CONCRETE EQUIPMENT PAD. EXTEND A MIN OF 6" BEYOND INERTIA BASE FOOTPRINT IN ALL DIRECTIONS

2 HEAT RECOVERY CHILLER PIPING DETAIL SCALE: NOT TO SCALE

			ARD POI						WAF NTS		
SYSTE	M:										Τ
	HEAT RECOVERY CHILLER	ANALOG INPUT	ANALOG OUTPUT	DIGITAL INPUT	DIGITAL OUTPUT	ANALOG VALUE	DIGITAL VALUE	SCHEDULE	TREND	ALARM	
	POINT DESCRIPTION	`	◂								
1	STATUS		Т	Х						Х	Ť
2	ENABLE /DISABLE		\vdash	Ħ	Х		П				t
3	CHILLER EVAPORATOR ENTERING WATER TEMP	Х				Х	П		Х	Х	t
4	CHILLER EVAPORATOR LEAVING WATER TEMP	Х	T			Х	П		Х		t
5	CHILLER CONDENSER ENTERING WATER TEMP	Х	T			Х	П		Х	Х	t
6	CHILLER CONDENSER LEAVING WATER TEMP	Х	Г			Х	П		Х		t
7	CHILLER ALARM			Х						Х	Ť
8	CHILLED WATER SUPPLY TEMP SETPOINT		Х					Х		Х	Ť
9	PUMP START/STOP				Х		П	Х			Ī
10	SPEED		Х				Х	П			T
11	ALARM			Х			П			Х	Ť
12	STATUS			Х			П			Х	T
13	PUMP START/STOP				Х		П	Х			Ť
14	SPEED		Х				Х				T
15	ALARM			Х						Х	T
16	STATUS			Х						Х	T
17	DIFFERENTIAL PRESSURE SENSOR EVAPORATOR	Х				Х		Χ			Ī
18	HOT WATER SUUPLY TEMP SETPOINT		Х					Х		Х	T
19	DIFFERENTILA PRESSURE SENSOR CONDENSER	Х				Х		Χ			Ī
20	UPSTREAM CHILLED WATER RETURN TEMP	Х				Χ				Х	I
21	DOWNSTREAM CHILLED WATER RETURN TEMP	Х				Χ			Х	Х	
22	UPSTREAM HOT WATER RETURN TEMP	Х		L		Х			Х	Х	
23	HOT WATER SUPPLY TEMP	Х				Х			Х	Х	
24	DOWNSTREAM HOT WATER RETURN TEMP	Х		L		Х			Х	Х	
25	HOT WATER RETURN CONTROL VALVE		L	$oxed{oxed}$	Х		Х				l
26	CHILLER POWER TRANSFER SWITCH		L		Х		Х		Х		1
27	PUMP START/STOP		<u> </u>	<u> </u>	Х			Х			ļ
28	SPEED		X	-			Х			L	ļ
29	ALARM		oxdot	X		Ш				Х	1
30	STATUS		丄	X		Ш	Ш			Х	1
31	PUMP START/STOP		oxdot	oxdot	Х	Ш	Ш	Х		L	1
32	SPEED		X	oxdot		Ш	Х	\square		L	1
33	ALARM		lacksquare	X		Ш	Щ			Х	1
34	STATUS		oxdot	X		Ш	Ш	\square		Х	1
35	SPEED FEEDBACK	Х	₽	$ldsymbol{oxed}$		Х	Ш		Х	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1
36	SPEED FEEDBACK	Х	\vdash	\vdash		Х	Ш	Щ,	Х	$ldsymbol{ld}}}}}}}$	1
37 38	SPEED FEEDBACK SPEED FEEDBACK	X	Щ	oxdot		X	Ш		X	L	+

HEAT RECOVERY CHILLER CONTROL POINT LIST
SCALE: NOT TO SCALE

	12/29/20	E	BID DOCUMENTS		
NO.	DATE		DESCRIPTION		
		REVISION	ONS		
		PREPAREI			
		UNIVERSITY OF		T DEDT	
		UTILITIES AND ENERGY ROCHESTER,		I DEPT.	
		PREPARE	D BY		
			ndel		

wendel DIRECT MATERIAL & LABOR | COST ESTIMATE

Project: University of Rochester | BMEO Project #: 402805

Measure: ECM 5 | Heat Recovery Systems Approved by: JGD Date: 04/01/21 Vendor Quotes: No Subcontractor Pricing: No

Estimated by: GHB

Checked by: JGD

Item No.	Description	Material	Labor	Other ¹	Subtotal Cost
	1.1 Equipment				\$0.00
	A. Heat Recovery Chiller (RL Kistler Budget)	\$105,840.00	\$0.00	\$0.00	\$105,840.00
	B. Chilled Water Pumps	\$3,780.00	\$0.00	\$0.00	\$3,780.00
	C. Hot Water Pumps	\$3,780.00	\$0.00	\$0.00	\$3,780.00
	D. Variable Frequency Drives	\$5,594.40	\$0.00	\$0.00	\$5,594.40
	E. In-line Relief Fan	\$1,323.00	\$0.00	\$0.00	\$1,323.00
	F. Specialties	\$37,800.00	\$0.00	\$0.00	\$37,800.00
	1.2 Rigging & Equipment Setting				\$0.00
	A. Receiving & Storage	\$0.00	\$642.60	\$0.00	\$642.60
	B. Delivery	\$0.00	\$907.20	\$0.00	\$907.20
	C. Concrete Equipment Pads	\$680.40	\$1,436.40	\$0.00	\$2,116.80
	D. Crane & Rigging	\$0.00	\$604.80	\$1,512.00	\$2,116.80
	1.3 Piping				\$0.00
	A. Chilled Water Piping	\$0.00	\$0.00	\$68,040.00	\$68,040.00
	B. Hot Water Piping	\$0.00	\$0.00	\$68,040.00	\$68,040.00
	C. Core Drilling	\$0.00	\$3,024.00	\$0.00	\$3,024.00
	D. Insulation (Piping & Pumps)	\$3,402.00	\$5,670.00	\$0.00	\$9,072.00
	1.4 Electrical				\$0.00
	A. Electrical Chase / Conduit Installation	\$12,768.00	\$14,112.00	\$0.00	\$26,880.00
	B. Heat Recovery Chiller Breaker & Feeders	\$6,426.00	\$5,670.00	\$0.00	\$12,096.00
	C. CHW / HW Pumps Breakers & Feeders	\$6,955.20	\$7,560.00	\$0.00	\$14,515.20
	D. BAS Controls Electrical Connections	\$340.20	\$907.20	\$0.00	\$1,247.40
	E. Refrigerant Relief Fan Service	\$1,587.60	\$1,360.80	\$0.00	\$2,948.40
	1.5 Controls				\$0.00
	A. Heat Recovery Chiller Points	\$4,536.00	\$4,536.00	\$0.00	\$9,072.00
	B. CHW / HW Pumps VFD Points	\$7,257.60	\$7,257.60	\$0.00	\$14,515,20
	C. ASHRAE 15 System	\$6,048.00	\$9,072.00	\$0.00	\$15,120.00
	D. Misc. Control / Monitoring Points	\$5,443.20	\$5,443.20	\$0.00	\$10,886.40
	E. Modulating Control Valves	\$3,780.00	\$0.00	\$0.00	\$3,780.00
	1.6 Refrigerant Relief System		-		\$0.00
	A. Sidewall Louvers	\$1,663.20	\$2,646.00	\$0.00	\$4,309.20
	B. Ductwork	\$2,646.00	\$4,158.00	\$0.00	\$6,804.00
	C. Wall Penetrations	\$0.00	\$2,646.00	\$0.00	\$2,646.00
	1.7 Start-up / Commissioning		. ,	, , , , , ,	\$0.00
	A. CHW / HW Pump & Motor Alignments	\$0.00	\$2,268.00	\$0.00	\$2,268.00
	B. Testing & Balancing Services	\$0.00	\$1,134.00	\$0.00	\$1,134.00
	C. Factory Start-Up	\$0.00	\$2,646.00	\$0.00	\$2,646.00
	1.8 Warranty				\$0.00
	A. 2-Year Parts & Labor Warranty	\$0.00	\$0.00	\$15,120.00	\$15,120.00
		73.03		****	7107120100
3.0	General Costs: Bonds	\$0.00	\$0.00	\$9,619.36	\$9,619.36
3.1	General Costs: Other	\$0.00	\$0.00	\$9,619.36	\$9,619.36
		72.22		. ,	
				Subtotal:	\$477,303

Notes

¹ Other inclues misc. material and equipment necessary for installation, communication, insurances, permits, bonding. Prior to final pricing and subcontract execution these values will be required to be itemized by the bidder.

Contingency:

Escalation Reserve:

Engineering Procurement & Construction MGMT:

5.0%

5.0%

25.0%

\$23,865

\$23,865

\$119,326

ECM 5: Heat Recovery Systems

The following is a General Scope of Work for the University of Rochester Energy Conservation Master Plan. The intent of this document is to provide a general outline of the project scope of work for developing firm project costs. Project Design Documents, including construction and permit sets, will be developed following approval of the proposed project by University of Rochester.

Project Job Site(s)

No.		Building Name
1	BMEO	

*** NOT FOR CONSTRUCTION ***

The scope of this project consists of providing all labor and material, along with providing all equipment necessary to complete and make fully operational the systems defined in this specification. The project is intended to follow University of Rochester design guidelines. All products, procedures, and completed systems are intended to comply with ASHRAE standards. While this document does not include specification details, the final project manual will be produced that includes specifications that are aligned with University of Rochester design standards.

It is our expectation that the subcontractor submitting a quotation is familiar with the University of Rochester design standards and has accounted for the impact these standards have on pricing, including but not limited, material, labor and general conditions.

1.0 General

- A. **Documents |** At the start of construction, submit manufacturer's product data for materials (including but not limited to: sensors, actuators, controllers, cabinets, wire & conduit), P&ID drawings, coordination & layout drawings, and other commonly required submittals per University of Rochester standards.
- B. **Documents |** Maintaining of all Project Record Documents as detailed in this Contract Document.
- C. **Documents |** Document and <u>Submit</u> a summary of existing conditions including digital photos of the job site prior to the start of work.
 - a. Examine sizes and conditions of existing equipment.
- D. Material Handling | Label all control wiring.
- E. Material Handling | Delivery of the material and equipment to job site.
- F. Material Handling | A location within the facility will be identified for the subcontractor to store all material and equipment. The subcontract is required to keep this area organized and accessible as well as free of any loose material or garbage.
- G. Material Handling | Provide moving, storage and protection for all University of Rochester's existing equipment, furniture and cabinetry on job site to perform contract work. Protect floor in areas used to store furniture.
- H. **Installation Requirements** | Provide all associated equipment, and all particulars/specialties needed to make the provided equipment fully functional and perform its intended use.
- I. Installation Requirements | Install all equipment per manufacturer's instructions
- J. Installation Requirements | Paint and finish as needed to match preconstruction conditions.
- K. **Installation Requirements** | Subcontractor is responsible for all cutting and patching associated with the work.
- L. **Permits** | Subcontractor with Contractor approval will submit application for electric service permits if necessary. The Subcontractor will pay the cost of the permits.
- M. **Permits** | Building permit fees will be paid by Wendel.
- N. Inspections & Codes | All electrical work must be performed by a licensed electrical contractor and include a valid underwriters certification at the completion of the project as part of the close out O&M package.
- O. **Inspections & Codes |** Provide all electrical connections required in accordance with all Federal, State, and Local Codes.
- P. Inspections & Codes | Field verify all voltages prior to ordering any equipment.

- Q. **Installation Requirements** | Removal of all waste generated by Work per EPA requirements, University of Rochester standards, and local authority regulations.
- R. Inspections & Codes | Test, adjust, and balance all equipment and materials provided, or modified under this Subcontract.
- S. Inspections & Codes | Provide all mechanical connections required in accordance with all Federal, State, and Local Codes.
- T. **Coordination |** Coordination of equipment and utility service shutdowns with 2-weeks notice to the facility and Wendel. All work requiring a shutdown will be completed during normal business hours.
- U. Closeout | Provide operator training and operation manuals
- V. Closeout | Starting Systems
 - 1. Coordinate schedule for start-up of various equipment and systems.
 - 2. Notify Wendel and facility seven days prior to start-up of each item.
 - 3. Verify that each piece of equipment or system has been checked for proper lubrication, drive rotation, belt tension, control sequence, or other conditions which may cause damage.
 - 4. Verify that tests, meter readings, and specified electrical characteristics agree with those required by the equipment or system manufacturer.
 - 5. Verify wiring and support components for equipment are complete and tested. Execute start-up under supervision of responsible Contractors' personnel in accordance with manufacturers' instructions.
 - 6. Provide manufacturer authorized representative to be present at site to inspect, check and approve equipment or system installation prior to start-up, and to supervise placing equipment or system in operation.
- W. **Commissioning |** Subcontractor shall assign representatives with expertise and authority to act on its behalf to participate in and perform commissioning process activities under the direction of Wendel. Wendel will develop commissioning procedures the subcontractor will be responsible to execute the procedure under Wendel's supervision.
- X. **Trending |** All points connected to the building management system shall be trended and have data stored for three years at a minimum of one (1) hour intervals. All trends shall be remotely accessible by Wendel or another authorized and University of Rochester approved third party.
- Y. **Trending** | Trended data will be viewable in tabular and graphic form in conjunction with current BMS formatting standards at University of Rochester. Subcontractor to integrate into existing BMS. This data will also have the ability to be exported into a csv. Formatted file.
- Z. **OVERALL SYSTEM** | The new control points added shall fully integrate into the existing building management system. The required integration shall include the creation of custom graphics and the compilation and display of all devices and objects on the existing Siemens Apogee BMS interface. All graphic displays will reside on the existing Siemens Apogee BMS interface and be modified accordingly. In addition, the system shall perform the said integration through the use of BACnet/IP communications).
- AA. **Key Definition | Provide furnish and install**
- BB. Key Definition | Wendel maybe referred to as, Wendel, Contractor, or Design/Builder

1.1 ECM 5 | Heat Recovery System

A. Heat Recovery Chiller

1. <u>Install</u> Heat Recovery Chiller 90 nominal tons with a condenser water leaving temperature of 140°F and a chilled water supply temperature of 44°F. New heat recovery chiller shall utilized R410a refrigerant.

[CUT SHEET PROVIDED

B. Chilled Water Loop Modifications

1. Primary HR Cooling Loop Pump & Motor | Provide two (2) base mounted pump and motor sets with a capacity of 170 gpm at 55ft of head and premium efficiency motor with 5 Hp and class G insulation. Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation.

[CUT SHEET PROVIDED

- 2. 4" Chilled Water Pipe | Provide 200 linear feet of schedule 40 steel 4 chilled water pipe.

 Refer to Exhibit D for layout and schematic. Include valves, mounting and through penetrations. Note pipe length is for the total length of both supply and return piping, it also does not include fitting factors. Provide pipe insulation on all new piping per the State of New York Energy Conservation Code.
- 3. Strainer & Filter | Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- **4. Expansion Tank |** Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- **5. Air Separator |** Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 6. Refill / Purge / Water Treatment | All existing loops should be isolated either through the use of shutoff valve or frozen with new valves installed. The intent is to NOT drain any existing system beyond what is necessary to perform the work. All new work will be filled, the water will be treated and the system will be vented of air.
- 7. **Balance** | Provide hydronic balancing of the new equipment and interconnections to each loop.

C. Hot Water Loop Modifications

1. **Primary HR Cooling Loop Pump & Motor |** Provide two (2) base mounted pump and motor sets with a capacity of 242 gpm at 65 ft of head and premium efficiency motor with 7.5 Hp and class G insulation. Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation.

[CUT SHEET PROVIDED

- 2. **4" Hot Water Water Pipe|** Provide 200 linear feet of schedule 40 steel 4 hot water pipe. Refer to Exhibit D for layout and schematic. Include valves, mounting and through penetrations. Note pipe length is for the total length of both supply and return piping, it also does not include fitting factors. Provide pipe insulation on all new piping per the State of New York Energy Conservation Code.
- 3. **Strainer & Filter |** Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 4. **Expansion Tank |** Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.

- 5. Air Separator | Provide as part of the installation, housekeeping pad, connections, mounting, hangers valves, and other specialties as necessary to provide a complete installation as outlined in the typical detail provided in Exhibit D.
- 6. Refill / Purge / Water Treatment | All existing loops should be isolated either through the use of shutoff valve or frozen with new valves installed. The intent is to NOT drain any existing system beyond what is necessary to perform the work. All new work will be filled, the water will be treated and the system will be vented of air.
- 7. **Balance |** Provide hydronic balancing of the new equipment and interconnections to each loop.

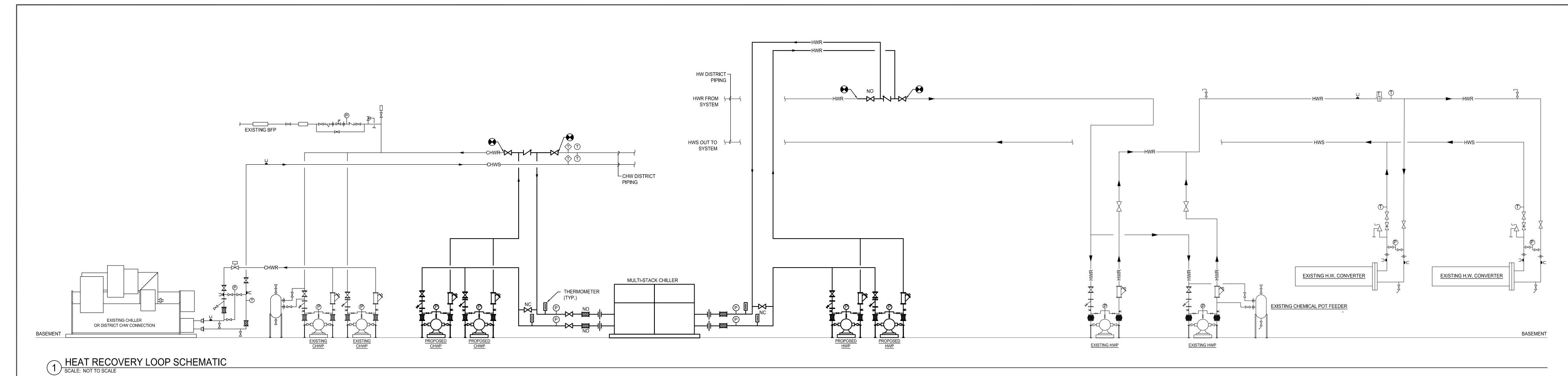
D. Refrigerant Alarm & Exhaust

- 1. **Refrigerant Alarm** | Provide new refrigerant alarm with appropriate sensors, annunciators, strobes, signage, etc. as required per the local & state code.
- 2. **Refrigerant Ventilation |** Provide new inline exhaust fan, ductwork, specialties, controls, and wall penetration in existing chase for new refrigerant exhaust system.

DI. Electrical | Pumps & Fans

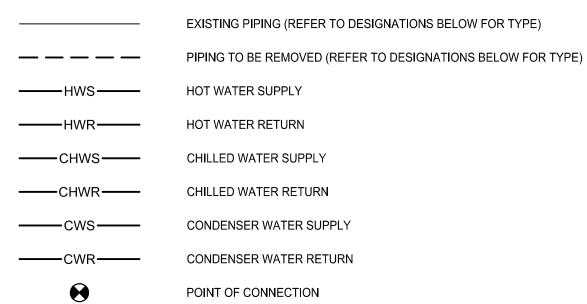
- 1. New VSD | Install ABB VFD with integrated bypass for Hp as noted for Primary HR Cooling Loop and Heat Rejection Primary Loop Pumps. Provide mounting, power wire as noted in table below, EMT conduit, through penetrations, electrical connections and specialties.
- 2. **Controls VSD |** Provide connection of VSD to building management system. Provide control points including, % speed, Hz, kW, with up to three years or trending in 1 hour intervals. Provide mounting, control wire, power wire, EMT conduit, through penetrations, electrical connections and specialties.
- 3. **Refrigerant Fan |** Install new combination motor starter / disconnect to serve new refrigerant exhaust fan.

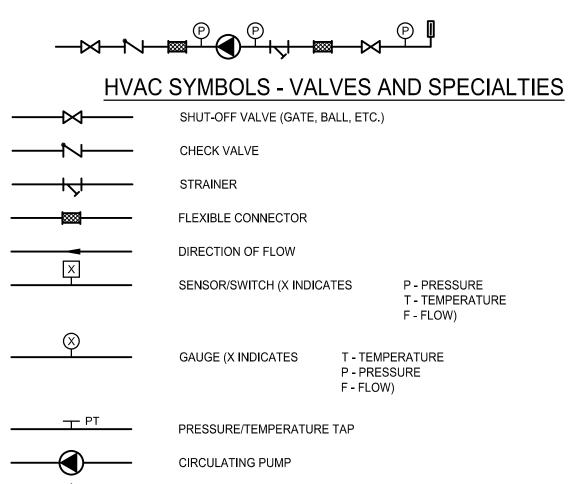
DII. Electrical | Power Distribution

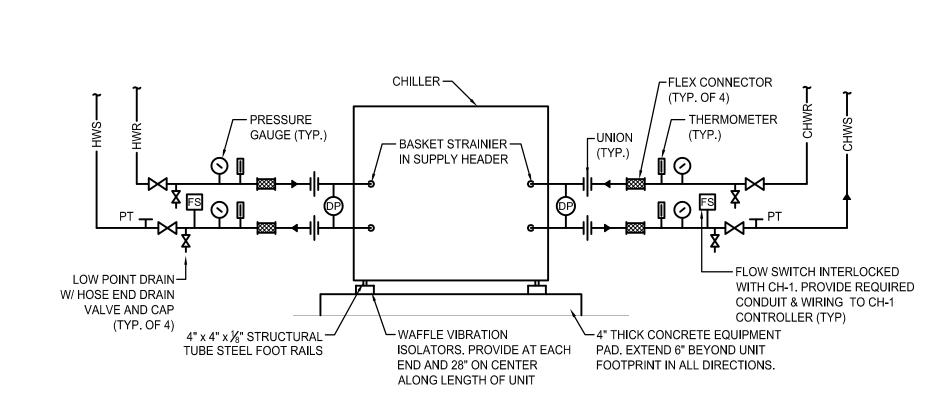

- 1. **Chiller Connection |** Provide new 225A breaker in the power switchgear. Provide 480V 225A disconnect, including mounting and verification of clearances. Provide 250 Kcmil wire plus ground in 4 conduit including hangers, supports, through penetrations, terminations and other specialties.
- 2. Panel Board for Pumps | Provide new 15A 480V breaker in existing distribution gear for Primary HR Cooling Loop Pump. For each pump, provide three (3) #14 conductors plus ground in 3/4 conduit. Provide mounting, connections, verification of clearances. Connect to new VSD.
- 3. Panel Board for Pumps | Provide new 15A 480V breaker in existing distribution gear for Heat Rejection Primary Loop Pumps. For each pump, provide three (3) #14 conductors plus ground in 3/4 conduit. Provide mounting, connections, verification of clearances. Connect to new VSD.

DIII. Controls

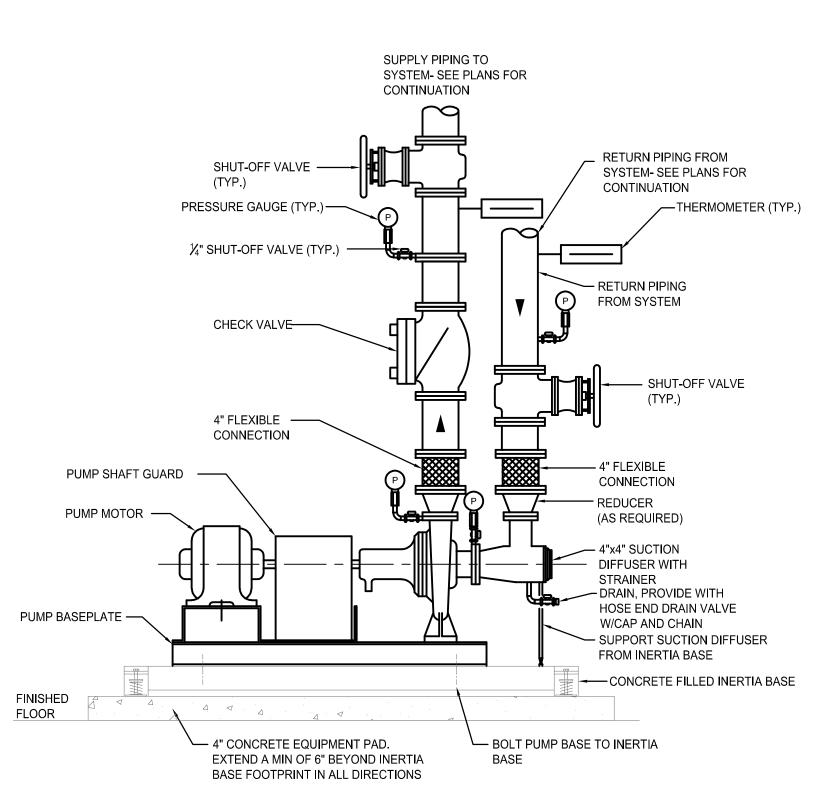
- 1. Heat Recovery System Controls:
 - Provide a component panel enclosure with new pneumatic devices and a main controller enclosure.
 - b. Provide 10K thermistor immersion temperature sensors to monitor the hot water supply and return temperature at the chiller, pump loop and each heat exchanger.
 - c. Provide relays for start/stop and current sensors for status at each pump VFD (or starters for the inline pumps) and wire to the new controller.
 - d. Provide controller inputs to monitor each VFD alarm and controller outputs control each VFD speed.
 - e. Provide a new differential pressure sensor for the new lead/lag set of pumps for VFD speed control and wire to the new controller.

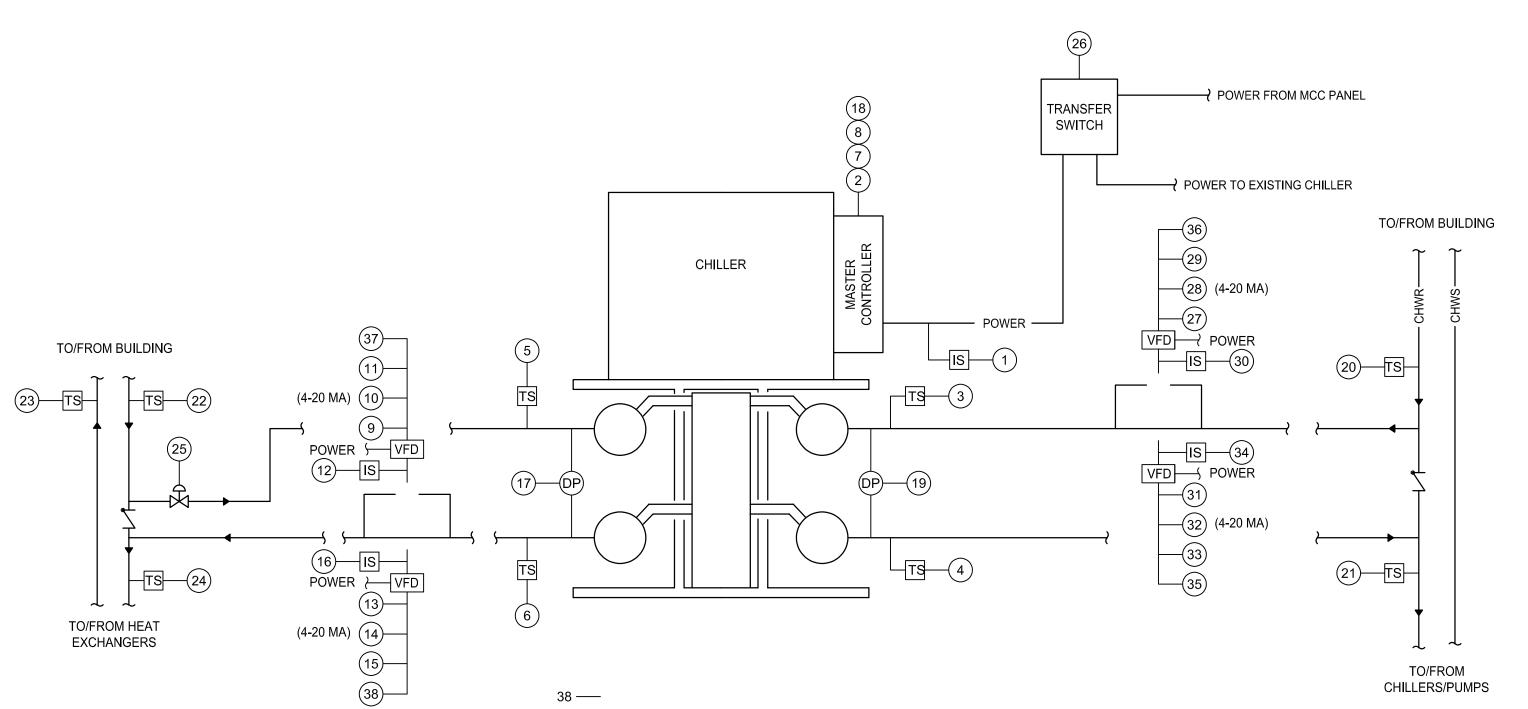

- f. Provide and install 10K thermistor immersion temperature sensors to monitor the chilled water supply and return temperature at the chiller, pump loops, water to water heat pump and dry cooler.
- g. Provide relays for start/stop and current sensors for status at each pump VFD and wire to the new controller. This includes the pump VFDs for the water to water heat exchanger.
- h. Provide controller inputs to monitor each VFD alarm and controller outputs control each VFD speed.
- i. Provide a new differential pressure sensor for the CHW side and HW side of the WWHP and wire to the new controller.
- j. Provide point capacity for start/stop, alarm and status at the WWHP master control panel and wire to the new controller.
- k. Provide point capacity for a cooling reset, heating reset and heater alarm at the chiller and wire to the new controller.
- I. Provide a new pneumatic 3-way condenser water bypass valve and run poly tubing in EMT back to the component panel.
- m. Furnish and install a new refrigerant monitor and wire to the new controller.
- n. Provide Programming and Points to achieve the following:
 - (1) HR Chiller Input power in kW
 - (2) Heat Rejection Loop Supply Temp, Return Temp and Pump Speed
 - (3) HR Cooling Loop Supply Temp, Return Temp and Pump Speed
 - (4) Building Chilled Water Loop Supply Temp, Return Temp and Pump Speed
 - (5) Building Hot Water Loop Supply Temp, Return Temp and Pump Speed




HVAC ABBREVIATIONS

- BFP BACKFLOW PREVENTER
- CHW CHILLED WATER
 CHWR CHILLED WATER RETURN
 CHWS CHILLED WATER SUPPLY
 CHWP CHILLED WATER CIRCULATING PUMP
- HW HOT WATER
 HWR HOT WATER RETURN
- HWS HOT WATER SUPPLY
 HWP HOT WATER CIRCULATING PUMP
- NC NORMALLY CLOSED NO NORMALLY OPEN


HVAC SYMBOLS - PIPING DESIGNATIONS



HEAT RECOVERY CHILLER PIPING DETAIL SCALE: NOT TO SCALE

3 BASE MOUNTED CIRCULATING PUMP SCALE: NOT TO SCALE

E O SABLE									
### ABLE DISASARIFINA X		CONTROL POINTS LIST							
TATUS X	M:			Т		Т			-
POUNT DESCRIPTION			5		της	삙			읦
STATUS SINUS S		LIEAT DECOVERY OUR LED	N N	OUT INP	OUTF	WALI WA			GRA
STATUS		HEAT RECOVERY CHILLER	F06	LOG	TAL (뜅	AL	NO/
STATUS				ANA	DIG	A B	S		₩ P
ENABLE DISABLE		POINT DESCRIPTION							S
CHILLER PRANCHOR NETHERNO WATER TEMP		STATUS	\dashv	X			\vdash	X	X
CHILLER CONDENSER INTERIOR SYNETE TEMP		ENABLE /DISABLE			Χ				Χ
CHILLER CONDENSER ENTERING WATER TEMP		CHILLER EVAPORATOR ENTERING WATER TEMP	Х			Х)	ХХ	Χ
CHILLER CANDENSER LEAWING WATER TEMP			Х			Х)	x 🔝	_
CHILLED MATER SUPPLY TEMP SETPOINT			Х			X	<u> </u>	$x \mid \overline{x}$	_
CHILED WATER SUPPLY TEMP SETPONT			Х			X		x 🔲	_
DPUMP STARTISTOP				_					
SPEED			$\bot\!\!\!\!\bot$	X			X	X	_
ALARM			\rightarrow		Х	\bot	X	$\bot\!\!\!\!\bot$	_
STATUS			\dashv	_		X	\sqcup		_
Pump Startistop			\dashv			\dashv	$\vdash \vdash$		
SPEED			\dashv	$+^{\times}$		-		X	_
ALARM			\dashv	, -	X	 	X	\dashv	X
STATUS DIFFERENTIAL PRESSURS SENSOR EVAPORATOR X			\dashv	_	\vdash	- X	\vdash	+	$\stackrel{\vee}{\leftarrow}$
DIFFERENTIAL PRESSURE SENSOR EVAPORATOR X	_		\dashv		\vdash		$\vdash \vdash$		
HOT WATER SUUPLY TEMP SETPOINT X				X	\dashv	$\overline{\vee}$		$+^{\times}$	_
DIFFERENTILA PRESSURE SENSOR CONDENSER X			-	V	\dashv	^ _	$\frac{1}{\sqrt{1}}$	$\frac{1}{}$	_
UPSTREAM CHILLED WATER RETURN TEMP			-	^		-	$\left \frac{1}{2} \right $	- ^-	_
DOWNSTREAM CHILLED WATER RETURN TEMP X			 			$\stackrel{\wedge}{\vee}$	 	$\frac{1}{\sqrt{ x }}$	_
UPSTREAM HOT WATER RETURN TEMP X			-+		-	_	-		_
HOT WATER SUPPLY TEMP DOWNSTREAM HOT WATER RETURN TEMP X					-	${\mathbf{x}}$	 	$\overline{}$	$\frac{2}{\sqrt{1}}$
DOWNSTREAM HOT WATER RETURN TEMP HOT WATER RETURN CONTROL VALVE			-+			$\frac{\hat{x}}{x}$	 		$\frac{\wedge}{x}$
HOT WATER RETURN CONTROL VALVE			$\frac{1}{x}$		1	$\frac{\hat{x}}{x}$			
CHILLER POWER TRANSFER SWITCH PUMP START/STOP SPEED ALARM ALARM PUMP START/STOP STATUS PUMP START/STOP SPEED X	5				Х	$\frac{x}{x}$	H	$\frac{1}{1}$	$\frac{\lambda}{X}$
PUMP START/STOP	3				X	$\frac{1}{x}$	H;	x H	$\frac{\alpha}{X}$
SPEED					Х		X	\dashv	X
ALARM STATUS PUMP START/STOP VX X X X X X X X X X X X X X X X X X X	3		\dashv	Х		T _X	\sqcap	$\dashv \dashv$	X
STATUS PUMP START/STOP SPEED STATUS SPEED STATUS SPEED STATUS STATUS SPEED FEEDBACK SPEED FEEDBA				_			\Box	x	_
PUMP START/STOP SPEED XX X X X ALARM STATUS SPEED FEEDBACK STATUS STATUS SPEED FEEDBACK STATUS			_	_ X		_			
ALARM STATUS STATUS SPEED FEEDBACK S		PUMP START/STOP			Χ		Х		X
STATUS SPEED FEEDBACK		SPEED		Х		Х			Χ
SPEED FEEDBACK SPEED	}	ALARM		Х				X	Χ
SPEED FEEDBACK SPEED				X				X	_
HEAT RECOVERY CHILLER CONTROL POINT LIST SCALE: NOT TO SCALE Williamsville, NY 14221 www.wendelcompanies.com p:716.688.0766 f:716.625.6825			X			X)	X	_
HEAT RECOVERY CHILLER CONTROL POINT LIST SCALE: NOT TO SCALE Williamsville, NY 14221 www.wendelcompanies.com p:716.688.0766 f:716.625.6825			X			X	'	x	_
HEAT RECOVERY CHILLER CONTROL POINT LIST SCALE: NOT TO SCALE Williamsville, NY 14221 www.wendelcompanies.com p:716.688.0766 f:716.625.6825			X			X	_	-	_
HEAT RECOVERY CHILLER CONTROL POINT LIST SCALE: NOT TO SCALE Williamsville, NY 14221 www.wendelcompanies.com p:716.688.0766 f:716.625.6825		SPEED FEEDBACK	X			X	<u> </u>	X _	Χ
HEAT RECOVERY CHILLER CONTROL POINT LIST SCALE: NOT TO SCALE Williamsville, NY 14221 www.wendelcompanies.com p:716.688.0766 f:716.625.6825									
SCALE: NOT TO SCALE Www.wendelcompanies.com p:716.688.0766 f:716.625.6825									
SCALE: NOT TO SCALE p:716.688.0766 f:716.625.6825		HEAT RECOVERY CHILLER CONTR	OL F		VT	LIS	ST		
BMEO - Heat Recovery Systems									
BMEO - Heat Recovery Systems									
BMEO - Heat Recovery Systems									

DATE 05/11/2020

RGK

Archive Drawing Number

Technical Appendix 4

Retro-Commissioning Scoping Survey ECM

RCX Scoping Survey

University of Rochester

PROJECT

Retro-Commissioning Scoping Survey

Report Date

October 4th, 2021

Prepared By:

Samuel Marotta CEM, CMVP Senior Energy Engineer Wendel Companies 85 Allen St #200 Rochester, NY 14608

Reviewed By:

Jason G. Denue, PE, REP Principal Wendel Companies

contents

Section 1 EXECUTIVE SUMMARY

- Purpose

- Study Goals

- Building Selection

- Methodology

- Scope

- Results

- Extrapolation

- Conclusions

- Next Steps

Section 2 BUILDING DESCRIPTION

- Physical Characteristics

- Building Systems

- Building Management System

Section 3 ENERGY USAGE ANALYSIS

- Energy Use Index

Section 4 PROPOSED MEASURES FOR INVESTIGATION

- Conversion Factors

- Overview of Results

- Proposed Measures for Investigation

- Supporting Data & Savings Assumptions

Section 5 RCX Process & Next Steps

Appendix A SUPPORTING SURVEY NOTES

Appendix B SITE WALKTHROUGH & BAS SURVEY SHEETS

Appendix C RCX INITIAL BUILDING LIST

Section 1

Executive Summary

Executive Summary

1.1 Purpose (Why)

Determine if retro-commissioning (RCx) is an appropriate energy conservation measure where we should be spending some of our limited capital funds and to provide a basis for authorizing the next step of the RCx investigation. (..part of a larger study, but may be viewed independently..)

1.2 Study Goals

Estimate the projected energy savings and expenses associated with performing future retrocommissioning projects across campus.

1.3 Building Selection

We determined that the project was funded sufficiently for a scoping of three buildings which were selected as follows:

- We decided to focus on River Campus and avoid selecting Medical Center buildings for this study because MC buildings are more complex, require additional study resources and we did not want to add the complexity of working around or take the chance of impacting patient care, particularly during the COVID-19 Pandemic.
- 2. We started with a list of **74** buildings. See Appendix C.
- 3. The list was narrowed down to selected 10 candidate buildings which have:
 - a. Coincidental heating and cooling use
 - b. Average or higher energy use intensity (EUI) Kbtu/sqft
 - c. Average or higher high total annual energy use
 - Based on industry guidelines for building type and also compared to other RC buildings.
- 4. The list was finally narrowed down from ten to three buildings based on:
 - a. non-residential (limited opportunity)
 - b. non-laboratory, non-medical (too difficult for this limited study)
 - c. Ease of physical access
 - d. Access to the building automation system (BAS) and documentation.

The selected buildings were Rush Rhees Library, Danforth Dining Center, and Frederick Douglass Center.

1.3 Methodology

This Report presents an assessment of the major energy-consuming equipment and identifies potential RCx opportunities and includes the following elements:

1.	Energy usage analysis for the last 24 months	(Page 14)
2.	Building documentation review	(Page 31)
3.	Building staff interview notes (Appendix A)	(Page 37)
4.	Facility walk-through notes (Appendix B)	(Page 78)
5.	Building Management System (BMS) assessment	(Page 78)

1.4 Scope

The scope of this study consisted of the first step of three in RetroCommissioning. In the Scoping study a cursory review of energy usage, building prints, building controls and walkthrough is performed. The objective of this scoping study was to identify controls alterations that would achieve a reduction is energy usage and have a moderate to low simple payback. These Energy conservation measures would then be tabulated and conveyed to University of Rochester for review and consideration of Implementation. A secondary objective of this scoping study was to extrapolate the finding of the three buildings selected to

the rest of the river and medical campus to give a perspective of what performing how type of work could help reduce energy cost, usage and overall payback of the conservation effort.

1.5 Results

The following is a summary of the three building that were selected. The scoping study, after being review with University of Rochester staff, produced energy conservation measures that range from moderate to easy to implement with

		Estima	ated Energy	ECM Cost	Simple			
Building	Cooling (%)*	Electric (%)*	Heating (%)*	Total (%)*	Dollars (\$)*,**	(\$)*	Payback (Years)	Page
Danforth	6.0%	4.1%	4.2%	2.5%	\$9,273	\$24,000	2.6	
RRL	13.7%	13.6%	13.3%	8.6%	\$106,149	\$165,130	1.6	
FDC	16.1%	0.1%	14.3%	7.7%	\$35,818	\$64,900	1.8	
Total	13.3%	7.2%	12.3%	7.5%	\$151,240	\$254,030	1.7	
Campus***	13.3%	7.2%	12.3%	7.5%	\$2,658,173	\$4,901,922	1.7	

^{*}Reflects the middle of the road savings/costs estimate in the savings/cost Charts.

1.6 Extrapolation

Extrapolation of the savings from the pilot scoping study (3 buildings) to project what the savings would be if the same work was done across the rest of the building stock at the university of Rochester. The initial numbers show that will a moderate investment a large amount of savings can be achieved. The extrapolation reflects that further RetroCommissioning should be undertaken to help achieve the University's energy conservation goals.

Methodology: From the summary table the total savings were calculated from the energy saved was divided into the energy usage for all three building. This gave us a total savings percentage for each energy category. This savings percentage is what is being applied across the campus. The savings for the units of energy was then calculated by multiplying the savings percentage by the total energy used for that category for the medical and river campuses. Then the Campus Building Rates were applied to the to the units of energy to calculate the annual savings.

For the Extrapolation of Costs for the ECM's, the total cost of the three buildings was divided by the total square footage of the pilot buildings. This calculated a cost per square foot that was multiplied by the square footage of the selected campuses for a total cost of the energy conservation measures.

1.7 Conclusions

The economics projected and the moderate difficulty of the implementation would help the University achieve a savings project that could help overcome programmatic apprehensions of energy conservation projects. It would also help fund more difficult and longer payback projects that would be necessary to accomplish the university's overall energy and cost reduction goals.

^{**} Reflects utility rate charted to the building by UEM including overhead. See table shown on indicated page for financial information related to utility/commodity savings only.

^{***} Results extrapolated to UEM connected buildings on River Campus and the Medical Center.

1.8 Next Steps:

Complete RetroComissioning Study and Implementation with Functional Performance testing.

- Request proposal for RetroComissioning Study 1 Month
- Receive proposal and execute contract 1-2 months
- RetroCommisioning Study Completion 1-2 Months
- Request Pricing for controls programming and alterations. 1 month
- Execution of controls labor 2 months
- Functional Performance testing and report 1 month

Select Buildings for future RetroComissioning implementation.

- Review building stock and energy usage.
- Review any future major capital work or building renovations
- Review budget for study and implementation
- Select multiyear phasing approach
- Secure Funding or financing
- Execute plan

Section 2

Building Description

Building Description

2.1 Physical Characteristics

The building consists of the following:

RUSH RHEES LIBRARY

- Age and Building Use
 - Built in 1930.
 - Partial addition in 1964 to add 2 floors on part of north side.
 - Major Addition in 1970 to double the square footage
 - Higher education institution/Library.
- Space types information:
 - Stacks, Rare Books, offices, conference rooms,
 - Official building hours are 10AM to 8PM Monday through Friday and 10AM to 6PM Saturday and 10AM to 5PM Sunday.
 - The building is operated 24/7 and specific equipment runs 24/7**
- Gross Square Footage
 - 349,284 sqft
- Conditioned Square Footage
 - 349,284 sqft
- Number of Stories
 - 4 stories
- Building Occupancy:
 - 75% occupied (observation of less than normal occupancy from Covid)*
- Special Features worth noting.
 - Rare Books area

DANFORTH DINING HALL

- Age and Building Use
 - Original building constructed 1955
 - Renovated 2011.
 - Cafeteria
- Space types information:
 - Labs, classrooms, conference rooms, kitchens, dining areas, retail.
 - Official building hours are 11AM to 1:30 5 to 7pm PM Monday through Friday and Closed Saturday and Sunday.
 - The building is operated 24/7 and specific equipment runs 24/7**
- Gross Square Footage
 - 35,128 sqft
- Conditioned Square Footage
 - 35,128 sqft
- Number of Stories
 - 1 stories
- Building Occupancy:
 - 75% occupied (observation of less than normal occupancy from Covid)*
- Special Features worth noting.
 - Open kitchen area, Dishwasher, Kitchen Exhaust fans drive the space OA requirement.

FREDRICK DOUGLASS COMMONS

Age and Building Use

- Built in 1950.
- Major Renovation in 2016
- Higher education institution/Cafeteria.
- Space types information:
 - Classrooms, conference rooms, kitchens, dining areas, retail.
 - Official building hours are 7AM to 12AM Monday through Friday and 8AM to 12AM Saturday and Sunday.
 - The building is operated 24/7 and specific equipment runs 24/7**
- Gross Square Footage
 - 89,151,sqft
- Conditioned Square Footage
 - 89,151 sqft
- Number of Stories
 - 4 stories
- Building Occupancy:
 - 75% occupied (observation of less than normal occupancy from Covid)*
- Special Features worth noting.
 - Open kitchen area, Dishwasher, Kitchen Exhaust fans drive the space OA requirement, Retail Space

^{*}The occupancy is an observation based on the walkthrough. While it could also represent that there are unused spaces, this is an assumption based on my walkthrough that the buildings were not back at full occupancy pre-Covid

^{**}Operating (or Occupied) hours for the buildings were taken from the University of Rochester's website. Looking at the trends for the HVAC equipment it was noted that the equipment was running 24/7. This would track with the initial guidance given for outdoor air flushing for Covid-19. Looking further back in the trends it was noted that the building was running 24/7 pre-Covid-19. The space temperatures also did not set back during unoccupied times both pre and post Covid-19. There is an opportunity to set back the space temperatures while the building is still running Covid-19 outdoor air flushing protocols. Programing can also be done but not implemented to shut off equipment/outdoor air so when the university decides to suspend Covid protocols the energy savings will be as easy as a click off a button.

2.2 Building Systems Summary

The following is summary of facility

RUSH RHEES LIBRARY

- Heating Plant
 - District Steam
- Hot Water System
 - 3 primary hot water pumps on 3 different steam to hot water systems.
 - 1 snow melt pumps.
 - Hot water to glycol heat exchanger for specific preheat coils.
- Cooling Plant
 - · District chilled water
- Chilled Water System
 - 2 chilled water pumps.
- Air Handling System
 - 7 Air handling units.
- Exhaust Systems
- Air Terminal Units
 - DDU boxes for most spaces.
 - Unitary Air Handlers
 - 17 Heat pump units.
 - 17 Fan Coil Units.
 - Hot water radiation systems

DANFORTH DINING HALL

- Heating Plant
 - District Hot Water
- Hot Water System
 - 2 primary hot water pumps.
 - 2 domestic hot water pumps.
 - Hot water to glycol heat exchanger for specific preheat coils.
- Cooling Plant
 - District Chilled Water
 - Chilled Water System
 - 1 chilled water pump.
- Air Handling System
 - 1 Air handling unit.
- Exhaust Systems
- 4 Kitchen exhaust fans.
 - 1 Dishwasher Exhaust Fans
- Air Terminal Units
 - VAV boxes for most spaces.
 - Unitary Air Handlers
 - Finned tube hot water radiation system

FREDRICK DOUGLASS COMMONS

- Heating Plant
 - District Hot Water
- Hot Water System
 - 4 primary hot water pumps.
 - 4 Domestic Hot water pumps
 - 1 snow melt pumps.

- Hot water to glycol heat exchanger for specific preheat coils.
- Cooling Plant
 - District Chilled Water
 - Chilled Water System
 - 1 chilled water pump.
- Air Handling System
 - 5 Air handling units.
 - 4 Roof Top Units.
- Exhaust Systems
 - 10 Exhaust Fans
- Air Terminal Units
 - VAV boxes for most spaces.
 - Unitary Air Handlers
 - 2 self-contained air conditioning units.
 - 7 Door air curtains heaters.
 - 4 hot water cabinet unit heaters.
 - 1 finned tube hot water radiation systems.

2.3 Building Management System

RUSH RHEES LIBRARY

- Manufacturer: ALC/Webctrl
- Access: Wendel received read only access
- Remote Access: Enabled
- Level of control: All major pieces and terminal equipment of the HVAC system are controlled by the BMS. Operator can override most control points. All temperature, humidity, pressure, and occupancy set points are adjustable by the operator.
- Trending Capabilities: Ability to trend all control.

Rush Rhees Library also has the following system

- Manufacturer: Siemens Apogee
- Access: Wendel received read only access
- Remote Access: Enabled
- Level of control: All major pieces and terminal equipment of the HVAC system are controlled by the BMS. Operator can override most control points. All temperature, humidity, pressure, and occupancy set points are adjustable by the operator.
- Trending Capabilities: Ability to trend all control points if trending is set up by control's contractor. Wendel was not given access to the trends.

DANFORTH DINING HALL

- Manufacturer: Siemens Apogee
- Access: Wendel received read only access
- Remote Access: Enabled
- Level of control: All major pieces and terminal equipment of the HVAC system are controlled by the BMS. Operator can override most control points. All temperature, humidity, pressure, and occupancy set points are adjustable by the operator.
- Trending Capabilities: Ability to trend all control points if trending is set up by control's contractor. Wendel was not given access to the trends.

Danforth Dining Hall also has the following system

- Manufacturer: Schneider Electric EcoStuxure
- Access: Wendel received read only access
- Remote Access: Enabled
- Level of control: Snow melt system
- Trending Capabilities: Ability to trend all control points if trending is set up by control's contractor. Wendel was not given access to the trends.

FREDRICK DOUGLASS COMMONS

- Manufacturer: ALC/Webctrl
- Access: Wendel received read only access
- Remote Access: Enabled
- Level of control: All major pieces and terminal equipment of the HVAC system are controlled by the BMS. Operator can override most control points. All temperature, humidity, pressure, and occupancy set points are adjustable by the operator.
- Trending Capabilities: Ability to trend all control points.

Section 3

Energy Usage Analysis

Energy Use Analysis

Energy Use Index

Since building type and the services provided in that building impact the energy intensity, we utilize Energy benchmarking^{1,2,}, which is the practice of comparing energy usage data for a select building against data from a national database of buildings in the same usage type. This allows us to assess what the potential for savings is for in each building.

The chart below compares 24 months of energy data for the facility form the period of December 2018 through November 2020. Note that Danforth Dining Center and Rush Reese Library have EUIs greater than the mean.

	NATIONAL COMPARISON (Site Energy Usage)												
Building	Building Use	Total Building	Calculated, Weighted Energy Use Index (EUI) Values Site Energy, kBtu/yr per gross sq ft										
Dullullig	Dulluling 036	EUI (kBtu/yr/			Perc	entiles							
		sqft)	10 th	25th	50th	75th	90th	Mean					
Danforth Dining Center	Restaurant/ cafeteria	311.51	66.0	126.0	269.4	416.8	648.2	310.9					
Fredric Douglass Dinning Center	Restaurant/ cafeteria	222.21	66.0	126.0	269.4	416.8	648.2	310.9					
Rush Rhees Library	Library	123.16	45.7	57.0	73.4	123.2	152.7	90.8					

^{1 -} Utility end-use data & benchmarking data is based on the Commercial Building Energy Consumption Survey (CBECS) conducted by the U.S. Department of Energy for buildings across the country. The CBECS commercial sector survey encompasses data available through the U.S. Energy Information Administration based on a specific U.S. region and division.

^{3 -} CBECS include the steam/hot water used at the building. Currently it does not account for chilled water. As for the efficiency of the equipment at the central plant, it does not account for this. In example if the equipment is onsite, i.e. boiler in the building, the natural gas bills reflect this efficiency. The data collected with any district plants only accounts for energy used at the building and does not account for the efficiency of the boiler or CHP systems

	Building Historical Annual Energy Use												
Building	Cooling (Ton-hr)	Heating (mmBTU)	(U) Electric (kWh)										
Danforth Dining Center	171,875	5,881	882,634										
Fredric Douglass Dinning Center	860,162	26,056	2,174,743										
Rush Rhees Library	346,778	10,174	1,604,481										

^{2 -} A normalized EUI is calculated by converting all energy consumed in a building to a common unit, 1,000 Btu's or kBtu's, and then dividing it by the gross square footage of the building. EUI is typically measured in kbtu/sqft/year. Utilizing conversion rates of 1 kilowatt hour is equal to 3.413 kbtu and 1 mmBtu is equal to 1,000 kbtu

Section 4

Proposed Measures for Investigation

Proposed Measures for Investigation

4.1 Conversion Factors

The following are conversion factors, efficiencies, billing rates and emissions rates used to assess changes to energy usages on campus. Data sources are as follows:

- Conversion Rates | Industry standards
- Building to Plant Ratios | 2018 plant and building utility data
- Building Utility Rates | Provided by UR.
- Purchased Utility Rates | Include Commodity Cost and Fixed Costs.
- Purchased Utility Rates | Provided by UR.
- Emissions Rates | eGRID 2018 for electric and industry standard conversions for Natural Gas.

Conversion Rates

Conversion Nates		
Electric	0.003412	mmBtu per kWh
Chilled Water	12,000	Btu per tonhr
Steam	1,194	Btu/lb
Boiler Eff	72%	-
Plant Efficiency Ratios		
Chilled Water	49%	CHW from electric
Chiller Elec.	0.65	kW/ton
Chiller Steam.	0.0037	mmBtu/Tonhr
Chiller NG.	0.0052	mmBtu/Tonhr
Total Heating System Eff.	67%	
Building Rates*		
Electric	\$0.089	\$/kWh
Chilled Water	\$6.28	\$/ton-day
Chilled Water	\$21.81	\$/mmbtu
Steam/Hot water	\$14.50	\$/mmBtu
Utility Rates		
Electric	\$0.0650	\$/kWh
Natural Gas	\$3.210	\$/dTh
Natural Gas	\$3.210	\$/mmBtu
Emissions Rates		
Electric	295.94	lb/MWh
Nat. Gas	116.38	lbs/mmBtu
		•

Table B2 - Summary of utility rates

^{*}Building Rates are the costs of producing the energy, utility rates plus efficiency losses, as well and maintaining the infrastructure needed to deliver the services on the campuses internal systems. Utility Costs are for reference.

4.2 Overview of Results

The following is a high-level overview of observations which informed our recommendations for RCx ECMs. A summary is presented in Section 4 which shows the estimated energy savings and costs ranges.

- Air Handling Unit operation appears to present opportunities for energy savings based on the following:
 - Adjust sequences and setpoints for discharge air temperature and static pressure reset.
- Building zone and spaces appear to be missing control points to allow for more efficient control such as:
 - o Incorporate CO2 sensors to allow for demand-controlled ventilation.
 - o Incorporate occupancy sensor for HVAC system control in conference rooms and other variable occupancy spaces.
 - Set back temperatures of spaces during unoccupied times
 - o Adjust operation of kitchen hood ventilation rates.
 - o Program Dual Duct Boxes for independent Air Valve operation to reduce air flow based on cooling/heating need.
- Additional observations of building systems
 - o Interlock Fin Tube Radiation with space terminal air boxes to prevent simultaneous heating and cooling.
 - Heat Pumps and Walk in Coolers condensers sink with the chilled water system.

4.3 Proposed Measures for Investigation

The following is a description of the preliminary RCx ECMs identified as part of the scoping survey. For each RCx ECM we have identified the scope and the reasoning for their recommendation. A Table is provided At the end of this section which demonstrates initial estimates for savings and costs.

Rush Rh	ees Library	
ECM#	ECM Name	Reasoning
1	Dual Duct Box Temperature Set Back	The terminal units (VAV's and DDUs) have no night temperature setback. All space is 24/7. Trending shows all spaces have constant set points that are manually changed.
2	Dual Duct Box Independent Air Valve Operation - Min/Max airflow	Dual Duct Boxes are set up for independent damper operation but are not operating that way. Set Damper positions according for need for cooling/heating demand along with max/min instead of discharge air temp with full air flow.
3	AHU Static Pressure Reset	Reset Discharge air Static Pressure set point based on feedback from airflow to terminal units.
4	AHU Discharge Air Reset	Reset Discharge air temperature based on OA and calls for cooling/heating.
5	Interlock Fin tube with Cooling Coil Valve/Radiation loop set point adjustment	Reset HW Radiation loop downward when calls for cooling are required. This was observed happening in shoulder seasons. May be harder to do with some of the terminal air units being on the siemens system and the radiation loop being hand valves.
6	Hot Water Pump VFD	Hot Water Pump running at constant speed. Install VFD
7	AHU DCV	Current OA operations are based on ability to economize OAT VS Cooling Deck DAT (10-30% Damper 24/7). Recommend reviewing space requirements and implementing DCV sequences where applicable.

Danforth	Dining Hall	
ECM #	ECM Name	Reasoning
1	Interlock Fin tube with Cooling Coil Valve/Radiation loop set point adjustment	Reset HW Radiation loop downward when calls for cooling are required. This was observed happening in shoulder seasons.
2	Night Set Back For temperature	The terminal units (VAV's) have no night temperature setback. All spaces are 24/7. Trending shows all spaces have constant set points that are manually changed.
3	AHU Discharge Air Reset	Reset Discharge air Static Pressure set point based on feedback from airflow to terminal units.
4	AHU DCV	Air Handling Unit could benefit from demand control ventilation sequences and or adjustments to the sequences to optimize reductions. Current OA operations are based time of day but is in covid protocol.

Fredrick	Douglass Commons	
ECM #	ECM Name	Reasoning
1	Interlock Fin tube with Cooling Coil Valve/Radiation loop set point adjustment	Reset HW Radiation loop downward when calls for cooling are required. This was observed happening in shoulder seasons.
2	Night Set Back For temperature	The terminal units (VAV's) have no night temperature setback. All spaces are 24/7. Trending shows all spaces have constant set points that are manually changed.
3	DCV set point adjustment for RTU 1-4	Revise CO2 setpoint up from 750 PPM
4	Retune Hood captive air systems	Captive air systems reduce Exhaust based on temperature. The hoods have had issues with smoke capture since installation. Proper capture will reduce exhaust and OA needed to make up.
5	AHU DCV	Air Handling Units could benefit from demand control ventilation sequences and or adjustments to the sequences to optimize reductions. Current OA operations are based time of day but is in covid protocol.

	Energy Conservation Measure Summary Table DDH												
			University of Rochester	Coolii	ng Savings (T	on/hr)	Electi	rical Savings	(kWh)	Hot w	ater/Steam (N	/IMBTU)	
ECM #	ECM Name	Reasoning	Building Controls (Level, Type)	Low	Mid	High	Low	Mid	High	Low	Mid	High	
1	Interlock Fintube with Cooling Coil Valve/Radition loop set point	Reset HW Radiation loop downward when calls for cooling are required. This was observed	1A	945	1,103	1,260	0	0	0	45	53	60	
1	adjustment	happening in shoulder seasons.	14	0.5%	0.6%	0.7%	0.0%	0.0%	0.0%	0.8%	0.9%	1.0%	
2	Night Set Back For temperature	The terminal units (VAV's) have no night temperature setback. All space are 24/7. Trending shows	2A	3,780	4,410	5,040	0	0	0	68	79	91	
	Wight Get Back for temperature	all spaces have constant set point manually changed.	ZA	2.2%	2.6%	2.9%	0.0%	0.0%	0.0%	1.2%	1.3%	1.5%	
3	AHU Discharge Air Reset	Reset Discharge air Static Pressure set point based on feedback from airflow to terminal units.	1A	0	0	0	30,788	35,919	41,050	0	0	0	
J	And Discharge An Neset	Reset bischarge an state i ressure set point based on recaback from annow to terminar units.		0.0%	0.0%	0.0%	3.5%	4.1%	4.7%	0.0%	0.0%	0.0%	
4	Retune Hood captive air systems	Captive air systems reduce Exhuast based on temperature. The hoods have had issues with smoke	1C	4,050	4,725	5,400	0	0	0	97	113	130	
-	retune flood captive all systems	capture since instalation. Proper capture will reduce exhuast and OA needed to make up.	10	2.4%	2.7%	3.1%	0.0%	0.0%	0.0%	1.7%	1.9%	2.2%	
		8,775	10,238	11,700	30,788	35,919	41,050	211	246	281			
			5.1%	6.0%	6.8%	3.5%	4.1%	4.7%	3.6%	4.2%	4.8%		

- 1. The M&L costs inloude material and labor only. Cost for the Retro-Commissioning, engeering (if required), design (if required), and contingency are not included.
- 2. Items such as controls sysmte upgrades, controller replacement, or the addition of new controller is not included in the estiamte ranges provided.
- 3. The University Building Controls Levels and Types are defined as follows:
- Level 1 Primary Equipment AHUs, Pump Sets, HXs, etc
- Level 2 Terminal Equipment VAVs, HPs, FCUs, etc Level 3 Standalone Equipment Not connected to DDC, commonly CUHs, Steam Radiators, but may include almost anything.
- Type A: Programming changes only Type B: Repair of Malfunctioning Hardware Type C: New or Upgraded Hardware

		Energy Conservation	Measure Summary Table	RRL								
			University of Rochester	Coolii	ng Savings (T	on/hr)	Electi	rical Savings ((kWh)	Hot water/Steam (MMBTU)		
ECM #			Building Controls (Level, Type)	Low	Mid	High	Low	Mid	High	Low	Mid	High
1	Dual Duct Box Temperature Set Back	The terminal units (VAV's and DDUs) have no night temperature setback. All space are 24/7.	2A	21,168	37,044	52,920	0	0	0	893	1,042	1,191
	Dual Duct Box Temperature Set Back	Trending shows all spaces have constant set point manually changed.	24	2.5%	4.3%	6.2%	0.0%	0.0%	0.0%	3.4%	4.0%	4.6%
2	Dual Duct Box Independent Air Valve	Dual Duct Boxes are set up for independent damper operation but are not operating that way. Set Damper positions according for need for cooling/heating damand along with max/min instead of	2A	13,608	23,814	34,020	40,874	61,311	81,747	112	1,036	1,960
	Operation - Min/Max airflow	discharge air temp with full air flow.	∠A	1.6%	2.8%	4.0%	1.9%	2.8%	3.8%	0.4%	4.0%	7.5%
3	AHU Static Pressure Reset	Reset Discharge air Static Pressure set point based on feedback from airflow to terminal units.	1A	0	0	0	153,938	230,907	307,876	0	0	0
3	And Static Plessure Reset	Neset Discharge an Gutte Fressare set point based of recadable from almow to terminal units.	IA	0.0%	0.0%	0.0%	7.1%	10.6%	14.2%	0.0%	0.0%	0.0%
4	AHU Discharge Air Reset	Reset Discharge air temperature based on OA and calls for cooling/heating.	1A	12,701	22,226	31,752	0	0	0	298	447	595
-	Alto Discharge All Reset		10	1.5%	2.6%	3.7%	0.0%	0.0%	0.0%	1.1%	1.7%	2.3%
5	Interlock Fintube with Cooling Coil Valve/Radition loop set point	Reset HW Radiation loop downward when calls for cooling are required. This was observed happening in shoulder seasons. May be harder to do with some of the teminal air units being on the	1A	3,175	8,203	13,230	0	0	0	38	98	159
	adjustment	siemens system and the radition loop being hand valves.	10	0.4%	1.0%	1.5%	0.0%	0.0%	0.0%	0.1%	0.4%	0.6%
6	Hot Water Pump VFD	Hot Water Pump running at constant speed. Install VFD	1C	0	0	0	2,984	3,730	4,476	0	0	0
"	not water rump vi b		10	0.0%	0.0%	0.0%	0.1%	0.2%	0.2%	0.0%	0.0%	0.0%
7	AHU I DCV	While units are scheduled off at night, many do not have demand controlled ventilation sequences or or are utilizing unoccupied operation. Current OA operations are based on ability to economize	1C	15,120	26,460	37,800	0	0	0	567	851	1,134
	Alio DCV	OAT VS Cooling Deck DAT (10-30% Damper 24/7).Recommend reviewing space requirements, and implementing DCV sequences where applicable.	10	1.8%	3.1%	4.4%	0.0%	0.0%	0.0%	2.2%	3.3%	4.4%
			65,772	117,747	169,722	197,796	295,947	394,099	1,908	3,473	5,039	
		Totals		7.6%	13.7%	19.7%	9.1%	13.6%	18.1%	7.3%	13.3%	19.3%

- 1. The M&L costs inloude material and labor only. Cost for the Retro-Commissioning, engeering (if required), design (if required), and contingency are not included.

 2. Items such as controls sysmte upgrades, controller replacement, or the addition of new controller is not included in the estiamte ranges provided.

 3. The University Building Controls Levels and Types are defined as follows:

 Level 1 Primary Equipment AHUs, Pump Sets, HXs, etc

 Level 2 Terminal Equipment VAVs, HPs, FCUs, etc

 Level 3 Standalone Equipment Not connected to DDC, commonly CUHs, Steam Radiators, but may include almost anything.

- Type A: Programming changes only
 Type B: Repair of Malfunctioning Hardware
 Type C: New or Upgraded Hardware

		Energy Conservation M	easure Summary Tabl	e FDC								
			University of Rochester	Cooli	ng Savings (To	on/hr)	Elect	rical Savings ((kWh)	Hot w	ater/Steam (M	IMBTU)
ECM	# ECM Name	Reasoning	Building Controls (Level, Type)	Low	Mid	High	Low	Mid	High	Low	Mid	High
1	Interlock Fintube with Cooling Coil Valve/Radition loop set point adjustment	Reset HW Radiation loop downward when calls for cooling are required. This was observed happening in shoulder seasons.	1A	5,842 1.7%	6,815 2.0%	7,789 2.2%	0.0%	0.0%	0.0%	280 2.8%	327 3.2%	374 3.7%
2	Night Set Back For temperature	The terminal units (VAV's) have no night temperature setback. All space are 24/7. Trending shows all spaces have constant set point manually changed.	2A	23,367 6.7%	27,262 7.9%	31,156 9.0%	1,434 0.1%	1,912 0.1%	2,390 0.1%	421 4.1%	491 4.8%	561 5.5%
3	DCV set point adjustment for RTU 1-4	Revise CO2 setpoint up from 750 PPM	1A	3,949 1.1%	4,607 1.3%	5,265 1.5%	0	0.0%	0.0%	161 1.6%	207	253 2.5%
4	Retune Hood captive air systems	Captive air systems reduce Exhuast based on temperature. The hoods have had issues with smoke capture since instalation. Proper capture will reduce exhuast and OA needed to make up.	2A	4,138 1.2%	4,828 1.4%	5,517 1.6%	0	0	0	118 1.2%	138 1.4%	158 1.6%
5	AHU DCV	While units are scheduled off at night, many do not have demand controlled ventilation sequences or or are utilizing unoccupied operation. Current OA operations are based time of day but is in covid protocol.	10	10,422 3.0%	12,159 3.5%	13,896 4.0%	0	0	0	250 2.5%	292 2.9%	334 3.3%
		47,718	55,671	63,624	1,434	1,912	2,390	1,230	1,455	1,679		
		13.8%	16.1%	18.3%	0.1%	0.1%	0.1%	12.1%	14.3%	16.5%		

- 1. The M&L costs inlcude material and labor only. Cost for the Retro-Commissioning, engeering (if required), design (if required), and contingency are not included.
- 2. Items such as controls sysmte upgrades, controller replacement, or the addition of new controller is not included in the estiamte ranges provided.
- 3. The University Building Controls Levels and Types are defined as follows:
- Level 1 Primary Equipment AHUs, Pump Sets, HXs, etc
- Level 2 Terminal Equipment VAVs, HPs, FCUs, etc
- Level 2 Terminal Equipment Novs, HPs, FLUs, etc. Level 3 Standalone Equipment Not connected to DDC, commonly CUHs, Steam Radiators, but may include almost anything. Type A: Programming changes only Type B: Repair of Malfunctioning Hardware Type C: New or Upgraded Hardware

					E	nergy Cons	servation M	easure Sur	nmary Table	e DDH					
			Utility I	Rates*					Building		12				
ECM #	Energy Savings (Utility Rates) Payback (M&L Cost)					Energy Sa	vings (Build	ing Rates)	Pay	back (M&L (Cost)	M&L Cost ^{1,2}			
	Low	Mid	High	Low	Mid	High	Low	Mid	High	Low	Mid	High	Low	Mid	High
1	\$244	\$284	\$325	7.4	9.5	11.1	\$905	\$1,056	\$1,207	2.0	2.6	3.0	\$1,800	\$2,700	\$3,600
2	\$432	\$504	\$576	6.9	8.9	10.4	\$1,976	\$2,305	\$2,634	1.5	2.0	2.3	\$3,000	\$4,500	\$6,000
3	\$2,001	\$2,335	\$2,668	1.5	1.9	2.2	\$2,598	\$3,032	\$3,465	1.2	1.5	1.7	\$3,000	\$4,500	\$6,000
4	\$579	\$676	\$772	18.0	18.8	19.4	\$2,469	\$2,881	\$3,292	4.2	4.4	4.6	\$10,400	\$12,700	\$15,000
	\$3,256	\$3,798	\$4,341	5.6	6.4	7.0	\$7,948	\$9,273	\$10,598	2.3	2.6	2.9	\$18,200	\$24,400	\$30,600

Notes:

^{*} The Energy Cost Savings and simple payback based only on utility commodity charges. This does not include UEM overhead and represents a true savings to the university. This rate is appropriate to use when UEM or the University in general is paying for the ECM.

^{**} The Energy Cost Savings and simple payback based total energy rate charged to customer. This includes both the variable commodity rate plus the fixed yearly overhead budget fee converted to a fixed rate. T

						Energy Con	servation M	easure Sum	mary Table	RRL					
			Utility I	Rates*					Building	Rates**				M&L Cost ^{1,2}	
ECM #	Energy S	Savings (Utilit	y Rates)	Pay	back (M&L C	Cost)	Energy S	avings (Buildi	ng Rates)	Pay	back (M&L C	ost)		WAL COST	
	Low	Mid	High	Low	Mid	High	Low	Mid	High	Low	Mid	High	Low	Mid	High
1	\$4,871	\$6,028	\$7,186	2.5	4.5	5.8	\$18,488	\$24,800	\$31,113	0.6	1.1	1.3	\$12,000	\$27,000	\$42,000
2	\$3,575	\$9,615	\$15,654	3.4	2.5	2.3	\$8,637	\$26,426	\$44,215	1.4	0.9	0.8	\$12,000	\$24,000	\$36,000
3	\$10,006	\$15,009	\$20,012	1.2	1.6	1.8	\$12,992	\$19,489	\$25,985	0.9	1.2	1.4	\$12,000	\$24,000	\$36,000
4	\$1,782	\$2,761	\$3,741	6.7	8.7	9.6	\$7,640	\$12,290	\$16,941	1.6	2.0	2.1	\$12,000	\$24,000	\$36,000
5	\$271	\$701	\$1,131	44.2	38.5	37.1	\$1,383	\$3,574	\$5,764	8.7	7.6	7.3	\$12,000	\$27,000	\$42,000
6	\$194	\$242	\$291	17.4	19.1	20.2	\$252	\$315	\$378	13.4	14.7	15.6	\$3,380	\$4,630	\$5,880
7	\$3,140	\$4,815	\$6,491	4.8	7.2	8.3	\$12,178	\$19,256	\$26,334	1.2	1.8	2.1	\$15,000	\$34,500	\$54,000
	\$23,839	\$39,172	\$54,506	3.3	4.2	4.6	\$61,570	\$106,149	\$150,729	1.3	1.6	1.7	\$78,380	\$165,130	\$251,880

Notes:

^{*} The Energy Cost Savings and simple payback based only on utility commodity charges. This does not include UEM overhead and represents a true savings to the university. This rate is appropriate to use when UEM or the University in general is paying for the ECM.

^{**} The Energy Cost Savings and simple payback based total energy rate charged to customer. This includes both the variable commodity rate plus the fixed yearly overhead budget fee converted to a fixed rate. This rate is appropri

						Energy Cons	servation Me	easure Sumr	mary Table	FDC					
			Utility	Rates*					Building	Rates**				12	
ECM #	Energy S	Savings (Utilit	ty Rates)	Pay	back (M&L C	ost)	Energy Sa	avings (Buildi	ing Rates)	Pay	back (M&L C	ost)		M&L Cost ^{1,2}	
	Low	Mid	High	Low	Mid	High	Low	Mid	High	Low	Mid	High	Low	Mid	High
1	\$1,507	\$1,758	\$2,009	4.0	9.4	13.4	\$5,594	\$6,527	\$7,459	1.1	2.5	3.6	\$6,000	\$16,500	\$27,000
2	\$2,762	\$3,238	\$3,714	2.2	2.8	3.2	\$12,334	\$14,410	\$16,486	0.5	0.6	0.7	\$6,000	\$9,000	\$12,000
3	\$880	\$1,119	\$1,358	1.4	1.6	1.8	\$3,363	\$4,203	\$5,042	0.4	0.4	0.5	\$1,200	\$1,800	\$2,400
4	\$683	\$797	\$910	15.2	16.4	17.4	\$2,799	\$3,265	\$3,732	3.7	4.0	4.2	\$10,400	\$13,100	\$15,800
5	\$1,490	\$1,738	\$1,987	8.7	14.1	18.1	\$6,354	\$7,413	\$8,472	2.0	3.3	4.2	\$13,000	\$24,500	\$36,000
	\$7,323	\$8,651	\$9,979	5.0	7.5	9.3	\$30,445	\$35,818	\$41,191	1.2	1.8	2.3	\$36,600	\$64,900	\$93,200

Notes:

^{*} The Energy Cost Savings and simple payback based only on utility commodity charges. This does not include UEM overhead and represents a true savings to the university. This rate is appropriate to use when UEM or the University in general is paying for the ECM.

^{**} The Energy Cost Savings and simple payback based total energy rate charged to customer. This includes both the variable commodity rate plus the fixed yearly overhead budget fee converted to a fixed rate. This rate is appropr

4.4 Supporting Data & Savings Assumptions

Please find the savings assumptions below and the raw utility data on the following pages.

		Energy Savings Assumptions	
ECM #	ECM Name	Key Assumption	Key Equation
1	AHU Kitchen Exhaust Optimization	Reduce kitchen hood ventilation from heavy duty cooking requirements to light duty cooking requirements.	CFM x 1.08 x Delta T /1000000 HP x .746 x % Speed^2.3 x PF / eff. x hours
2	AHU Static Pressure Reset	Reduce air handling units average fan speed by 15% for 8760 hrs.	HP x .746 x % Speed^2.3 x PF / eff. x hours
3	AHU Discharge Air Reset	Reduce mechanical heating load required in 25% of spaces by 3F for between 1500 hrs. Increase mechanical cooling load required in 25% of spaces by 3F for between 500 hrs.	CFM x 1.08 x Delta T /1000000
4	AHU DCV	Reduce minimum outside air CFM of the air handling system by 50%.	CFM x 1.08 x Delta T /1000000
5	AHU Installation of fan VFDs	Reduce fan speeds for AHU 3A, 6, 17, and 19 from 100% to 70% for 8760 hrs.	HP x .746 x % Speed^2.3 x PF / eff. x hours
6	Zones Occupancy Sensors	Reduce mechanical heating load required in 25% of spaces by 4F for between 1500 hrs. Increase mechanical cooling load required in 25% of spaces by 4F for between 500 hrs.	CFM x 1.08 x Delta T /1000000
7	Interlock Fintube with Cooling Coil Valve/Raditio n loop set point adjustment	Reduce mechanical heating load required in 25% of spaces by 4F for between 1500 hrs. Increase mechanical cooling load required in 25% of spaces by 1F for between 500 hrs (smaller cooling savings because this anamoly happens during the shoulder season).	CFM x 1.08 x Delta T /1000000
8	DCV set point adjustment for RTU 1-4	Revise CO2 setpoint up from 750 PPM to 1000 PPM. Airflow at assumed 50% as the fan are locked at 50%. 75% outdoor airflow as coil designs are at 4500 CFM. Reduce OA flow by 15%.	CFM x 1.08 x Delta T /1000000
9	Dual Duct Box Independent Air Valve Operation - Min/Max airflow	Reduce Airflow by 5% of total DDU unit.	CFM x 1.08 x Delta T /1000000

Section 5

RCX Process & Next Steps

RCX Process & Next Steps

Step 1 | Identify Need (completed)

The first step in the process is to identify the need for a retro-commissioning. This includes a scoping investigation into the facility's usage and energy consumption. The intent of this phase is to identify likely opportunities which may result in energy savings.

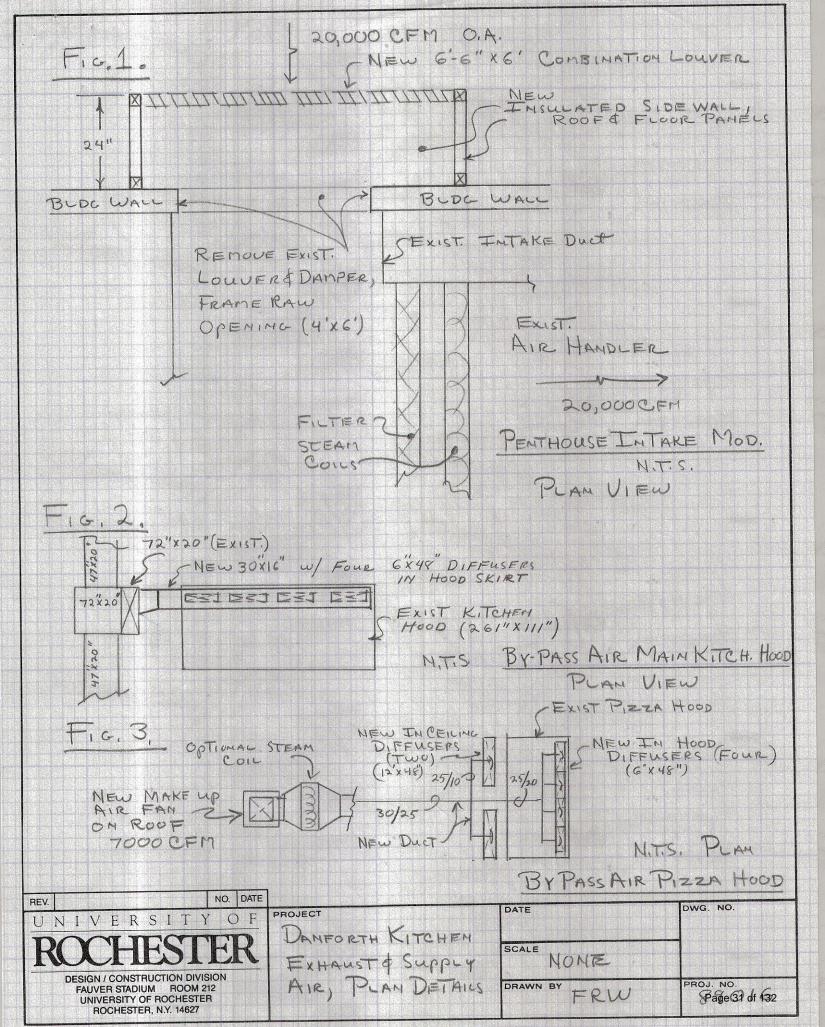
Step 2 | Develop a scope for the Retro-Commissioning

Following the scoping survey, Wendel and University will meet to decide on the scope and scale of the Retro-Commissioning effort. Questions such as:

- What systems should be included? Examples of systems which are often <u>not</u> included are: lighting, building envelope, plumbing systems, electrical distribution systems.
- What level of point-to-point testing will be performed? An example of a point-to-point test is where
 a damper or actuator is commanded open / closed and another person in the field observes its
 operation. Should each devise be checked? Should a representative % of devices be check?
- What level of function testing should be performed? So we test every sequence of operation (included smoke purge, alarms, start-up sequences) or just sequences that will impact energy usage?
- Are the sequences well documented?
- Will airflow need to be tested?
- Will a controls contractor need to be present to perform the testing?

Step 3 | Point-to-point check

In this step devices will be checked to see how they react to inputs from the control system. This would include calibration of sensors as well. The scope and scale of the point-to-point check will be determined in step 2.


Step 4 | Functional Testing

In this step devices will be manipulated to see how they respond to different inputs. This will also provide the basis for understanding current operation and recommendations for changes to improve energy efficiency and address deficiencies.

Step 5 | Reporting

Analysis is summarized in a report which will include summaries, testing logs, savings calculations, and cost estimates for changes.

A Supporting Survey Notes

															Z	log	7)P (Ĭ.	SI	밆	ÿ		ROOFTOP UNIT SCHEDULE	ULE	ULE	ULE	ULE	ULE	ULE	ULE	ULE	ULE	ULE	DLE	DIE	ULE .	ULE ,
UNI	SUNASS	í		9	TERT F	W PERFO	SUPPLY FAX PERFORMANCE DATA	ATAC					1:01	CCACO	-COIL+	HOT GLYCOL COLL HEATING PERFORMANCE DATA	PERIOR	MANCE	DATA							CHIE	ID WA		TER 000	LIK COOMING C	LEW COORING COIT LEW	TER COCUNS COLL PERFORMA	LEK COOMING COIT LEKLOW/WICE DY	CHILLED WATER COCUNG COLL PERFORMANCE DATA	TER COCUNS COIL PERFORMANCE DATA	TER COOLING COIL PERFORMANCE DATA	TER COOLING COLL PERTORNANCE DATA	TER COCUNG COLL PERTORY/AVCE DATA
AG			AIRFLOW (CFM) (I	(ESP (IN WG)	HP/ DEF	FAN	DRIVE	VOLTAGE	€ PHASE	C Hz	(F)	PDB PDB	VEL	SONO)	FINS	(IN WC	35	(F)	G°M	WPD (FT WG)	TOTAL DABH)	0 ED0	0 EWB	3 LD6				OPAGE C	COL ROWS	COL PMS/ ROWS IN	COL PRIST APP ROWS IN (INVC)	COL PNS/ APD PVI ROWS IN (N WC) (P)	COL PMS/ APD PVI LWT ROWS IN (NIWC (T) (T)	COL PRIS/ APD PVT LWT GPM ROWS IN (IN WC) (P) (P) GPM	COL PBIS / APD EWT LWT GTM WPD ROWS IN (NIWG) (PI) (PI) GTM (PT WG)	COL PRES / APD TWI LWT GTM WPD TOPA- ROWS IN (IN WC (PT) (PT) GTM PT WS 04/291;	COL PBIS / APD EWT LWT GTM WPD ROWS IN (NIWG) (PI) (PI) GTM (PT WG)	COL PRES / APD TWI LWT GTM WPD TOPA- ROWS IN (IN WC (PT) (PT) GTM PT WS 04/291;
RTU-1	EVENTS		6,500	0.75	7.5V	2,433	DOLT	200	(0	8	20.4	90.6	471	0	Ξ	0.24	180	130,	22.	5	510	510.5 85.9 71.0	9 71	.0 55.4	4 55	Uh		471	471 6	6 12	6 12 0.84	6 12 0.84 40	6 12 0.84 40 61.0	6 12 0.84 40 61.0 40	6 12 0.84 40 61.0	6 12 0.84 40 61.0 40	6 12 0.84 40 61.0 40 6.7	6 12 0.84 40 61.0 40 6.7 320
RTU-2	EVENTS SPACE		6,500	0.75	7.5) 6.44	2,433	BELT	208	عرا	8	20.4	20.4 90.6	471	13	Ξ	0.24	180	130.	22.1	U5.	510	510.5 85.9 71.0	9 71	.0 55.4	.4 55			471	471 6	471 6 12	471 6 12 0.84	471 6 12 0.04 40	471 6 12 0.84 40 61.0	471 6 12 0.04 40 61.0 40	471 6 12 0.84 40 61.0	471 6 12 0.04 40 61.0 40	47) 6 12 0.04 40 61.0 40 6.7	47! 6 12 0.04 40 61.0 40 6.7 320
RTU-3	SPACE		6,500	0.75	7.5. 6.44	2.433	DOLT	200	(0	8	20.4	90.6	471	70	Ξ	0.24	80	130.	22.1	5.3	510.5	8	85.9 71.0	.0 55.4	35			471	471 6	471 6 12	471 6 12 0.84	471 6 12 0.84 40	471 6 12 0.84 40 61.0	471 6 12 0.84 40 61.0 40	471 6 12 0.84 40 61.0	471 6 12 0.84 40 61.0 40	471 6 12 0.84 40 61.0 40 6.7	471 6 12 0.84 40 61.0 40 6.7 320
KTU-4	SPACE		6,500	0.75	7.5/ 6,44	2,433	BZLT	208	(p)	8	20.4	90.6	471	23	Ξ	0.24	180	130.	22.1	5.3	510	510.5 85.9 71.0	9 71	.0 55.4	4	CD.	55 4	471	471 6	471 6 12	471 6 12 0.84	471 6 12 0.84 40	471 6 12 0.84 40 61.0	471 6 12 0.84 40 61.0 40	471 6 12 0.84 40 61.0	471 6 12 0.84 40 61.0 40	47) 6 12 0.04 40 61.0 40 6.7	47! 6 12 0.84 40 61.0 40 6.7 320
SELON	• 12																																					
> 20	FIR TO 5	REFER TO SPECIFICATION SECTION 237413.	ж эсспс	W 2374	ĆO																																	
MAGNYCHOOJ, LATETO GONARIA DAD GARTO ACORDINATION GALMITIANI ELI HAM LINI ADVIDAJ. G					200																																	

- DOUBLE-WALL CONSTRUCTION, MERY I I TUTRATION

욛
N91630
CONDI
970
ARE
BASCO
NOan
240
DISTU
E A
2
OW F
ŝ
9
4,50
0 07
š

					BR	AZED) PLA	BRAZED PLATE HEAT EXCHANGER SCHEDULE	NAHC	JGER	. SCh	IEDU	TE.				
OAT TIME	MOLESCO	ann.ca	нот в	IDE PERFO	HOT SIDE PERFORMANCE DATA	TA		с тоэ	COLD SIDE PERFORMANCE DATA	MANCE DA	ľΑ			TRANSFER TRANSFER	HEAT	average on page.	
DINI ING	DOCTOR	DO NO.	RUND	GPM	EWT (%)	CP)	(TWC)	RUID	GPM	EWT (°F)	(P)	(PT W/G)	Dist	(SQ. IT.)	(MBH)	OF DEDBIN	
HX-1	CRAWLSPACE MER	HW HEATING LOOP	WATER	165.8	225	140	1.87	WATER	280	130	180	4.74	90	328.21	898.32	SONDEX MODEL # 9L333-BR27-90-TM-UQUID	>
HX-2	CRAWLSPACE MER	GLYCOL HEATING LOOP	WATER	143.41	225	140	1.52	40% PROPYLENE GLYCOL 60% WATER	255	130	180	4.75	200	313.29	814.02	\$ONDEX MODEL # 5LI 40-BR25-200-TL-LIQUID	Α, Β,
HX-3	CRAWLSPACE MER	GLYCOL HEATING LOOP	WATER	143.41	225	140	1.52	40% PROPILENE GLYCOL 60% WATER	255	130	180	4.75	200	424.5	9,391.4	\$ 9LI 40-BR25-200-TL-LIQUID	A, B,
HX-4	CRAWLSPACE MER	CRAWLSPACE MER GLYCOL HEATING LOOP SNOWMELT	WATER	35.97	225	140	.22	40% PROPYLENE SLYCOL 60% WATER	160	110	130 4.21		40	60.13	439.02	SONDEX MODEL # SL14O-BR25-40-TK-LIQUID	Α, Β,
MOTES.																	

REQUIDE HEAT EXCHANGER, WITH THERMOMETERS, ISOLATION VALVES, AND UNIONS AT EACH NILET AND QUITLET. PROVIDE MANUFACTURERS STANKESS STEEL DRIP PAN AND INSULATED SHIELD.

					P	UMP :	PUMP SCHEDULE	DULE							
TIME				e e		IMPELLER	-374/81	MUMINIM		4	MOTOR DATA	ATA.			
DAG	LOCATION	SERVICE	GFIM	(PT WG)	PUMP TYPE	DIAMETER (IN)	VALVE SIZE (IN)	EFFICIENCY (%)	dH	VOLTS	VOLTS PHASE	COTAL	Mdb	BASIS OF DESIGN	NOTES
1-4	SEN SOM SOMEON	CHILLED WATER LOOP	512	100	NOLLONS-GN3 GBLMNOW-36V8	=	6	82.5	55	200	(i)	69	1750	BELL # GOSSETT SERIES ISTO - 4EB	A, B
P-2	CRAWLSPACE NER	JOOT NELVA LOH	082	100	NOUDINS-DNS DSIMILOW-36VB	10-7/8	ui	Ø.87	51	206	(a)	00	1750	918.0.151 STREET # GOSSETT	A, B
P C	CHAMLSPACE MEK	HOT WATER LOOP	082	100	BASE-MOUNTED	10-7/8	5i	73.8	51	200	3	60	1750	BELL # GOSSETT SERIES 1570 - 3EB	A, B
70	CRAWLSPACE MER	HOT GLYCOL LOOP	510	100	BASE-MOUNTED END-SUCTION	- 11	6	80.6	20	206	69	60	1750	BELL # GOSSETT SERIES ISTO - 3EB	A, B
TO US	CRAWLSPACE MER	HOT GLYCOL LOOP	510	100	BASE-MOUNTED END-SUCTION	- 11	6	80.6	20	208	53	60	1750	BELL # G055ETE SERIES 5 FO - 3EB	A. B
P-6	CRAWLSPACE MER	HOT GLYCOL LOOP	160	100	BASE-MOUNTED END-SUCTION	10.125	Lo	68.8	10	206	ь	60	1750	BEIL # GC65ETT SERIES I 510 - 2EB	A, B
2 × 1010	EFFER TO SPECIFICATION SECTION 232123 PROVIDE FUNIF WITH DRAUGED 304 STAINLE	710N 232123. 7304 Stanless Stelfu	XIBITE CC	DRAECTORS	E RETRE TO SPECIFICATION SECTION 252 123. PRODUCT PLAIR WITH DESCRIPT SCA STANLESS STEEL TEXTISEE CONNECTORS, THUTLESTATY VALUE, SUCTION EPRYSES, AND 2508 Y, ANGES	ON DIFFUSER	C, AND 250% F	VANGES.							

)	ベラ しに なくなこつ プロニュレフに	-	5		117	OLL		Γ
1	MOLENCO	200,000		AIR SI	AIR SEPARATOR	26	NOTIONAL STOCKE	cores	
CVII ING	BOOKIOA	Jacobs	(80	(GPM)	OUTLET (IN)	(GPN) (IN) (IT WG)	ENGIN OF DETAIN	ő	Division in the
AG-I	CRAWLSAPCE MER	CRAWLSAPCE MER CHILLED WATER LOOP 6 710	6	710	6	(s)	SPIROTHERM SPIROVENT VHTGODFA	A, B	61.7
AG-2	CRAWLSAPCE MER	CRAWLSAPCE MER HOT WATER LOOP 5 260 5	5	280	5	(s)	SPIROTHERM SPIROVENT VHTSOOFA A B	A.B	ET-2
AG-3	CRAWLSAPCE MER	CRAWLSAPCE MER HOT GLYCOL LOOP	0	6 510	6	(s)	SPIROTHERM A. B.	A, B	ET-3
AG-4	CRAWLSAPCE MER	CRAWLSAPCE MER SHOWMELT LOOP	4	4 160 4	4	(s)	SPIROTHERM SPIROVENT VHI400FA A, B	A, B	157.4

PROVIDE MANUFACTURERS HIGH CAPACITY AIR VENT.

EXPANSION TANK SCHEDULE

_	Г			2	7401	EXI KINDION IKINA JOHEDULE		120	Ļ	
	UNIT TAG	TAG	LOCATION	SERVICE	TYPE	ACCEPTANCE VOLUME (GAL)	CHARGE PRESSURE (PSIG)	VOLUME (GAL)	VOLUME DIAMETER (GAL) (IN)	BASIS OF DESIGN
_	0	1-13	CRAWLSPACE MER	CRAWLSPACE MER CHILLED WATER LOOP DIAPHRAGM	DIAPHRAGM	84	99	211	30	BELL & GOSSETT D-280V
	ET-2	2-1	CRAWLSPACE MER	HOT WATER LOOP	DIAPHRAGM	84	55	1112	30	BELL # GOSSETT D-280V
	E-13	G	CRAWLSPACE MER.	HOT WATER LOOP	DIAPHRAGM	84	55	112	30	BILL # GOSSCTT D-280V
	12	_	CRAWLSPACE MER	SNOWMELT LOOP	DIAPHRAGM	34	55	110	24	BELL # GOSSETT D-200V
	NOTES:	ß								
	>	6 6	REFER TO SPECIFICATION SECTION 232116.	SECTION 232116.						

DRAWING TITLE

735 LIBRARY ROAD ROCHESTER NEW YORK, 14623

THE UNIVERSITY
OF ROCHESTER
Frederick Douglass Building
Renovations & Alterations
UR Project No. 142003

SCHEDULES

CHECKED BY	DRAWN BY	DATE	SCALE	JOB NO.	
GLL	AJK	November 20, 2015	AS NOTED	1317	

REVISIONS OUTDITS

A THE FORM OF THE PROPERTY
H-701

RECORD DRAWING SET - CONFORMED

755 Seneco Street Buffeo, WY 14210 716.558.6448 tel 716.552.1722 fox 54 Scuth Union, Street Rochaster, WY 14607 595.244.17294 fox www.cjearchitects.com ge 32 of 132

CHAINTREUIL JENSEN STARK

ARGUS
Argus Engineering, PLLC
200 Bosts Road
Syracuse NY 132111
315-475-6061

NOTES

		0	ΑBI	NE1	7 / U	NIT	CABINET / UNIT HEATER SCHEDULE	ER	SC	HEI	טוו	Ξ	
				HEATIN	G PERFOR	HEATING PERFORMANCE DATA	GA.	П	TECTRA	ELECTRICAL DATA	,,,		
UNIT TAG	LOCATION	(CPM)	847 (3)	38	GPW	PO (FT WS)	(MBM)	(§)	VOLTS	VOLTS PHASE FREQ		BASIS OF DESIGN	NOTES
UH-I	COLLECTION ROOM	1100	180	30	2.0	0.23	44.8	1/20	20	~	60	STERLING HS-72	A, G
CHH-I	SERVICE CORR. 119 ADJ, TO ELEV. 3	335	180	130	1.7	.56	39.5	0171	20	~	60	STERLING W -1080 - 03	A. B. C. D. E. G. H. I
CUH-2	CORRIDOR 705	335	180	īg	.0	.56	22.8	1/10	20	-	60	STERLING RW-1120-03	A. B. C. D. E. F. G. H. I
CUH.3	300 3109US3A	335	180	30	-0	.56	22.8	1/10	120	-	60	STERLING RW-1120-03	A, B, C, D, E, P, G, H, I
CUH-4	5TAIRWAY 200 54	630	180	30	1.7	.56	39.5	1/10	120	-	60	STERLING RW - 1 120 - OG	A, B, C, D, E, F, G, B, I
NOTES													
	THE PROPERTY OF THE PROPERTY O		Common of		OF TAXABLE PARTY	200	ALC: A COMMAN						

- ALUMINUM GRILLE INLET/OUTLET.
 PROVIDE W/ AQUASTAT.
- PROVIDE HIGH STATIC MOTOR.
 PROVIDE UNIT WITH INTEGRAL DISCONNECT.
- FULLY RECESSED UNIT, COORDINATE OFFING SIZE.
- REFER TO SPECIFICATION SECTION 238239. COLOR SELECTED BY ARCHITECT.
- POLYPROPYLENE GLYCOL

2	
Ž	
ECT	
8	
50	
JED (
E	

				00		- 0	0	(000000000000000000000000000000000000000	0 000				
IIIIT TAG		NOTE NO	T-VPP	CAPACITY	ξ	EWT	EN	GP.		ENCLOSURE SIZE	JRE SIZE		Breie Us Ubelon	NOTES
9		soon more		(BTUH)	(PS)	œ	(%)	H (8) (9)	HEIGHT	LENGTH	HEIGHT LENGTH DEPTH RECESS		0.000	10.100
CV-1		VESTIBULE 100	RECESSED.	6,700	65	8	130	1.34	180 130 1.34 26	64	4	fuμ	FULL STERLING FWG-A A, B, C	A, B, C
CV-2		VESTBULE 100	RECESSED	6,700	65	8	130	1.34	26	64	4	PULL	65 180 130 1.34 26 64 4 FULL STERLING FWG.A A.B.C	A, B, C
NOTES:	19:													
>	REFER TO SI	ECIFICATION S	A. REFER TO SPECIFICATION SECTION 238233.											
97	GRATE PROV	GRATE PROVIDED BY OTHERS.	Ş5											

AIR-COOLED CONDENSING UNIT SCHEDULE

			TVNIMON		AMBIENT	(7.1	0./324 h	FAN FERFORMANCE DATA	ATA		UNIT POWER	OWER			
UNIT TAG	LOCATION	SERVICE	CAPACITY (BTUM)	CETRICERANT	5	RPM	HP	QUANTITY	DRIVE	VOLTS	PHASE	FREQ	AMPS (MCA)	RPM HP QUANTITY DRIVE VOLTS PHASE FREQ (MCA) BASIS OF DESIGN	NOTES
ACCU-2	NOOR	ELEVATOR MACHINE ROOM	24,000	R-410A	95			J	DIRECT 208	208	~	8	<u>-</u>	315HI 24NA	A, B
ACCU-3	ROOF	ELEVATOR MACHINE ROOM	24,000	24,000 R-410A	95		,	J	DIRECT 208	200	~	8	ē	MITSUBISHI MUY-GE24NA	A, B
NOTES:															
A. INCLI	DE OPTIONAL WIND E	INCLUDE OPTIONAL WIND BAFFLE FOR LOW AMBIENT OPERATION DOWN TO O'F	NT OPERAT	ON DOWN TO (3										

AIR CONDITIONING UNIT SCHEDULE

			ľ	1		****	0			000	-		
			EVAPORATO	RATORY	AN PERF	SFORMANCE DATA	ZE DATA	DX CC	DX COOLING PE	RFORWANCE DATA	E DATA		_
OVE TIME	CATON	SCORES			MOLOR	DAIA		SOOM SE	PONS	TATOT	SENSIBLE	NOTES OF DESIGN	NOTEC.
0 40 000	500000000	OLD OTHER	Q.V	257	VOLTS	JIS PHASE PREG	FREG	38	9 3	CAPACITY		Or College	100
AC-2	ELEVATOR MR	ELEVATOR MR	775	775 (1) 208	208	-	60	72	50	50 24,000		MITSUBISHI MSY-GEZ4NA	A, B, C, D
AC-3	ELEVATOR MR	ELEVATOR MR	775 (1) 208	3	208	-	60	72	50	50 24,000		MITSUBISHI MSY-GEZ4NA	A, B, C, D
1000													

ARGUS
Argus Engineering, PLLC
200 Boss Road
Syracuse NY 13211
315-475-6061

- PROVIDE 5/6" RL AND 7/6" RS PIPING BETWEEN AS UNIT AND OUTDOOR, CONDENSING UNIT REFER TO SPECIFICATION SECTION 236126.

	GRILLE / F	
Andre Andre	/ REGISTER /	
	' DIFFUSE	
	/ DIFFUSER SCHEDULE	

		GR	GRILLE / K	EGIS	IER/	DIFFU	SER SC	/ REGISTER / DIFFUSER SCHEDULE		
SWLLING	SERVICE	DESCRIPTION	MATERIAL	PACE	NECK	SNILVIOON	HSINIS	ACCESSORIES	NSIGED SO SIGNA	SELON
54-1	SUPPLY AIR	SQUARE FLAQUE DIFFUSER	2216	NOMINAL 24" X 24"	PLANS	LAY-IN	(CAVONALS)	RADIAL DAWLER	TITUS OWIL	A, B
SA-2	SUPPLY AIR	PLENUM SLOT DIFF. (2-3/4" SLOT)	HEAVY-GAUGE EXTRUDED AL	SEE PLANS	PLANS	DAY-IN	(STANDARD)	I I' HIGH PLENUM	TITUS ML-36	A, B
54-3	SUPPLY AIR	ROUND DIFFUSER	STED	PER NECK SIZE	PLANS	EXPOSED	(STANDARD)	RADIAL DAMPER	TITUS TMRA	A, 6
544	ARCH, GRULE AT WINDOW SEAT	UNCAR BAR	STEPL	4'x2'-6"	PLANS	SURFACE	WHITE (STANDARD)		TITUS CT-481	A, B, C
RA-I	RETURN AIR	PERFORATED GRILLE	STED	NOMINAL 24" X 24"	PLANS	LAY-IN	(STANDARD)	٠	TITUS PAR	Α, Β
RA-2	RETURN AIR	PERFORATED GRILLE	ALUMINUM	NOMINAL 24" X 24"	PLANS	DAY-IN	(STANDARD)		TITUS PAR-AA	A, B
XA-1	EXHAUST AIR	LOUVERED REGISTER	STED	NECK SIZE + 1-1/4"	PLANS	SURFACE	(STANDARD)	OFFOSED BLADE DAMPER	TITUS 350KL	A, B
XA-2	EXHAUST AIR	REGISTER	ALUMINUM	NECK SIZE + 1-1/4"	PLANS	SURFACE	WHITE (STANDARD)	OPPOSED BLADE DAMPER	TITUS 350FL	A, B
TA-1	RETURN AIR	PERFORATED GRILLE	STED	NOMINAL 24" X 24"	PLANS	LAY-IN	WHITE (STANDARD)		TITUS PAR	A, B
NOTES:										

Renovations & Alterations UR Project No. 142003	THE UNIVERSITY OF ROCHESTER Frederick Douglass Building

735 LIBRARY ROAD ROCHESTER NEW YORK, 14623

DRAWING TITLE SCHEDULES

DATE
DRAWN BY
CHECKED BY 1317

SCALE AS NOTED

DATE November 20, 2015

DANIN November 20, 2015

DANIN S AIR

CHECKED BY GLL

REVISIONS A NOVEMBER AIR

A NOVEMBER AIR

A NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVEMBER AIR

NOVE

UNIT SHALL HAVE DOUBLE-WALLED CONSTRUCTION.
REFER TO SPECIFICATION SECTION 2382 I.G.

FIRST PLOOR
SECOND PLOOR

(W WC) (DW W) (DW W) ASB TSP SA

AIR HANDLING UNIT SCHEDULE

(15) GPM (F1 WG) (MRH) (F1) (MRH) (F1) WG (MRH) (MRH) (MRH) (F1) WG (MRH) (MRH

| CFM | CFM

5,325

67 71.7 54.4 53.4 456 6 0 67 71.7 54.8 54.3 424 6 0 62.4 68.5 54.4 53.9 40.4 6 0 61.4 67.8 54.4 54.0 40.4 6 0

0.84 = 72

12.9 674.1 1,018

> BASIS OF PESIGN

CONTROL MODEL

-1450N CONTROL MODEL

UNIT 15 A 4-PECE COL TO BE INSTALED IN EXISTING AIR HANDLING UNIT AHU-0). CONTRACTOR SHALL PROVIDE ALL REQUIRED MATERIALS AND LABOR TO DISCONNECT AND REMOVE EXISTING SITAM REATING COLLAND INSTALL HOT GLYCOL COLL IN AFU-0).

AHU-02 TO BE FIELD ERECTED WITH AHU MANUFACTURE SUPERVISION.

RECORD DRAWING SET - CONFORMED

H-702

755 Senero Street Buffel, WY 14210 716.856.6446 tel 716.852.1722 fox 54 South Union Street Rochester, WY 14607 585.244.17294 fox www.cjeurchitects.com CHAINTREUIL JENSEN STARK

ge 33 of 132

		MANAGED AN			+	╀			+		t	t	т	Ť	İ			
>		CONTROLS	0.69	65.48	8.73	N	8.76	41.15	8	2	95.52	us Us		4,065	4.065	SEE PLANS	SEE PLANS	VAV-34
Α.		MODEL 135	0.48	66.93	0.48	ю	33.75	43.29	-80	0.46	90.45	55	120	1,740	1,740	SEE PLANS	SEE PLANS	VAV-33
Α		MODEL TSS	0.37	41.18	0.16	N	10	43.27	-80	0.35	90.47	55	10	1,070	1,070	SEE PLANS	SCE PLANS	VAV-32
Α		YORK/JOHNSON CONTROLS MODELTSS	0.69	165.48	3.77	М	8.76	41.15	- 80	0.51	92.52	55	19	4.065	4.065	SEE PLANS	SEE PLANS	VAV-31
Α		CONTROLS MODEL TES	0.12	17.66	0.84	-	0.93	140.8	180	0.17	92.85	55	12	1,030	430	SEE PLANS	SEE PLANS	VAV-30
A		MODEL TES	0.12	3.53	0.45		0.75	43.1	180	0.1	90.62	S.	70	750	350	SEE PLANS	SEE PLANS	VAV-29
>		CONTROLS MODEL TISS	0.17	20.47	0.19	N	90.97	36.56	8	0.16	96.93	55	8	450	450	SEE PLANS	SCE PLANS	VAV-28
Α	,	CONTROLS MODEL TES	0.28	26.53	0.27	М	35	39.49	-80	0.27	94.12	55	8	625	625	SEE PLANS	SEE PLANS	VAV-27
Α		COMMISSION COMMISSION	0.47	13.72	0.03	ю	0.7	139.7	180	0.45	93.90	55	10	1,250	325	SEE PLANS	SEE PLANS	VAV-26
Α.		MODEL TES	0.37	13.25	0.11	ю	0.65	37.84	180	0.25	95.71	S.	8	500	300	SEE PLANS	SEE PLANS	VAV-25
A		MODEL TSS	0.57	32.34	2.24	N	42.187.19	42	-80	0.53	91.52	55	91	3,340	3,340	SEE PLANS	SCE PLANS	VAV-24
Α	,	CONTROLS MODEL TES	0.19	28.76	0.	М	-55	140.791.51	-80	0.18	92.86	55	70	700	700	SEE PLANS	SEE PLANS	VAV-23
Α	,	COMMISSION COMMISSION	0.25	93.08	0.86	ю	4.31	135.574.31	3 180	0.23	97.90	55	16	2,000	2,000	SEE PLANS	SEE PLANS	VAV-22
Α.		MODEL TES	0.25	93.06	0.86	ю	4.3	135.574.31	3 180	0.23	97.90	55	9	2,000	2,000	SEE PLANS	SEE PLANS	VAV-21
Α		YORKUCHRISON CONTROLS MODEL TSS	0.55	129.75	2.11	N	6.98	141.786.98	180	0.51	91.91	S.	16	3,240 3,240	3,240	SEE PLANS	SCE PLANS	VAV-20
Α		YOR WORKSON CONTROLS MODEL TES	0.25	93.08	0.86	М	74.31	35.57	180	0.23	97.90	55	16	2,000 2.000	2,000	SEE PLANS	SEE PLANS	VAV-19
Α		CONTROLS MODEL TES	0.35	86.68	0.76	2	4.3	38.634.31	180	0.31	94.95	55	14	2.000	2,000	SEE PLANS	SEE PLANS	VAV-18
Α		CONTROLS CONTROLS	0.53	103.03	1.22	N	5.55	141.8	7 - 80	0.47	91.88	55		2,575 2,575	2,579	SEE PLANS	SEE PLANS	VAV-17
Α		YORK/JOHNSON CONTROLS MODEL TISS	0.3	81.40	0.65	N	3.94	37.54	-80	0.27	96.00	G.	4	1,830	1,830	SEE PLANS	SCE PLANS	VAV-16
A		CONTROLS MODEL TES	0.2	44.96	0.19	ю	12.75	37.08	-80	0.19	96.44	S	12	1,000	1,000	SEE PLANS	SEE PLANS	VAV-15
×		MODEL TSS	0.08	27.07	2.39	-	- L	140.25	- 8	0.07	93.39	S	- 4	1.200	650	SEE PLANS	SEE PLANS	VAV-14
Α		NORKICHRON DONITROIS MODEL ISS	0.37	16.75	0.15	N	0.84	139	180	0.25	94.58	55	8	500	390	SEE PLANS	SEE PLANS	VAV-13
Α		CONTROLS MODEL TSS	0.21	17.77	0.04	N	0.9	39.63	180	0.2	93.99	S	10	750	420	SEE PLANS	SEE PLANS	VAV-12
Α		YOR WORKSON CONTROLS MODEL TES	0.07	6.45	0.04	М	20.29	137.42	180	0.06	99.01	55	05	200	135	SEE PLANS	SEE PLANS	VAV-11
Α		CONTROLS MODEL TES	0.2	44.96	0.19	2	72.75	37.40	180	0.10	96.44	55	12	1,000	1,000	SEE PLANS	SEE PLANS	VAV-10
Α		GEL TOOM COMMOS NOGRESTANDO	0.20	14.31	0.11	20	70.65	34.47	180	0.25	98.96	55	8	300	600	SEE PLANS	SEE PLANS	VAV-9
Α		CONTROLS MODEL TSS	0.18	70.93	0.65	N	93.96	43.18	180	9 0.16	103.79	S	14	1,340	1,340	SEE PLANS	SEE PLANS	VAV-8
Α		YOR WORKSON CONTROLS MODEL TES	0.21	86.21	0.7	М	93.88	34.28	180	0.20	99.15	55	16	1,800	1,800	SEE PLANS	SEE PLANS	VAV-7
Α		CONTROLS MODEL TES	0.26	25.75	0.25	2	31.29	39.03	180	0.25	94.56	55	8	600	600	SEE PLANS	SEE PLANS	VAV:6
A		MODEL ISS	0.23	53.08	1.36	N	2.4	134.56	2 180	0.22	96.88	55	12	1,115	1,115	SEE PLANS	SEE PLANS	VAV-5
Þ		YORKJOHNSON CONTROLS MODEL TSS	0.65	38.4	2.55	N	7.71	43	-80	0.6	90.63	G.	-6	3,580	3,580	SEE PLANS	SCE PLANS	VAV-4
A		CONTROLS MODEL TES	0.15	68.86	3.61	М	33.49	39.43	180	0.14	107.89	55	14	1.200	1.200	SEE PLANS	SEE PLANS	VAV-3
Α		CONTROLS MODEL TES	0.22	36.34	0.55	22	31.68	35.521.68	180	0.21	97.95	55	70	780	780	SEE PLANS	SEE PLANS	VAV-2
Α		SELTDOW CTOMINCO NOSHOTNACA	0.17	40.9	0.17	20	31.94	136.621.94	180	0.16	96.89	55	- 22	900	900	965 PLANS	SUAL PLANS	VAV-1
NOTES	AHU	BASIS OF DESIGN	MIN INLET SP MIN WCJ	(MDH)	OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	SONS NOE	PERFORMANCE D	CIL PER	EATING C	APO DIN WC)	HOT WATER HEATING	32	SZE	CPM	MN C	SERVICE	LOCATION	TAG
				l														

																														Ш
VAV-G4	VAV-63	VAV-62	VAV-G1	VAV-60	VAV-59	VAV-58	VAV-57	VAV-56	VAV-55	VAV-54	VAV-53	VAV-52	VAV-51	VAV-50	VAV-49	VAV-48	VAV-47	94-VAV	VAV-45	VAV-44	VAV.43	VAV-42	VAV.41	VAV-40	VAV-39	VAV-38	VAV-37	VAV-36	TAG	
SEE PLANS	SEE PLANS	SEE FLANS	SNY'N 335	SEE PLANS	SEE PLANS	SEE FLANS	SEE PLANS	SEE PLANS	SNY'N 335	SEE FLANS	SNY'N 335	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE FLANS	SEE PLANS	SEE PLANS	SNY'N 335	SEE FLANS	SEE PLANS	SEE PLANS	SNY'L 335	SEE FLANS	SNA'L 336	SEE PLANS	LOCATION	
SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SET PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	SEE PLANS	Ster Plans	SEE PLANS	SERVICE	VARIABLE
315	3,330	220	220	2,000	7,100	370	400	580	240	165	210	600	540	780	250	760	220	160	760	600	60	160	300	160	650	390	300	490	MIN	318
815	3,330	375	375	2,000	,100 2,000	1,670	1,500	950	1.985	940	875	2,540	540	970	0.00	715	580	265	260	3,700	255	535	- 1.5	645	2,345	1.080	625	490	CFM	AIR
08	60	6	90	/02	12	- 2	12	-2	- 2	ō	8	- 4	0.8	СB	8	CØ	08	90	06	ē	8	08	10	8	14	ō	ō	90	18 2 E B B B B B B B B B B B B B B B B B B	70
55	55	55	55	55	55	55	55	55	55	55	55	55	us	55	S	55	55	55	55	55	55	55	55	55	55	55	55	55	32	ρĺ
94.23	91.56	96.31	96.31	91.37	95.46	94.54	93.67	99.06	93.16	97.39	95.12	92.91	95.68	90.94	92.09	91.68	94.42	98.28	96.44	94.83	95.42	91.68	92.28	91.68	91.36	93.93	92.28	93.57	HOT WATER HEATING	VOLUME
0.23	0.53	0.16	51.0	25.0	25.0	0.24	0.2	21.0	25.0	0.15	0.46	0.25	0.21	0.3	0.22	0.18	0.24	60.0	60.0	0.35	0.04	0.71	0.2	0.15	22.0	98.0	90.0	0.24	APD (IN WC)	
80	80	180	180	180	180	180	180	180	-80	80	180	180	180	180	8	180	180	-80	80	180	180	-80	-80	100	180	180	100	80	LM3 LM3 OO SNI	TERMINAL
175.57	142.147.17	137.210	137.210	142.344	139.052.37	39.05	39.950	134.360	140.490.52	136.090.36	138,450	141.47	170.75	142.780.39	41.590	42.020	139.170	135.170	37.000	38.75	138.130	142.020.34	141,4 0.65	42.020	42.35	39.680	141,4 0.65	140.051	COIL PERFORMANCE	ĺ≧l
6.5	.17 2	0.47 2	0.47 2	4.31 2	.37 2	0.8	0.86	0.86 2	.52	36	0.45 2	1.29	5 911	39	0.54 2	0.34	0.47 2	0.34 2	0.34 2	.29	81.0	60	-65	0.34	1.4	2 99.0	.65	1.06	GRAMANCE I	١ź١
2.96	2.22	0.07	0.07	4.09	0.21	0.63	0.73	0.09	0.06	0.17	0.01	0.3	0.22	0.14	0.0	0.12	0.01	0.04	0.01	0.33	0.06	0.12	0.34	0.12	0.34	0.04	0.34	0.19	E DATA WPD (PT WG)	ပ္က
6 14.05	2 132.09	7 9.86	7 9.86	9 78.92	1 48.29	3 15.86	3 16.78	9 27.73	6 9.94	7 7.59	9.14	24.22	23.83	4 7.02	10.06	2 6.37	1 9.41	4 7.51	7.19	3 25.93	6 2.63	2 6.37	4 12.13	6	4 25.64	4 16.47	4 12.13	9 15.7	G) (MBH)	띪
		-	_							_									-					.37 0				_		SCHEDULE
0.26	0.57	0.23	0.23	9.0	0.6	0.26	0.22	0.18	0.35	0.17	0.49	0.31	0.22	0.34	0.23	0.2	0.25	0.12	0.12	0.4	0.05	0.12	0.22	0.16	0.27	0.37	0.09	0.36	INUMC) INUET SPE	Ē
NOSKUDDINGO NOSKUDDINGOV	CONTROLS CONTROLS CONTROLS	CONTROLS CONTROLS CONTROLS	SEL TIOON STOLLNOO NOSPHOMBOL	GIDALINOO GIDALINOO NOSHHOTMAOA	CONTROC CONTROC CONTROCA	STORMOON STORMOON STORMOON	CONTROLS MODEL TISS	CIDALINOD CIDALINOD NOSYHODYSON	SE TOOM CHOMINGO NOSMICIOSON	CONTROLS CONTROLS	SEL TIOON STOLLNOO NOSPHOMBOL	GIDALINOO GIDALINOO NOSHHOTMAOA	SE TOOM CHOMINGO NOSMICIOSON	CONTROLS MODEL TOS	CONTROUS STORMOON CONTROUS	MODEL TES MODEL TES	CONTROC CONTROC CONTROCA	STORMOON STORMOON STORMOON	SEL TIOON COMMON STORMOON	CIDALINOS CIDALINOS NOSRHOD/MACA.	SE TOOM CHOMINGO NOSMICIOSON	STORMOON STORMOON STORMOON	CIDALNOON CIDALNOO NOOMOON	CIONLINOS CIONLINOS NOSRHOFFASON	SEL TIDON CIDNINGO NOSMICIOSON	STORTHOON STORTHOO STORTHOON	SEL TIOON CIDAINOO NOSMOONAOA	CIONINOS CIONINOS NOSARODARON	BASIS OF DESIGN	
.																													CNIT	
>	>	Α	٨	٨	A	A	۸	٨	A	A	٨	٨	Þ	A	⊳	۸	A	A	>	٨	A	A	>	٨	A	۸	۸	Þ	NOTES	

H × W SILL DIM. LOUVER SCHEDULE

CFM

SECTION SECTION

DASIS OF DESIGN

NOTES

THE UNIVERSITY
OF ROCHESTER
Frederick Douglass Building
Renovations & Alterations
UR Project No. 142003

DRAWING TITLE

SCHEDULES

735 LIBRARY ROAD ROCHESTER NEW YORK, 14623

BYATNI RELIEF

0.01

298

FINAL COLOR SELECTED BY ARCHITECT. (LOUVER FINISH KYNAR 70% (2 COAT)

LOUVER TO INCLUDE MOTORIZED DAMPER.
ALLMINUM BIRD SCREEN (1/2" x 0.063 MESH); MATCH LOUVER FINISH

MODEL # PINIGOT A. B. C. D. E.
MODEL # PINIGOT A. B. C. D. E.
MODEL # PINIGOT A. B. C. D. E.
MODEL # PINIGOT A. B. C. D. E.
MODEL # PINIGOT A. B. C. D. E.
MODEL # PINIGOT A. B. C. D. E.
MODEL # PINIGOT A. B. C. D. E.
MODEL # PINIGOT A. B. C. D. E.
MODEL # PINIGOT A. B. C. D. E. SCALE AS NOTED

DATE November 20, 2015

DRAWN BY AJK

OHECKED BY GLI

REVISIONS OF ORDERS

A 1000 S. 1 1317

RECORD DRAWING SET - CONFORMED

H-703

ARGUS
Argus Engineering, PLIC
200 Boss Road
Syracuse NY 13211
315-475-6061

Buffeo, WY 14210
Till SS6.6448 tel
716.852.1722 fox
54 South Union Street
Rochaster, WY 14607
585.244.3799 fox
www.cjaarchitects.com ge 34 of 132

CHAINTREUIL JENSEN STARK

3/4	(N) JZKS JGU	DIATION SCHEDULE																												
-	ROWS	9																												
50	FINS PER FOOT	SCH																												
WOULG SY	ACTIVE FIN LENGTH (FT)	EDU																												
NWO	N CEN	F																												
170	AVG. WATER TEMP. *F			D. REFER	C. PROVIE	B. PROVID	NOTES:	F-20	61-1	Q1-4	F-17	91-1	51-3	P-14	F-13	F-12	114	01-1	F-9	9-1	4.4	1-6	F-5	F-4	5.7	2-1	DAT TAG			
STERLING BARE	BASIS OF DESIGN			REFER TO SPECIFICATION SECTION 235423	PROVIDE MAY WITH NEW PROMAN ETHORNOUNDED, 12 HIGH NIBULATED POOT CUPB, CUPB STAL, HINCED CUPB CAP, HOOD HARPS, STANLESS STEEL FASTBURSS, BELT GLARD, ENTINEED LIBRECATION LIBRIA AND DISCONNECT SWITCH.	 PROVIDE FAN WITH VEHA PREMIUM EPHORNOY MOTOR, 24 HIGH NEU ACTO RUDOF CURG, CURG SEAL HINGED CURG CURG FOR, NOVESTICK, COARDD FAN WHEEL, HOOD HASTS, SEANLESS STEEL FASTENERS, GREVEE TRAY, HIST DAPPLE, CLEANDUT FORT, BELT GUARD, EXTENDED LURBICATION LINES, AND DISCOMRECT SWITCH. 	NOTES. A. PROVIDE FAN WITH NEAM PERMAN EFFORMEN MOTION, EMERICADAVINIOS OF WITH MESTRANDED SPRING SOLVICOSS, INCENDINGET, SANGES, AND DESCONNECT SWITCH.	ROOM 25	PENTHOUSE ROOF	CRAWLSPACE	FOURTH FLOOR ROOF	FOURTH FLOOR ROOF	ROOF	PENTHOUSE	PENTHOUSE	FOURTH FLOOR MECH ROOM	SECOND FLOOR ROOF	SECOND FLOOR ROOF	SECOND FLOOR ROOF	SECOND FLOOR ROOF	SECOND FLOOR ROOF	SECOND FLOOR ROOF	SECOND FLOOR ROOF	SECOND FLOOR ROOF	SECOND FLOOR ROOF	CRAWLSPACE	LOCATION			
20	NOTES			TON 233423.	AUM EFFICIENCY NO DNNECT SWITCH.	ALM EFFICIENCY NO AT BAFFLE, CLEAVO	AIUM EFFICIENCY MC	MECHANIC	FOURTH FLOX	AH-O1 RETUR	KITCH	NTCF	TOLET EXHAU	AHU-05 RETU	AHU-04 RETU	AHU-03 RETU	TOLLET EXT	GREASENS	козне	козне	EURO	DISM	STRUE	STRUC	ALLERGI	AH-O2 RETUR	96			
			1		OTOR, I 2" MIGH INSU	JTOR, 24" HIGH INSU JT PORT, BELT GUARI	OTOR, BASE-MOUNTI	MECHANICAL ROOM 125	FOURTH FLOOR STOVE HOOD	AH-OT RETURNIEXHAUST FAN	KITCHEN 219	NITCHEN 219	TOLET EXHAUST 3RD AND 4TH FLOOR	AHU-05 RETURNIEXHAUST FAN	AHU-04 RETURNIDXHAUST FAN	AHU-03 RETURNOSHAUST FAN	TOTET EXHAUST - WEST	GREASEN/SBICART WASH	KOSHER KITCHEN	KOSHER KITCHEN	EURO XITCHEN	DISHWASHING	STREET KITCHEN	STRUET KITCHEN	ALLERGEN KITCHEN	AH-O2 RETURNIEXHAUST FAN	SERVICE			
DAC-I DI	UNIT TAG U				LATED ROOF CURB, C	LATED ROOF CURB, C	YG KIT WITH RESTRAIN	IN-LINE	UPBLAST CENTRIFUGAL	INTINEWIXED L'OW	UPBLAST CENTRIFUGAL	CENTRIFUGAL	CENTRIFUGAL	INLINEMINED FLOW	INLINE/MIXED FLOW	INUNEWINED FLOW	UPBLAST CENTRIFUGAL	CENTRIFUGAL	CENTRIFUGAL	UPBLAST CENTRIFUGAL	UPBLAST CENTRIFUGAL	CENTRIFUGAL	CENTRIFUGAL	UPBLAST CENTRIFUGAL	UPBLAST CENTRIFUGAL	INCINENTAL FLOW	1775			
DOCK 226	LOCATION				URB STAL	TION UNES	IED SPRING	500	1350	V 22,375	8,550	6,774	1,050	V 17,000	V 17,000	v 20,000	900	500	4,475	3,408	6,450	1,000	6,163	6,150	5,236	V 25,975	CSW			
					HINGED	HINGED O	ISOLATC	0.5	1.7	5.0	2.17	7.5	7.5	2.0	2.0	2.0	7.5	1.0	1.7	1.7	2.8	0.75	1.7	1.7	7.5	2.0	(N W)			
OVERH					NO BRILL	CONNEC	75. N.E.	,		30				27	27	30		,				,				ð	(IN WG) PAN DIA (IN)	NIN.		
TAD GAR	SERVICE				F, HOOD	F, NON-S	INCUILE	1,725	1,650	1,282	763	772	1,725	1,187	1,187	1,187	1,807	1,287	1.106	1,013	1,255	1,618	872	871	792	1,013	RPW RPW	2		
OVERHEAD GARAGE DOOR	B				HASPS, SI	STICK COAT	FLANGES,	,		2,427	2,169	2,169		2,169	2,169	2,169		,				,				1.549	VELOOITY VELOOITY	OUTET		
	0_[]				AINLESS	SO PAN Y	AND DISC	DIRECT	BELT	ma	BELT	LT39	DIRECT	DELT.	BELT	BELT	ELLI E	1738	BELT	LTTG	ELLI E	1738	BELT	BELT	BELL	LT38	DRIVE		FAN SCHEDULE	
(JJ	MOTOR				STEEL	AHEEL, H	CONNEC	75	82	8	86	0-	8	80	80	78	78	89	79	78	8	73	82	82	0	8		1	ايَ	
1/2	¥ <	8			STEVE	COD HA	SWTC	75	57	89	92 8	20	1.5	88	8	87 8	78 :	8	<u>0</u>	80	8	72 :	8	8	82 2	92	63 25 250 500 1,000 2,000 4,000 6,000	N.	띪	
		잁			5, 500	5FS, 51		72 65	72 75	89 88	84 78	82 78	66 73	92 86	92 88	87 86	74 71	78 72	87 80	82 77	81 79	75 67	86 80	86	83 76	85 81	50	1 90UN	ľë	
205	VOLTS I	≥			GUARE	ANUES		6	66	95	3 76	70	65	86	86	82	66	67	73	7 71	9 79	6)	75	75	5 72	79	-,00	0.48.0	F	
_	PHASE	R			NILIG	STEE		U.S	U1 4	82	73	69	50	82	82	79	65	66	73	70	75	62	7.4	7.4	70	75	02.00	BY OCTAVE BAND		
8	FREQ.	ĮŽ.			DED			S	S S	79	69	67	US PO	Ð	29	75	is.	64	8	67	8	n n	71	7.	8	8	4,000	SAND		
ω	PAN GUANTITY	Ä						8	53	71	66	63	50	72	72	68	л 4	54	99	64	64	57	67	67	63	63	0,000			
10.5	MIA FAN I	S S						69	74	16	8.8	6.4	27	92	92	88	22	75	83	6.2	88	1.2	83	83	79	9.6	LwA	RADIATED		
4,760	TOTAL AIR VOLUME (CPM)	DOOR AIR CURTAIN SCHEDULE						57	62	79	72	67	60	80	80	76	62	64	71	68	72	59	71	7.1	68	73	dBA	RADIATED AVG. SCUAD POWER		
		JULE						8.8	10.5	30	23	16.4	10.0	59	3	25	11.11	14.2	20	16.5	19.5	9.8	20	20	17.1	23		ID POWER		
29	37 2							ā	3/4	in n	UI	tu D	-	ū	ū	ū	3/4	3	to 83	10	UI.	29	to 83	(a	t,o	ū	4			
10	WATER HEAT FORMANCE TOTAL (MBH)							120	200 3	208 3	208 3	208 3	208 3	208 3	208 3	208	208 3	208	208 3	208 3	208 3	208	208 3	208 3	208 3	208 3	VOIT PHASE FRED	MOTO		
213.1	MANCE DATA							8	60	60	80	_	8	60	8	3 6	-	- 60	8	3 60	8 60	- 60	60	60	8	8	ASE TR	MOTOR DATA		
ū	JA GPM							1,725	1,725	1,750	0 1,725	60 1,725	1,725	1,750	1,750	60 1,750	60 1,725	1,725	1,725	1,725	1,725	1,725	1,725	1,725	1,725	1,750	ZQ RPM			
DC12-3132W	BASIS OF DESIGN							25 GREENHECK SQ-90-VG		50 GREENHECK QEI-30-I-150		25 CUBE-300-30			50 GREENHECK QEI-27-II-150	50 GREENHECK QEI-30-I-150	25 CHE-161XP-7	25 GREENHECK CUBS-141HF-	25 GREENHECK CUE-220HF-30	25 GREENHECK CUBE-220HP-20	25 GREENHECK CUBE-360XP-50	25 GREENHECK CURK-101-3G	25 GREENHECK CUBE-300HP-3		l. I	50 GREENHECK QE1-40-1-150	M BASIS OF DESIGN			
₹				1				-		_	ñ	,		,	2	_		4	0	ő	6	ν,	Š	ŏ	0		22	4		

NOTES

Buffeo, WY 14210
Till, SS6,6448 tel
716,852,1722 fox
54, South Union, Street
Rochaster, NY 14607
585,244,3790 fox
www.cjsarchitects.com

ige 35 of 132

ARGUS
Argus Engineering, PLIC
200 Boss Road
Syracuse NY 13211
315-475-6061

CHAINTREUIL JENSEN STARK

				FIN	TUB	E R/	\DIA1	NOI,	SCHE	FIN TUBE RADIATION SCHEDULE			
	CAPACITY		ENCLOSURE	25URE				13	ELEMENT				
TAG	(BTUH / HR / UNEAR FT.)	(N)	(IN)	D MOUNTING (IN) HEIGHT TO TOP	HGT. (IN)	(IN)	WIDTH TUBE SIZE	ROWS	FINS PER FOOT	INS PER ACTIVE FIN AVG. WATER FOOT LENGTH (FT) TEMP, *F	AVG. WATER TEMP, *F	FINS PER ACTIVE FIN AVG. WATER BASIS OF DESIGN FOOT LENGTH (FT) TEMP, *F	NOTES
PT-I	980			6-7/6	3-506	4-1/4	3/4	-	50	AS SHOWN	170	STERLING BARE ELEMENT STYLE &	A, D
FT-2	880	11-3/4	11-3/4 4-3/8	15-11/16	3-1/4	3-1/4	3-1/4 3-1/4 3/4	2	50	AS SHOWN	170	STERLING MODEL # JVA-E5-11	A, C, D
NOTES:													
A. REFE	REFER TO SPECIFICATION SECTION 238236.	SECTION	238236.										
B. COC	COORDINATE WITH ARCHITECTURAL WINDOW SEAT.	TECTURAL	WOONW	SEAT.									
9	COLOR SELECTED BY ARCHITECT	HIPCI											

100	CAPACITY		ENCLO	ENCLOSURE				p	ELEMENT				Ī
TAG	(BTUH / HR./ UNEAR FT.)	(N)	(IN)	MOUNTING HEIGHT TO TOP	HGT. (IN)	(IN)	TUBE SIZE	ROWS	FINS PER FOOT	ACTIVE FIN LENGTH (FT)	AVG. WATER TEMP. *F	BASIS OF DESIGN	z
1.79	980			8-7/8	3-506	4-1/4	3/4	-	50	AS SHOWN	170	STERLING BARE ELEMENT STYLE &	A, B
7.2	880	11-3/4	11-3/4 4-3/8	15-11/16	3-1/4 3-1/4 3/4	3-1/4	3/4	2	50	AS SHOWN	170	STERLING MODEL #	Α, C
155													
REFER	REFER TO SPECIFICATION SECTION 238236.	SECTION	238236.										
COOR	COORDINATE WITH ARCHITECTURAL WINDOW SEAT.	TECTURAL	WOONW	SEAT.									
COLO	COLOR SELECTED BY ARCHITECT.	HITECT.											
PROVI	PROVIDE BND CAPS.												

		GR	GRAVITY VENTILATOR SCHEDULE	VENT	LATOR	SCHE	DULE		
JNIT TAG	LOCATION	SERVICE	(IN. WG.)	CFM	BASE HEIGHT (IN.)	THROAT VELOCITY (FTMIN)	THROAT AREA (FT2)	BASIS OF DESIGN	NOTES
GRV-1	LEVEL 5 ROOF	AHU-3	.5	21,629	5	1,901	92'11	GREENHECK PGR 21 X 78	A, B, C, E
GRV-2	LEVEL 2 ROOF	KTU-1	.12	3,250	g	1,003	3.24	GREENHECK GRER -24	A. B. D. C. F
GRV-3	LÉVÉL 2 ROOF	RTU-2	- 12	3,250	(A	-,003	3.24	GREENHECK	A B D, E F

C. TINISH: STAIRLESS STEEL CABINET. D. FURNISH UNIT COMPLETE WITH CONTROLS, H E. TINISH COLOR SELECTED BY ARCHITECT.

		GR	AVITY	VENTI	GRAVITY VENTILATOR SCHEDULE	SCHE	DULE		
NIT TAG	LOCATION	SERVICE	(IN. WG.)	CFM	BASE HEIGHT (IN.)	THROAT VELOCITY (FT/MIN)	THROAT AREA (PT2)	BASIS OF DESIGN	NOTES
GRV-1	LEVEL 5 ROOF	ани.3	ùı	21,629	s	1,901	11.38	GREENHECK FGR 21 X 78	A, B, C, E
GRV-2	LEVEL 2 ROOF	KIU-1	. 12	3,250	S	1,003	3.24	GREENHECK GRER -24	A. B. D. C. F
GRV-3	LEVEL 2 ROOF	RTU-2	.12	3.250	S.	1,003	3.24	GREENHECK GRER -24	A. B. D. E. F
GRV-4	LEVEL 2 ROOF	RTU-3	.12	3,250	5	1,003	3.24	GREENHECK GRER -24	A, B, D, E, F
GRV-5	LEVEL 2 ROOF	RTU-4	.12	3,250	5	1,003	3.24	GREENHECK GRER -24	A, B, D, E, F
GRV-6	PENTHOUSE ROOF	AHU-4 AND 5	.443	16,100	ÇI.	1,789	9	GREENHECK FGR 24 x 54	ABEEG

A REFER TO SECONDATION SECTION 233723.

b. PROVINCE (2 Pried OVER).

c. DAMPER 2 1 * 7 20*.

D. DAMPER 2 1 * 24*.

E. PROVINCE STRAUESS STEEL BRID SOUTCH.

E. OLIMITITY (2):

				ONS.	120" F AT DESIGN CONDITI	SNOWMELT SYSTEM AVERAGE WATER TEMPERATURE - 120° F AT DESIGN CONDITIONS	WMELT SYSTEM AVERAGE	
						130°F	$PANCEL PANT = 110^{\circ} F / 3NT = 130^{\circ} F$	B. PAN
						TION 238316.	REFER TO SPECIFICATION SECTION 238316.	A REF
								NOTES:
A.B. C	UPONOR	4	40% PROPYLENE GLYCOL	-	CONTROL PANEL	ARCA WAY	ELECTRICAL	MF-4
A.B.C	UPONOR	4	40% PROPYLENE GLYCOL	,	CONTROL PANEL	AREA WAY	MECHANICAL ROOM BOGA	MF-3
A, B, C	UPONOR	9	40% PROPYLENE GLYCOL	10	CONTROL PANEL	LOADING DOCK	DRY STORAGE	MF-2
A, B, C	UPONOR	56	40% PROPYLENE GLYCOL	10	CONTROL PANEL	DATCRIOR	5TORAGE 207A	MF-1
NOTES	BASIS OF DESIGN	FLOW RATE (GPM)	ZIUID.	ZONE CIRCUITS	CONFIGURATION	SERVICE	LOCATION	UNIT TAG

RECORD DRAWING SET CONFORMED

H-704

THE SE DATE OF SE DRAWING TITLE 735 LIBRARY ROAD ROCHESTER NEW YORK, 14623 SCHEDULES

THE UNIVERSITY
OF ROCHESTER
Frederick Douglass Building
Renovations & Alterations
UR Project No. 142003

O NO.	317
ALE	AS NOTED
TE	November 20, 2015
AWN BY	AJK
ECKED BY	GLL

ALE	AS NOTED
Æ	November 20, 2015
RAWN BY	AJK
ECKED BY	GLL
\ 0.000 0.00	10/30/15

ATE RAWN BY HECKED BY EVISIONS	November 20, 2015 AJK GLL 1039/15 ADDENDUM #1
RAWN BY	AJK
HECKED BY	GLL
EVISIONS △	10/30/15 ADDENDUM #1
⊳	11/4/15 ADDENDUM #2
⊳	11/9/15 ADDENDUM #3
>	5/11/16

SNOWMELT MANIFOLD SCHEDULE

THIS IS A SINGLE SHEET OF A COMESNE
SET OF CONSTRUCTION DOCUMENTS
(INCLUDING DRAWNGS AND SPECIFICATIONS),
INTERPRETATION OF THE INFORMATION
AS PRESENTED SHOULD BE BASED ON
THE ENTIRE SET OF DOCUMENTS.

Appendix RCx-A

Supporting Survey Notes

Preliminary Assessment Interview HVAC ONLY

Building Name: RRL

Contact Name: Richard Stein

Wendel Auditor: Jason Denue Date:3/23/2021

BUILDING OVERVIEW

Building Schedule:

Monday - Friday: 24/7Saturday - Sunday: 24/7

HVAC Schedule:

Monday - Friday: 24/7

Saturday - Sunday: 24/7

Space Types / uses

• Type 1: Library

• Type 2: Study Areas

• Type 3: Conference Space

EMS Yes / No

Type: Pneumatic / DDC, some standalone PN

• Manufacturer Legacy / Updated, (Siemens Apogee, Day Webcontrol)

Has Trending: Y / N WebControl Yes, Siemens Pi

Has Remote Access: Y / N

Has Temperature setback: Y / N

Has Time of Day Schedule: Y / N

Heating Plant Yes / No

Heating System: Steam / HW / Electric	3. Boiler Input: field mmBtu				
Fuel Source: NG / Fuel Oil / Propane	4. Hot water system control: HW Reset /				
	OA Reset / Constant Temperature				
Steam Boilers or N/A	5. Hot water temperature set point:				
1. Number of Boilers:	Max: Min:				
2. Boiler Output: field	6. Burner Controls: Linkage / Electronic				
3. Boiler Input: field	Replace Boilers: Y / N Replace Burners: Y / N				
4. Blow down procedure: Automatic / Manual					
How frequent:	Hot Water Pumps				
5. Condensate return system:	1. Primary Pumps:				
6. Steam Pressure at Boiler: field	a. Power: field HP				
7. Steam pressure at PRV 1: field psig or N/A	b. Number of Pumps: 2				
8. Steam pressure at PRV 2: field psig or N/A	c. Efficiency: Premium / High / Standard				
9. Feed water system:	d. Control: Start & Stop / 2 speed / VFD				
a. Treated: Y / N	2. Primary Glycol Pumps Pumps:				
b. Preheated: Y / N	a. Power: field HP				
10. Burner Controls: Linkage / Electronic -	b. Number of Pumps: 2				
Replace Boilers: Y / N Replace Burners: Y /	c. Efficiency: Premium / High / Standard				
N	d. Control: Start & Stop / 2 speed / VFD				
	Replace Motors: Y / N Add VFD: Y / N / Has				
Steam traps or N/A					
1. Maintenance program: Y / N	3. Secondary Pumps:				
2. Trap condition (general): poor /average /new	a. Power: field HP				
Replace Traps: Y / N	b. Number of Pumps:				
Combustion Air : Y / N	c. Efficiency: Premium / High / Standard				
Plant Enabled at:	d. Control: Start & Stop / 2 speed / VFD				
Hot Water Boilers or N/A	Replace Motors: Y / N Add VFD: Y / N / Has				
1. Number of Boilers:					

Page 2 of 13 03/24/21

2. Boiler Output: field mmBtu

Page 38 of 132

Domestic Hot Water System Yes / No

- Hot Water Supply Temperature: _____ Storage Tank: Y / N 1. Storage Temperature:_____ 2. Storage Tank Volume:_____
- Heat exchanger: Steam / Hot Water / N/A 1. Usage: Year Round / School year
- **Heating Source**: Main Boilers / DHW Heater

- DHW Heater: Electric / NG / N/A
 - 1. Burner: Atmospheric / Force Draft
 - 2. Usage: Year Round / School year Replace with Condensing: Y/N
- Dish washer Booster Heater or N/A need to investigate
 - 1. Fuel Source: Steam / NG / Electric

[field

03/24/21 Page 3 of 13 Page 39 of 132

Cooling Plant Yes / No

Chi	illed	water system District Connection
Chi	ller	
1.	Ch	iller Type: Centrifugal / Screw /
	abs	sorption / gas driven /
2.	Ch	iller Capacity: field Tons
3.	VS	D: Y / N
4.	OA	reset: Y / N
Co	oling	Tower
1.	Tov	wer Type: Open / Closed /force
	dra	nft
2.	Tov	wer Capacity: Tons
3.	Add	d VSD: Y / N / Has
4.	Us	es Glycol: Y / N
Coi	ntrol	s
1.	СН	W Set Point:
2.	CW	Set Point:
Chi	illed	Water Pumps
1.	Pri	mary Pumps:
	a.	Power: field HP
	b.	Number of Pumps: 1
	c.	Efficiency: Premium / High / Standard
	d.	Control: Start & Stop / 2 speed / VFD
Rep		e Motors: Y / N Add VFD: Y / N / Has
2.	Se	condary Pumps:
	a.	Power: field HP
	b.	Number of Pumps:
	C.	Efficiency: Premium / High / Standard
	d.	Control: Start & Stop / 2 speed / VFD

Replace Motors: Y / N Add VFD: Y / N / Has

Page 4 of 13 03/24/21 Page 40 of 132

Terminal Units Yes / No

•	Spa	ace Type 1 : Stacks Heat Pumps (loop?)
	1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps /
	2.	Heat Source: Steam / HW / Electric / Furnace
	3.	Cooling Source: CHW / DX / Heat Pump /
	4.	Ventilation: Y / N
	5.	Controls: Thermostat DDC / DCV / Other
	6.	Scheduled: Y / N
	7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other
	8.	Equipment Condition: Poor / Average / Good
•	Spa	ace Type 2: Vairous
	1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps /
	2.	Heat Source: Steam / HW / Electric / Furnace
	3.	Cooling Source: CHW / DX / Heat Pump /
	4.	Ventilation: Y / N
	5.	Controls: Thermostat / DCV / Other
	6.	Scheduled: Y / N
	7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other
	8.	Equipment Condition: Poor / Average / Good
•	Spa	ace Type 3:
	1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps / VAV RH
	2.	Heat Source: Steam / HW / Electric / Furnace
	3.	Cooling Source: CHW / DX / Heat Pump /
	4.	Ventilation: Y / N
	5.	Controls: Thermostat / DCV / Other
	6.	Scheduled: Y / N
	7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other
	8.	Equipment Condition: Poor / Average / Good
•	Spa	ace Type 4: radiators
	1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps /
	2.	Heat Source: Steam / HW / Electric / Furnace
	3.	Cooling Source: CHW / DX / Heat Pump /
	4.	Ventilation: Y / N
	5.	Controls: Thermostat / DCV / Other
	6.	Scheduled: Y / N
	7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other

Page 5 of 13 03/24/21 Page 41 of 132

8. Equipment Condition: Poor / Average / Good

Ventilation System 1 Yes / No

AHU Number(s): AHU 1&2

Number of Units: 2

Schedule:

Location: Indoors / RTU

• Type of AHUs: CV / VAV / DualDuct / Induction / Other _____ (need look into further - may vary based on season HTG /CLG)

Heating: HW / HW-Glycol / Steam / Furnace / Heat Pump / N/A

Cooling: CHW / DX / Heat Pump / N/A

• Humidification: Y / N

Heat Recovery: Y / N / Has

Outdoor Air

Control: TOD / DCV / N/A (OA over ridden for COVID)

Exiting Economizer: Y / N

System Fans

1. Supply Fan:

a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position (Static Pressure setpoint)

2. Return Fan 4qty

a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position (Static Pressure setpoint)

3. Exhuast Fan or N/A

a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

03/24/21 Page 42 of 132

Ventilation System 2 Yes / No

•	AHU Number(s): VAV
•	Number of Units:Mult
•	Schedule:

Monday - Friday: On_____ - Off _____
 Saturday - Sunday: On_____ - Off _____

Location: Indoors / RTU

Type of AHUs: CV / VAV / Dual Duct / Induction / Other ______

Heating: HW / HW-Glycol / Steam / Furnace / Heat Pump / N/A

Cooling: CHW / DX / Heat Pump / N/A

Humidification: Y / N

• Heat Recovery: Y / N / Has

Outdoor Air

➤ Control: TOD / DCV / N/A

• Add Economizer: Y / N / Has

System Fans

1. Supply Fan:

a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

Return Fan or N/A

a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

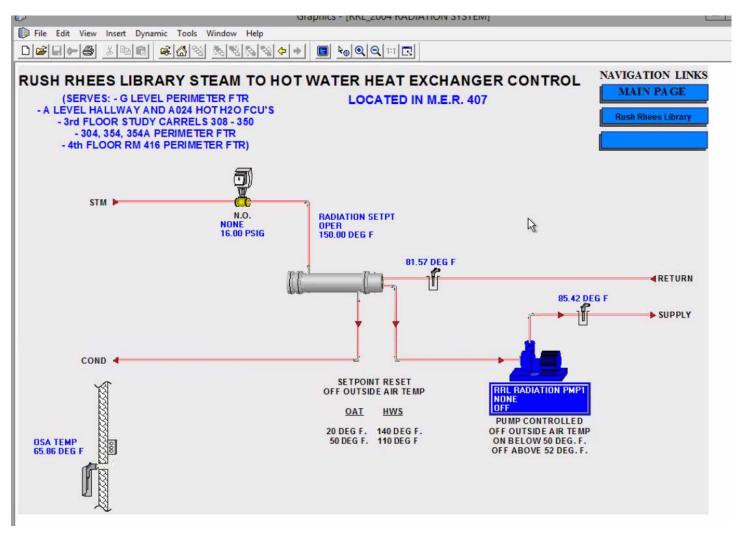
Exhaust Fan or N/A

a. Power: field Hp

b. Efficiency: Premium / High / Standard

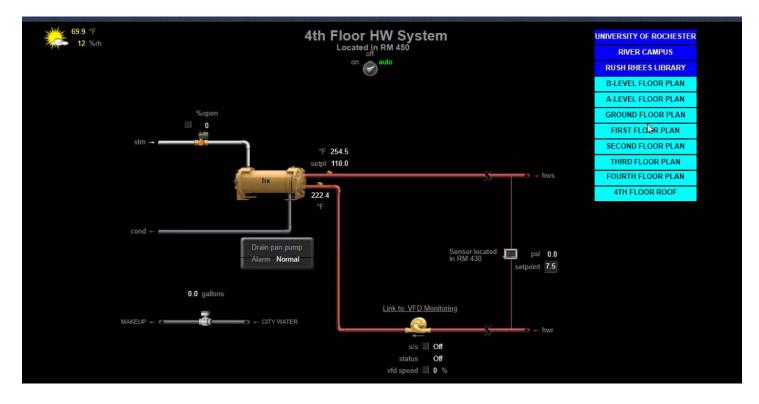
c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

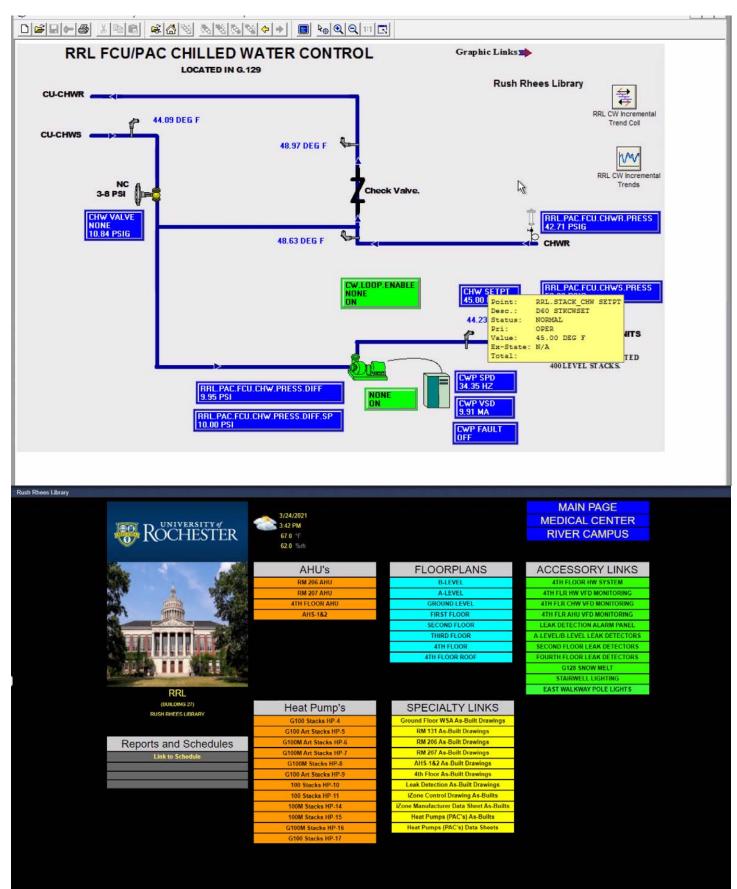
Page 7 of 13 Page 43 of 132

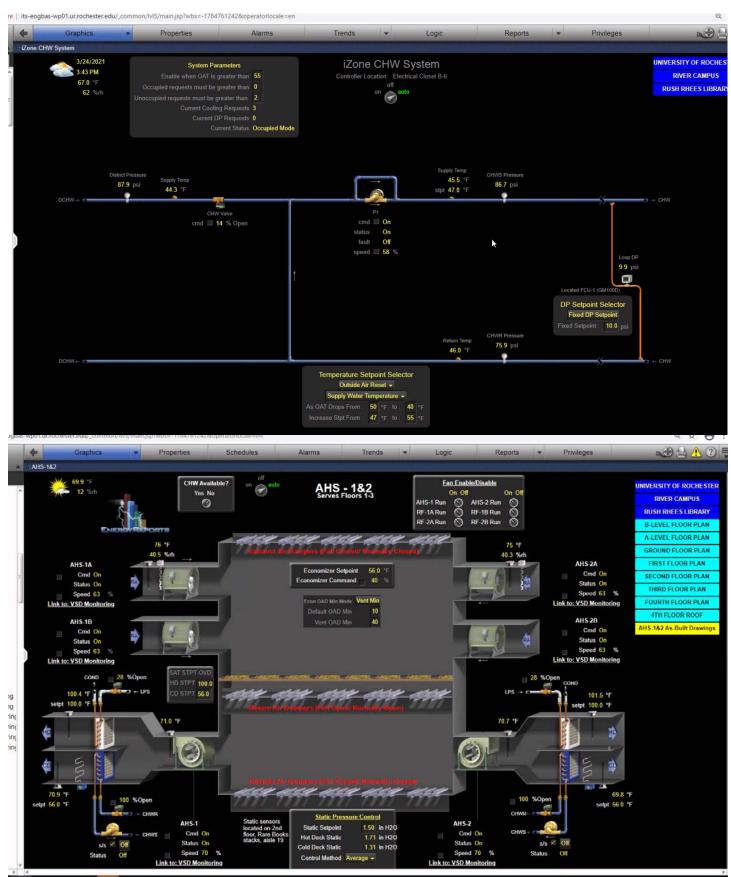

Ventilation System 3 Yes / No

•	AHU Number(s): ERV 100% OA			
•	Number of Units:			
•	Schedule:			
	Monday - Friday: On Off			
	> Saturday - Sunday: On Off			
•	Location: Indoors / RTU			
•	Type of AHUs: CV / VAV / Dual Duct / Induction / Other			
	Heating: HW / HW Clysel / Steem / Furnace / Heat Pump / N/A			

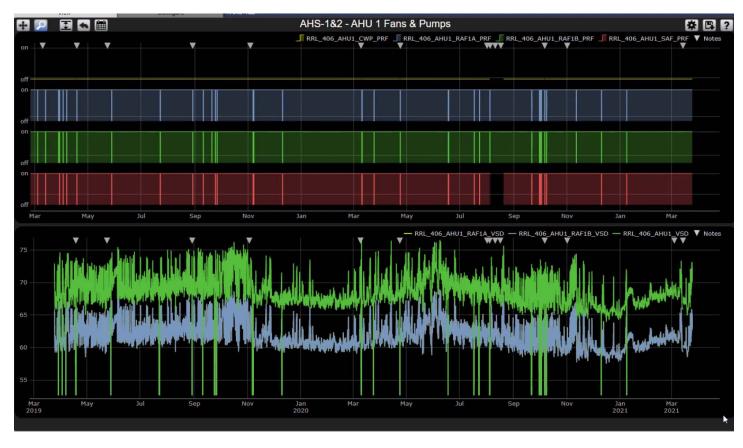
- **Outdoor Air**
 - ➤ Control: TOD / DCV / N/A
- Add Economizer: Y / N / Has
- **System Fans**
 - 1. Supply Fan:
 - a. Power: field Hp
 - b. Efficiency: Premium / High / Standard
 - c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position
 - 2. Return Fan or N/A
 - a. Power: field Hp
 - b. Efficiency: Premium / High / Standard
 - c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position
 - 3. Exhaust Fan or N/A
 - a. Power: field Hp
 - b. Efficiency: Premium / High / Standard
 - c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position


Page 44 of 132 Page 8 of 13 03/24/21


Page 9 of 13 03/24/21 Page 45 of 132



Page 10 of 13 03/24/21 Page 46 of 132



Page 12 of 13 03/24/21 Page 48 of 132

Page 13 of 13 03/24/21 Page 49 of 132

Building Name: UR Danforth Dining

Contact Name: Richard Stein

Wendel Auditor: Jason Denue Date:3/24/2021

BUILDING OVERVIEW

Building Schedule:

- Monday Friday: 24/7 COVID original schedules BIC RICH
- > Saturday Sunday: 24/7 COVID original schedules BIC RICH

HVAC Schedule:

- Monday Friday: 24/7 COVID original schedules BIC RICH
- Saturday Sunday 24/7 COVID original schedules BIC RICH

Space Types / uses

- Type 1: Kitchen Area
- Type 2: Dinning Area
- Type 3: office
- Type 4: dishwashing

Special Equipment

- Dishwasher
- Kitchen hood
- Walk-in cooler

EMS Yes / No

- Type: Pneumatic / DDC, some non DDC control
- Manufacturer Legacy / Updated, Siemens Appogee, glycol system on ecostructure
- Has Trending: Y / N- trend points requested trending in PI
- Has Remote Access: Y / N
- Has Temperature setback: Y/N not currently due to COVID normally needs to check
- Has Time of Day Schedule : Y / N

Heating Plant Yes / No

 He 	ating System: <mark>District HW</mark>	•	Ho	Hot Water Boilers or N/A			
• Fu	el Source : NG / Fuel Oil / Propane		1.	Number of Boilers:			
			2.	Boiler Output: field mmBtu			
• Ste	eam Boilers or N/A		3.	Boiler Input: field mmBtu			
1.	Number of Boilers:		4.	Hot water system control: HW Reset /			
2.	Boiler Output: field			OA Reset / Constant Temperature			
3.	Boiler Input: field		5.	Hot water temperature set point:			
4.	Blow down procedure: Automatic / Manual			Max: Min:			
	How frequent:		6.	Burner Controls: Linkage / Electronic			
5.	Condensate return system:		Re	place Boilers: Y / N Replace Burners: Y / N			
6.	Steam Pressure at Boiler: field						
7.	Steam pressure at PRV 1: field psig or N/A	•	Ho	t Water Pumps			
8.	Steam pressure at PRV 2: field psig or N/A		1.	Primary Pumps:			
9.	Feed water system:			a. Power: field HP			
	a. Treated: Y / N			b. Number of Pumps: 2			
	b. Preheated: Y / N			c. Efficiency: Premium / High / Standard			
10.	Burner Controls: Linkage / Electronic -			d. Control: Start & Stop / 2 speed / VFD			
	Replace Boilers: Y / N Replace Burners: Y /		Re	place Motors: Y / N Add VFD: Y / N / Has			

• Steam traps or N/A

Ν

- 1. Maintenance program: Y / N
- 2. Trap condition (general): poor /average /new

Replace Traps: Y / N

- Combustion Air : Y / N
- Plant Enabled at:

- 2. Glycool Pumps:
 - a. Power: field HP
 - b. Number of Pumps: 2
 - c. Efficiency: Premium / High / Standard
 - d. Control: Start & Stop / 2 speed / VFD

Replace Motors: Y / N Add VFD: Y / N / Has

Page 2 of 13 03/24/21

Domestic Hot Water System Yes / No

Hot Water Supply Temperature : 145F

• Storage Tank: Y / N

1. Storage Temperature: 145F

• Storage Tank Volume: 3qty 500gal

Heat exchanger: Steam / Hot Water / N/A

1. Usage: Year Round / School year

Heating Source: Main Boilers / DHW Heater

- DHW Heater: Electric / NG / N/A
 - 1. Burner: Atmospheric / Force Draft
 - Usage: Year Round / School year Replace with Condensing: Y / N
- Dish washer Booster Heater or N/A need to investigate

1. Fuel Source: Steam / NG / Electric

Page 3 of 13 03/24/21

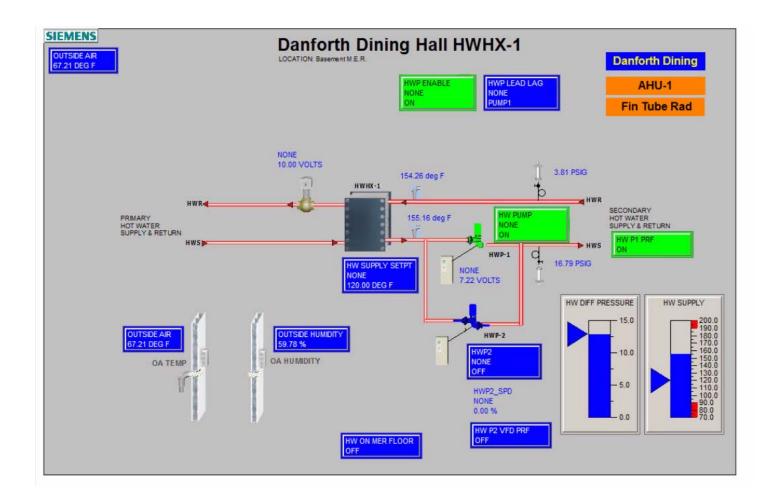
condenser relief

	Cooling Plant	Yes / No)	
Ch	illed water system District loop			
Ch	iller	• C	hilled	Water Pumps
1.	Chiller Type: Centrifugal / Screw /	1	Pri	mary Pumps:
	absorption / gas driven /		a.	Power: field HP
2.	Chiller Capacity: field Tons		b.	Number of Pumps: field
3.	VSD: Y / N		C.	Efficiency: Premium / High / Standard
4.	OA reset: Y / N		d.	Control: Start & Stop / 2 speed / VFD
Со	oling Tower	R	eplace	e Motors: Y / N Add VFD: Y / N / Has
1.	Tower Type: Open / Closed /force			
	draft	2	. Wa	ter Cooled Cond. Pumps:
2.	Tower Capacity:600 eachTons		a.	Power: field HP
3.	Add VSD: Y / N / Has		b.	Number of Pumps: field
4.	Uses Glycol: Y / N		C.	Efficiency: Premium / High / Standard
Со	ntrols		d.	Control: Start & Stop / 2 speed / VFD
1.	CHW Set Point: 44F (no reset)	R	eplace	e Motors: Y / N Add VFD: Y / N / Has
2.	CW Set Point:83-85 no			

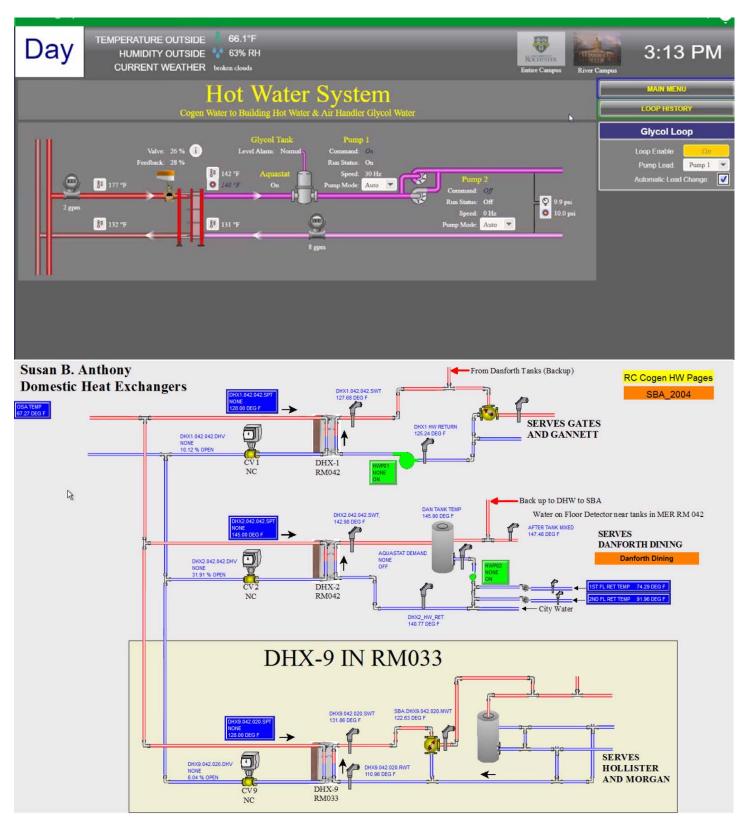
Terminal Units Yes / No

Spa	ace Type 1: walk-in coolers (qty unknown)
1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps / Evap
2.	Heat Source: Steam / HW / Electric / Furnace
3.	Cooling Source: CHW / DX / Heat Pump /
4.	Ventilation: Y / N (Room now)
5.	Controls: Thermostat / DCV / Other
6.	Scheduled: Y / N
7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other
8.	Equipment Condition: Poor / Average / Good
Spa	ace Type 2 : Perimeter most of building
1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps /
2.	Heat Source: Steam / HW / Electric / Furnace
3.	Cooling Source: CHW / DX / Heat Pump /
4.	Ventilation: Y / N
5.	Controls: Thermostat / DCV / Loop temp Outdoor air reset
6.	Scheduled: Y / N
7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other
8.	Equipment Condition: Poor / Average / Good
Spa	ace Type 3: Entrance
1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps /
2.	Heat Source: Steam / HW / Electric / Furnace
3.	Cooling Source: CHW / DX / Heat Pump /
4.	Ventilation: Y / N
5.	Controls: Thermostat / DCV / Other
6.	Scheduled: Y / N
7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other
8.	Equipment Condition: Poor / Average / Good
Spa	ace Type 4:
1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps /
2.	Heat Source: Steam / HW / Electric / Furnace
3.	Cooling Source: CHW / DX / Heat Pump /
4.	Ventilation: Y / N
5.	Controls: Thermostat / DCV / Other
6.	Scheduled: Y / N
7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other
	1. 2. 3. 4. 5. 6. 7. 8. Span 1. 2. 3. 4. 5. 6. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

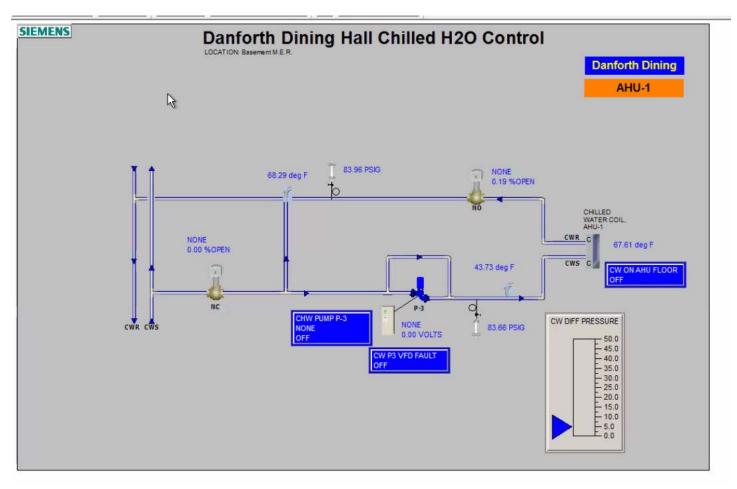
8. Equipment Condition: Poor / Average / Good

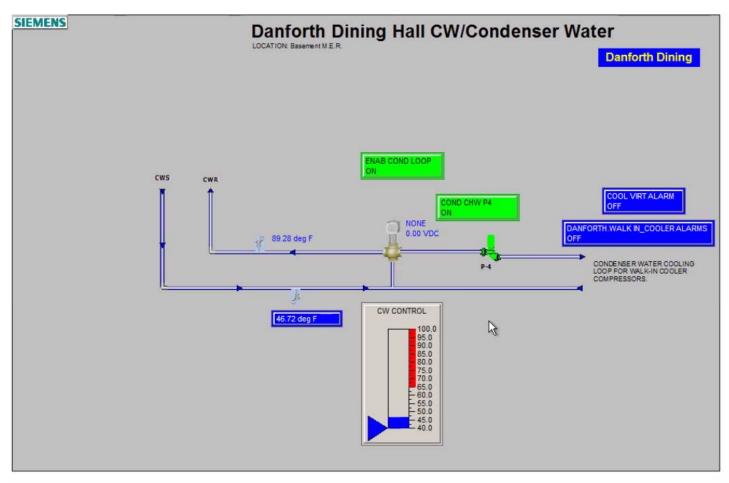

Ventilation System 1 Yes / No

- AHU Number(s): 1(Fill in one sheet for all common units)
- Number of Units: 1
- Schedule: Operating 24/7 for COVID
 - On_____ Off _____ Monday - Friday:
 - Saturday Sunday: On_____ Off _____
- **Location**: Indoors / RTU
- Type of AHUs: CV / VAV / Dual Duct / Induction / Other
- Heating: HW / HW-Glycol / Steam / Furnace / Heat Pump / N/A
- Cooling: CHW / DX / Heat Pump / N/A
- Humidification: Y / N
- Heat Recovery: Y / N / Has
- **Outdoor Air**
 - Control: TOD / DCV / N/A (specific to GYM only)
- Exiting Economizer: Y / N
- System Fans
 - 1. Supply Fan:
 - a. Power: field Hp
 - b. Efficiency: Premium / High / Standard
 - c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position
 - 2. Return Fan or N/A
 - a. Power: field Hp
 - b. Efficiency: Premium / High / Standard
 - c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position
 - 3. Exhuast Fan or N/A
 - a. Power: field Hp
 - b. Efficiency: Premium / High / Standard
 - c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

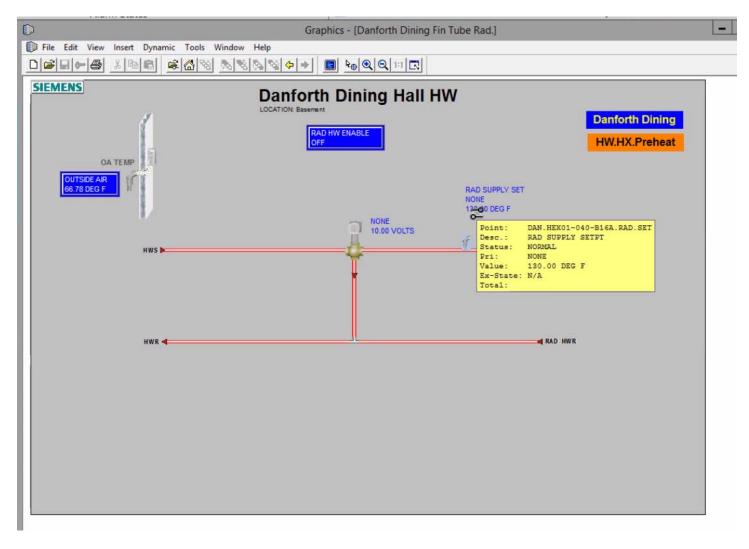

Page 6 of 13 03/24/21

Page 55 of 132

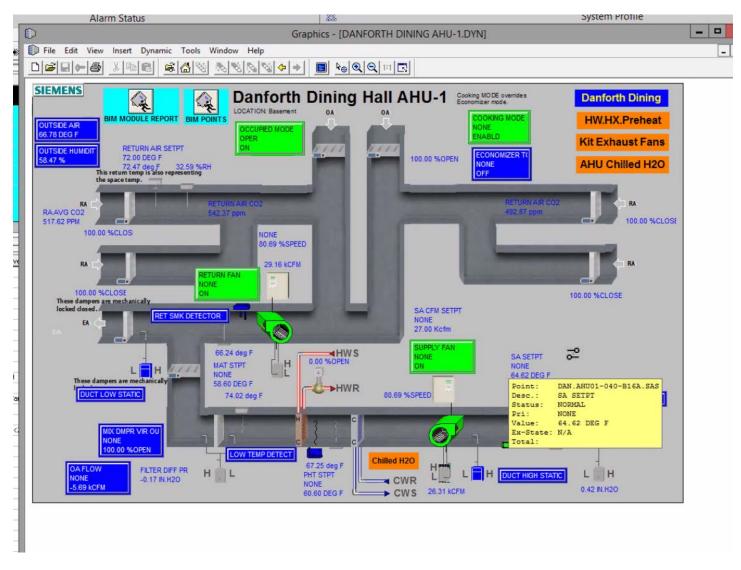


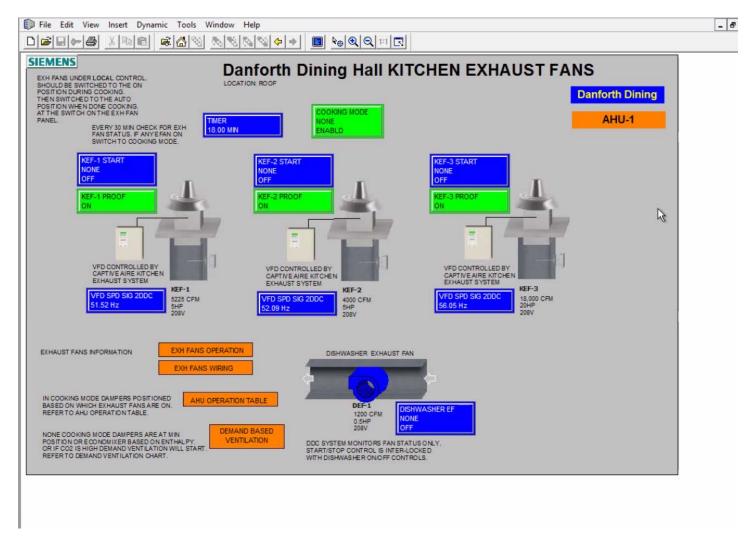


03/24/21 Page 8 of 13



Page 10 of 13 03/24/21


Page 59 of 132


Page 11 of 13 03/24/21 Page 60 of 132

Page 12 of 13 03/24/21

Page 13 of 13 03/24/21

Page 62 of 132

Building Name: FDB

Contact Name: Richard Stein

Wendel Auditor: Jason Denue Date:4/08/2021

BUILDING OVERVIEW

Building Schedule:

Monday - Friday: 24/7 due to pandemic
 Saturday - Sunday: 24/7 due to pandemic

HVAC Schedule:

➤ Monday - Friday: 24/7 due to pandemic typically Scheduled (will provide schedule)

> Saturday - Sunday 24/7 due to pandemic typically Scheduled (will provide schedule)

Space Types / uses

• Type 1: Kitchens

• Type 2: Dinning

• Type 3: Even Space

• Type 4: Offices

EMS Yes / No

Type: Pneumatic / DDC, Webcontrol

Manufacturer Legacy / Updated,

Has Trending: Y / N

Has Remote Access: Y / N

Has Temperature setback: Y / N

Has Time of Day Schedule: Y / N

Page 1 of 13 04/08/21 Page 63 of 132

Heating System : Steam / HW / Electric

Fuel Source: NG / Fuel Oil / Propane

2. Boiler Output: field mmBtu

3. Boiler Input: field mmBtu

4. Hot water system control: HW Reset /

Heating Plant Yes / No

				OA Reset /	Constant Temperature
Ste	eam Boilers or N/A	5.	Ho	t water tempe	rature set point:
1.	Number of Boilers:		Ma	IX:	Min:
2.	Boiler Output: field	6.	Bu	rner Controls:	Linkage / Electronic
3.	Boiler Input: field	Re	place	e Boilers: Y / I	N Replace Burners: Y / N
4.	Blow down procedure: Automatic / Manual How				
	frequent:	• Ho	t Wa	ter Pumps	
5.	Condensate return system:	1.	<mark>Pri</mark> i	<mark>mary</mark> Pumps:	Perimeter Reheats
6.	Steam Pressure at Boiler: field		a.	Power: field	HP
7.	Steam pressure at PRV 1: field psig or N/A		b.	Number of P	oumps: <mark>2</mark>
8.	Steam pressure at PRV 2: field psig or N/A		c.	Efficiency: P	remium / High / Standard
9.	Feed water system:		d.	Control: Star	't & Stop / 2 speed / <mark>VFD</mark>
	a. Treated: Y / N	Re	place	e Motors: Y / I	N Add VFD: Y / N / Has
	b. Preheated: Y / N	1.	Pri	<mark>mary</mark> Pumps:	Snow Melt System
10.	Burner Controls: Linkage / Electronic -Replace		a.	Power: field	HP
	Boilers: Y / N Replace Burners: Y / N		b.	Number of P	Pumps: <mark>2</mark>
			c.	Efficiency: P	remium / High / Standard
Ste	eam traps or N/A		d.	Control: Star	't & Stop / 2 speed / <mark>VFD</mark>
1.	Maintenance program: Y / N	Re	place	e Motors: Y / I	N Add VFD: Y / N / Has
2.	Trap condition (general): poor /average /new	2.	Pri	<mark>mary</mark> Pumps:	Glycool Preheats
Rej	place Traps: Y / N		a.	Power: field	HP
Co	mbustion Air : Y / N		b.	Number of P	Pumps: <mark>2</mark>
Pla	nt Enabled at:		c.	Efficiency: P	remium / High / Standard
Но	t Water Boilers or N/A		d.	Control: Star	t & Stop / 2 speed / <mark>VFD</mark>
1.	Number of Boilers:	Re	place	e Motors: Y / N	N Add VFD: Y / N / Has

Page 2 of 13 04/08/21

Page 64 of 132

Domestic Hot Water System Yes / No

- Hot Water Supply Temperature:
- Storage Tank: Y / N
 - 1. Storage Temperature:___
 - 2. Storage Tank Volume:_____
- Heat exchanger: Steam / Hot Water / N/A
 - 1. Usage: Year Round / School year
- Heating Source: Main Boilers / DHW Heater

- DHW Heater: Electric / NG / N/A
 - 1. Burner: Atmospheric / Force Draft
 - 2. Usage: Year Round / School year Replace with Condensing: Y/N
- Dish washer Booster Heater or HX
 - 1. Fuel Source: Steam / NG / Electric

Cooling Plant Yes / No

•	Chi	illed	water system enabled at: OAT
•	Chi	iller	
	1.	Chi	iller Type: Centrifugal / Screw /
		abs	sorption / gas driven /
	2.	Chi	ller Capacity: field Tons
	3.	VSI	D: Y / N
	4.	ОА	reset: Y / N
•	Co	oling	Tower
	1.	Tov	wer Type: Open / Closed /force
		dra	ft
	2.	Tov	ver Capacity:600 eachTons
	3.	Add	d VSD: Y / N / Has
	4.	Use	es Glycol: Y / N
•	Coi	ntrol	S
	1.	СН	W Set Point:
	2.	CW	/ Set Point:83-85 no
		cor	ndenser relief
•	Chi	illed	Water Pumps
	1.	Pri	mary Pumps:
		a.	Power: field HP
		b.	Number of Pumps: 2
		c.	Efficiency: Premium / High / Standard
		d.	Control: Start & Stop / 2 speed / VFD
	Rep	olace	e Motors: Y / N Add VFD: Y / N / Has
	2.	Sec	condary Pumps:
		a.	Power: field HP
		b.	Number of Pumps:
		C.	Efficiency: Premium / High / Standard
		d.	Control: Start & Stop / 2 speed / VFD
	Rep	olace	e Motors: Y / N Add VFD: Y / N / Has

Page 4 of 13 04/08/21

Terminal Units Yes / No

•	Spa	ace Type 1: Fin Tube areas- outside wall (example third floor)
	1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps /
	2.	Heat Source: Steam / HW / Electric / Furnace
	3.	Cooling Source: CHW / DX / Heat Pump /
	4.	Ventilation: Y / N (Room now)
	5.	Controls: Thermostat / DCV / DDC
	6.	Scheduled: Y / N
	7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other
	8.	Equipment Condition: Poor / Average / Good
•	Spa	ace Type 2 : Most spaces
	1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps / VAV Reheat
	2.	Heat Source: Steam / HW / Electric / Furnace
	3.	Cooling Source: CHW / DX / Heat Pump /
	4.	Ventilation: Y / N
	5.	Controls: Thermostat / DCV / DDC
	6.	Scheduled: Y / N
	7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other
	8.	Equipment Condition: Poor / Average / Good
•	Spa	ace Type 3:
	1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps /
	2.	Heat Source: Steam / HW / Electric / Furnace
	3.	Cooling Source: CHW / DX / Heat Pump /
	4.	Ventilation: Y / N
	5.	Controls: Thermostat / DCV / Other
	6.	Scheduled: Y / N
	7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other
	8.	Equipment Condition: Poor / Average / Good
•	Spa	ace Type 4 : bathrooms halls
	1.	Unit Type: Unit heaters / Fan Coils / Radiation / Heat Pumps /
	2.	Heat Source: Steam / HW / Electric / Furnace
	3.	Cooling Source: CHW / DX / Heat Pump /
	4.	Ventilation: Y / N
	5.	Controls: Thermostat / DCV / Other
	6.	Scheduled: Y / N
	7.	Control valves: 2-Way / 3-Way / Thermostatic / Hand / N/A / Other

Page 5 of 13 04/08/21 Page 67 of 132

8. Equipment Condition: Poor / Average / Good

Ventilation System 1 Yes / No

• AHU Number(s): Event Space

Number of Units: 4

Schedule:

> Pandemic 24/7

Location: Indoors / RTU

Type of AHUs: CV / VAV / Dual Duct / Induction / Other

Heating: HW / HW-Glycol / Steam / Furnace / Heat Pump / N/A

Cooling: CHW / DX / Heat Pump / N/A

Humidification: Y / N

Heat Recovery: Y / N / Has

Outdoor Air

Control: TOD / DCV / N/A - overridden to 100% OA

Exiting Economizer: Y / N

System Fans

1. Supply Fan:

a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

2. Return Fan or N/A

a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

3. Exhaust dampers - controlled

a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

Page 6 of 13 Page 68 of 132

Ventilation System 2 Yes / No

• AHU Number(s): AHU | one per floor (kitchen connect to AHU-1,2,3,5)

Number of Units: 5

Schedule:

1. Pandemic 24/7

Location: Indoors / RTU

Type of AHUs: CV / VAV / Dual Duct / Induction / Other ______

Heating: HW / HW-Glycol / Steam / Furnace / Heat Pump / N/A

Cooling: CHW / DX / Heat Pump / N/A

Humidification: Y / N

Heat Recovery: Y / N / Has

Outdoor Air

Control: TOD / DCV /N/A - overridden to elevated minimum OA | flow station in AHU

Add Economizer: Y / N / Has

System Fans

1. Supply Fan:

a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

2. Return Fan or N/A

a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

3. Exhaust Fan or N/A

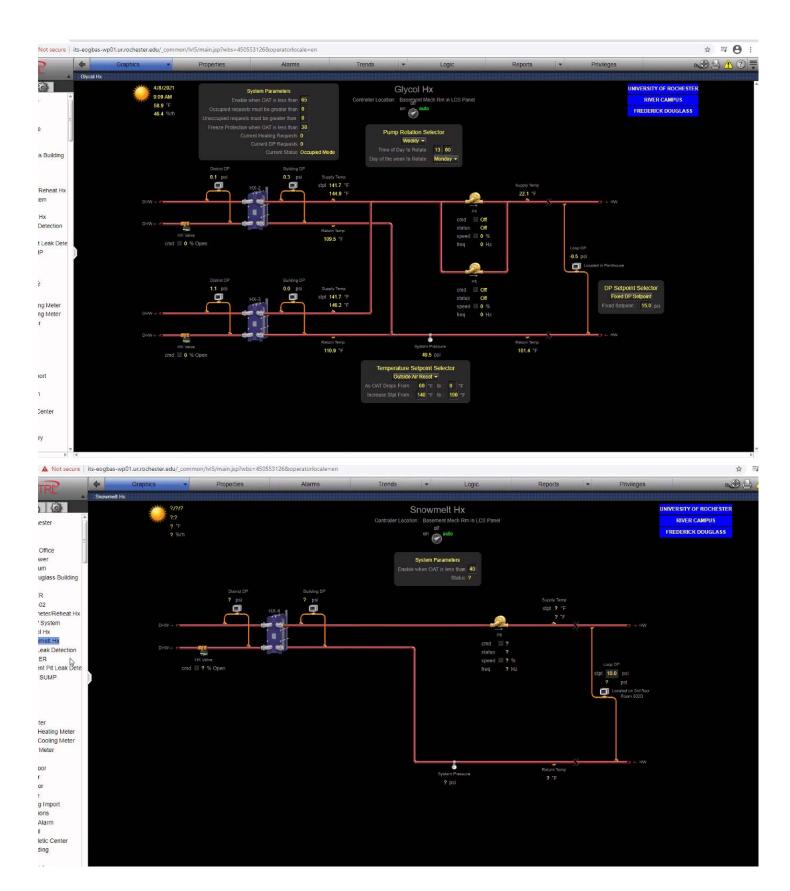
a. Power: field Hp

b. Efficiency: Premium / High / Standard

c. Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position

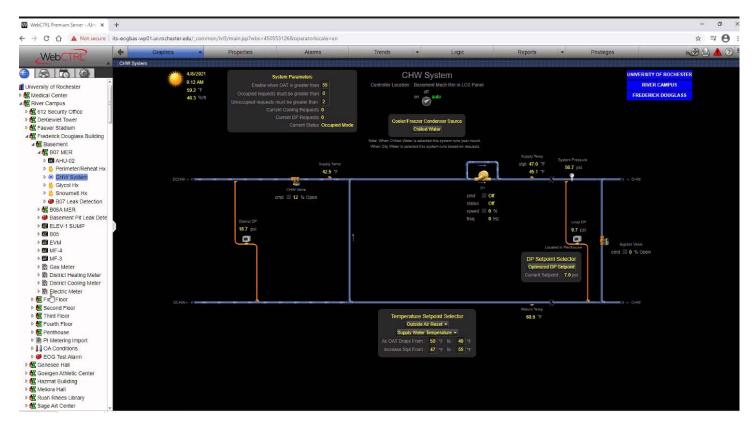
Are the exhaust fans turning on and off. AHU may not be interlocked with exhaust fans RCX list of recommendations

Page 7 of 13 04/08/21 Page 69 of 132



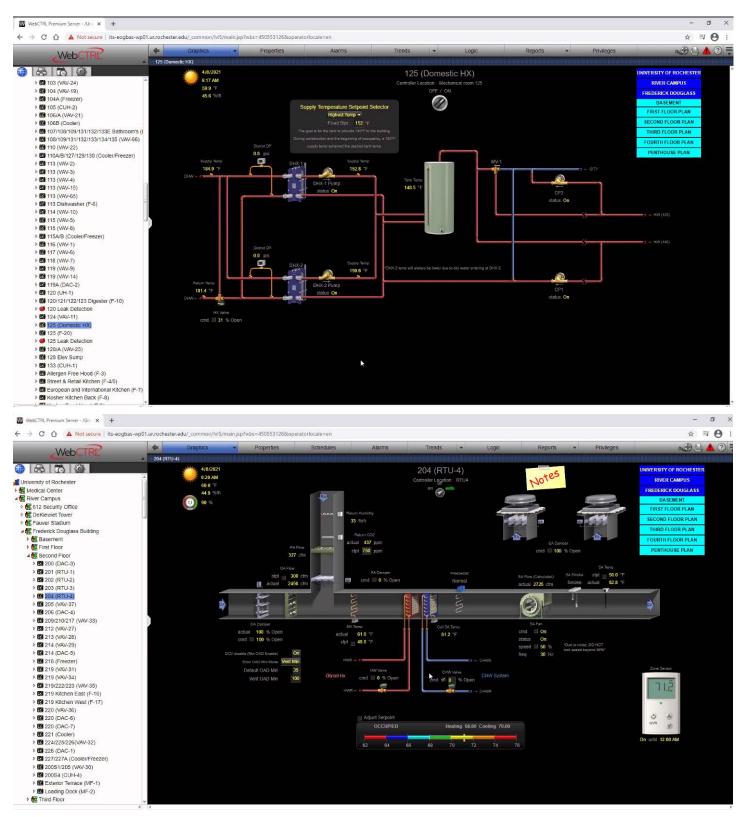
Ventilation System 3 Yes / No

•	АН	J Nu	mber(s): (Fill in one sheet for all common units)	
•	Nu	mbei	r of Units:	
•	Sch	nedu	le:	
	>	Mo	nday - Friday: On Off	
	>	Sat	urday - Sunday: On Off	
•	Loc	atio	n: Indoors / RTU	
•	Тур	e of	AHUs: CV / VAV / Dual Duct / Induction / Other	
•	Hea	ating	: HW / HW-Glycol / Steam / Furnace / Heat Pump / N/A	
•	Cod	oling:	: CHW / DX / Heat Pump / N/A	
•	Hui	midif	fication: Y / N	
•	Hea	at Re	ecovery: Y / N / Has	
•	Out	tdoor	r Air	
	>	Cor	ntrol: TOD / DCV / N/A	
•	Add	d Ecc	onomizer: Y / N / Has	
•	System Fans			
	1.	Sup	pply Fan:	
		a.	Power: field Hp	
		b.	Efficiency: Premium / High / Standard	
		C.	Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position	
	2.	Ret	urn Fan or N/A	
		a.	Power: field Hp	
		b.	Efficiency: Premium / High / Standard	
		C.	Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position	
	3.	Exh	aust Fan or N/A	
		a.	Power: field Hp	
		b.	Efficiency: Premium / High / Standard	
		C.	Control: Start & Stop / 2 speed / VFD / Inlet Vanes / Damper Position	
			Coolers can run on chilled water or domestic water	


Page 8 of 13 04/08/21 Page 70 of 132

Page 9 of 13 04/08/21 Page 71 of 132

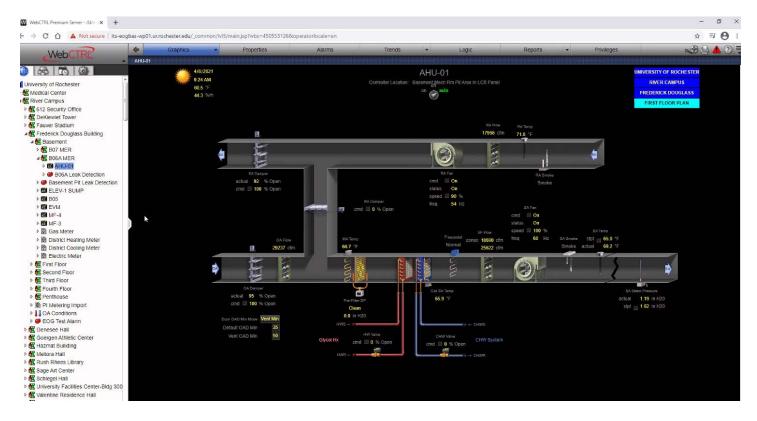
Page 10 of 13 04/08/21 Page 72 of 132



nable	Equipment	Current Value	New Value
	River Campus / Frederick Douglass Building / Third Floor / 305 (VAV-39)	100.0	100.0
	River Campus / Frederick Douglass Building / Third Floor / 305A (VAV-41)	100.0	100.0
	River Campus / Frederick Douglass Building / Third Floor / 305B/C/D (VAV-40)	0.0	0.0
	River Campus / Frederick Douglass Building / Third Floor / 305E (VAV-43)	0.0	0.0
	River Campus / Frederick Douglass Building / Third Floor / 304 (VAV-38)	0.0	0.0
	River Campus / Frederick Douglass Building / Third Floor / 312 (VAV-49)	0.0	0.0
	River Campus / Frederick Douglass Building / Fourth Floor / 401 (VAV-59)	13.0	13.0
	River Campus / Frederick Douglass Building / Fourth Floor / 403 (VAV-58)	0.0	0.0
	River Campus / Frederick Douglass Building / Fourth Floor / 407 (VAV-57)	0.0	0.0
	River Campus / Frederick Douglass Building / Fourth Floor / 410 (VAV-54)	0.0	0.0
	River Campus / Frederick Douglass Building / Fourth Floor / 410C/D/E (VAV-53)	0.0	0.0
	River Campus / Frederick Douglass Building / Fourth Floor / 410A/B/411 (VAV-55)	0.0	0.0
	River Campus / Frederick Douglass Building / Fourth Floor / 413 (VAV-56)	50.6	50.6
0	River Campus / Frederick Douglass Building / Fourth Floor / 420 (VAV-64)	100.0	100.0
Z	Enable All		100.0 Set Al To ? Change All By

Page 11 of 13 04/08/21 Page 73 of 132

Preliminary Assessment Interview HVAC ONLY



Page 12 of 13 04/08/21 Page 74 of 132

Preliminary Assessment Interview HVAC ONLY

Page 13 of 13 04/08/21 Page 75 of 132

Appendix RCx-B

Site Walkthrough & BSA Survey Sheets

Project Nan	пе		Building Name		
Rochester RCX Scoping		Rush Rhees Library			
Building Typ		'	Year Built		
Library			1930		
Library			1930		
Gross Area			No. Stories		
349,284			4 + basement		
Space Types	S		Initial Walk-Through Date:		
Cirical Rare	Books		4/13/2021		
Stacks		<u>'</u>			
Reading are	a				
Office					
		·			
Key Contact	:s				
Name	Richard D. Stei	in			
Title/Role	Assistant Director Building	ng Controls			
Phone	585.275.2432	2			
Email	rstein8@facilities.roche	<u>ester.edu</u>			
Notes					
Prints for bu	ilding were only arch. Fac	cilities Mecha	anic said blueprints are in the rare		
books area and require security access. Building is controlled by Siemens Apogee and					
Automatic Logic Systems. The dual duct system is divided between the two systems					
and it is unknown if the dual duct siemen controllers communicate back to the AL					
Controller for the AHU which does look at calls for H/C. While onsite it was observed					
that the radiant systems and the air handling systems were in conflict.Large common					
areas with varing high occupancy were also served by multple different systems (ahu,					
dcu, rad) that would also be a source of conflict of HC and OA. Siemens system access					
does not all	ow viewing or creation of t	trending or s	schedules		

Rush Rhees Library

Pre Audit	Assigned to
✓ Introduciton to Client	JGD
✓ Initial Visit Scheduled 2 weeks in advance	JGD
✓ Pull-in Checklists & Templates	JGD
✓ Floor Plans Downloaded	SDM
✓ Utility Data Downloaded	JGD
✓ Utility Analysis Completed	JGD
☐ Mechanical Plans and Schedules Downloaded	N/A
Offsite Work (Prep)	
	N/A
✓ Site Facility Interview	JGD
Request Trend Data	SDM
✓ Review Trend Data	SDM
☐ Benchmark Buildings	XYZ

Control System Summary

Type: Pneumatic | Siemens Apogee/Automated Logic

Manufacturer:

Trending: Y for Automated Logic/Siemens Apogee

Trending: Y on Automated Logic System

Qualitative Verify temperature sensors are reading accurately (this is done by looking at BMS **Sensor Review:** readings and seeing if they are reasonable based upon the unit's operation)

AHU Qualitative Review Completed

Chilled Water Qualitative Review Completed Hot Water Qualitative Review Completed AHU Qualitative Review Completed

Rush Rhees Library
AHU-1 4th Floor

<u>Assigned</u>	to
SDM	

AIR HANDLING SYSTEM CONTROLS REVIEW

AIT I	HANDLING STSTEM CONTROLS REVIEW
System Servces	
4th Floor VA	Vs reheats at coil
Control System Type	
Туре:	DDC
Manufacturer:	utomated Logic
Trending:	Υ
Unit Configuration	
AHU Type:	VAV
Return Air Type:	Return Air Unit
Fans:	Supply
Heat Recovery Coil:	None
Preheat Coil:	N/A
Reheat Coil:	Hot Water
	Chilled Water
Is Heating Coil Before or After	RH at VAV
Cooling Coil?	
Schedule Schedule	
Sahadula Type	
Schedule Type:	24/7
HVAC Schedule M - F:	24/7 Covid 24/7 Normal
HVAC Schedule S - S: S	
Schedule M - F: Space	24/7 Covid 24/7 Normal
Schedule S - S: Existing	
Optimal Start: No Te	,
of unit status: Yes	Screen Shot of Trend: No
Fan Speed control	
Constant Speed:	No (If Yes, End of section)
Speed Control:	VFD
•	re setpoint versus unit external capacity:
•	Review trend of fan speed avalible: Yes
Does th	ne Fan speed modulate more than 10%?: Yes
Observed Fan	speed HIGH: 38 hz time

38

Observed Fan speed LOW:

hz

time

Rush Rhees Library
AHU-1 4th Floor

REMOTE	
CONTROL	

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control					
Is the Unit 100% OA:	No	(If Yes, End or	f section)		
Ventilation Control:	Based on tem	np			
	If	f DCV, CO2 sei	nsor location:	Space RA	if not avalible mark "N/A"
Record	l minimum OA	Damper posit	ion setpoint:		if not avalible mark "N/A"
	Record mir	nimum OA airf	low setpoint:		if not avalible mark "N/A"
Record Observed Points:					
Date & Time	4/7/	2021			
OA Damper Position:	100%	if not avalible r	mark "N/A"		
OA Air Flow:		if not avalible r	mark "N/A"		•
SA Fan Speed:	68%		SA Fan CFM:		No drawings
OA Temp:	43.9				
RA Temp:	75.6				
MA Temp:	62.6				
Confirm Trends: <u>Discharge Air Temperature Controls</u> Discharge Air Temp: SA Temp Setpoint:	ol Varies 70]			
SA Temp Base on:		_	_		n outdoor air
		setpoint being			
Is heating and	cooling valve				1
Dance	. T		Temp Actual:		
	t Temp HIGH:		F	Calls for heat	
	est Temp Low:	58	F	Calls for cool	Otner
Confirm Trends:	res				
Economizer Cycle Control					
Economizer:	Yes	may need to ch	neck drawings		
Economizer Limits:	Partial Econo	mizer (40%)			
Economizer Control Type:	OA Drybulb				
<u>Other</u>					
Dehumidificaiton Contorl:	NO	Setpoint:		Sensor:	Space RA
Humidification Contorl:	NO	Setpoint:		Sensor:	Space RA
Face & Bypass	NO	·		•	

AIR HANDLING SYSTEM FIELD REVIEW

Assigned to SDM

<u>H</u>	e	d	Α	u	d١	t

Field Audit			
Outdoor Air (OA) Damper: Observed w/ Photo No	Acces	s Not A	Applicable
Observed approx damper position	on:	100	%open
Is the Damper Stuck Open or Close	e?:	No	Open Closed
Do some blades appeard to be not working	g?:	No	
Are any actuators broke / disconnected	d?:	No	
Return Air (RA) Damper: Observed w/ Photo No	Acces	s Not A	Applicable
Observed approx damper position	on:	0	%open
Is the Damper Stuck Open or Close	e?:	No	Open Closed
Do some blades appeard to be not working	g?:	No	
Are any actuators broke / disconnected	d?:	No	
Fan VFD or starter: Observed w/ Photo No	Acces	s Not A	<u>Applicable</u>
Observed Fan Spec	ed:	38	Hz
Observed Fan pow	er:		Amp or kW
Is the drive in hand or bypa	ass	No	
Is the starter in hand or bypa	ass	No	
Valves: No Access			
Chilled Water Val	ve: 2-v	vay	
Chilled Water Valve Actuat	or: cor	nnected	
Hot Water Valv	ve: N/	A	
Hot Water Valve Actuat	or: N/	A	
Steam Valv	ve: N/	A	
Steam Valve Actuat	or: N/	A	
Glycol Hot Water Valv	ve: N/	A	
Glycol Hot Water Valve Actuat	or: N/	A	
Air Tightness: No Access			
Observed holes in duct connection	ns:	No	
Door close tig	sht:	No	
Other Notes:			
Observed holes in duct connection Door close tig	(ht:	No	

Rush Rhees Library
AHU-1-2 Dual Duct

REMOTE	i
	i
CONTROL	
	i

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

All (MIDEITA CICIEM CONTINUES REVIEW				
System Servces					
All floors					
Control System Type					
Type:	DDC				
Manufacturer:	utomated Logic				
Trending:	<u> </u>				
_					
Unit Configuration					
AHU Type:	VAV Dual Duct				
Return Air Type:	Return Air Unit 100% Outside Air Unit during covid				
Fans:	2 Supply 4 Return				
Heat Recovery Coil:	None				
Preheat Coil:					
Reheat Coil:	Steam				
Cooling Coil:	Chilled Water				
Is Heating Coil Before or After	Dual Duct				
Cooling Coil?	233.233				
<u>Schedule</u>					
Schedule Type:	24/7				
HVAC Schedule M - F:	24/7 Covid 24/7 Pre Covid				
HVAC Schedule S - S:	24/7 Covid 24/7 Pre Covid 24/7 Pre Covid				
Space Schedule M - F:	24/7 Covid 8am-10pm Pre Covid				
Space Schedule S - S:	24/7 Covid 10am-10pm Pre Covid				
Existing Optimal Start:					
Tend of unit status:					
Toria or arm otataor	Solodi dilatai malai ma				
Fan Speed control					
Constant Speed:	No (If Yes, End of section)				
•	VFD (6) to meet Static Setpoint				
-					

What is static pressure setpoint versus unit external capacity: 1.5

Review trend of fan speed avalible: Yes

Does the Fan speed modulate more than 10%?: No

Observed Fan speed HIGH: 45 hz
Observed Fan speed LOW: 40 hz

Rush Rhees Library AHU-1-2 Dual Duct

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No but currently running this way Ventilation Control: Modulate to control Ma to Cool deck SP

> If DCV, CO2 sensor location: Space | RA if not avalible mark "N/A"

Record minimum OA Damper position setpoint:

N/A if not avalible mark "N/A"

Record minimum OA airflow setpoint:

N/A if not avalible mark "N/A"

Record Observed Points:

Date & Time 5/7/2021 **OA Damper Position:** 100 if not avalible mark "N/A" OA Air Flow: 100% if not avalible mark "N/A" SA Fan Speed: 68 SA Fan CFM: no drawings **OA Temp:**

73

57

45.3

Confirm Trends: Yes

RA Temp:

MA Temp:

Discharge Air Temperature Control

Discharge Air Temp: Constant with operator changes

SA Temp Setpoint: Varies SA Temp Base on: operator overide

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? Yes

SA Temp Actual: Based on which deck is being served Reset Temp HIGH: 95 operator over OA Temp | RA Temp | Other Reset Temp Low: 55 operator over OA Temp | RA Temp | Other

Confirm Trends: Yes | No

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: 10-40%

Economizer Control Type: OA Temp Setpoint to match cool deck set point

Other

Setpoint: Dehumidification Contorl: No Sensor: Space | RA **Humidification Contorl: No** Setpoint: Sensor: Space | RA

Face & Bypass No

Rush Rhees Library AHU-1-2 Dual Duct

Assigned to

SDM

AIR HANDLING SYSTEM FIELD REVIEW

Field Audit

Outdoor Air (OA) Damper: Observed

Observed approx damper position: 100 %open

Is the Damper Stuck Open or Close?: No Open | Closed

Do some blades appeard to be not working?: No Are any actuators broke / disconnected?: No

Return Air (RA) Damper: Observed

Fan VFD or starter:

Observed approx damper position: 0 %open

Is the Damper Stuck Open or Close?: No Open | Closed

Do some blades appeard to be not working?: No No

Are any actuators broke / disconnected?:

Observed Fan Speed: 45 Hz

Observed Fan power: N/A Amp or kW

Is the drive in hand or bypass No Is the starter in hand or bypass No

Valves: Observed

Chilled Water Valve: 2-way

Chilled Water Valve Actuator: connected

Hot Water Valve: N/A

Hot Water Valve Actuator: N/A

Steam Valve: full

Steam Valve Actuator: connected

Glycol Hot Water Valve: N/A

Glycol Hot Water Valve Actuator: N/A

Air Tightness: | No Access |

Observed holes in duct connections: N/A

Door close tight: N/A

Other Notes:

Largest energy user of the building Dual Duct System. Chilled water of and OA locked open for Covid. Space Set points and flow for Dual Ducts do not set back. From Graphics and trends they look to have independent operation for heat cool valves. DDB are on both siemens Apogge and AL systems.

Rush Rhees Library
AHU Rm 206

REMOTE	Ì
CONTROL	į
	i

<u>Assigned</u>	to
SDM	

AIR HANDLING SYSTEM CONTROLS REVIEW

System Servces	
	Room 207
Control System Typ	<u>e</u>
	Type: DDC
N	lanufacturer: utomated Logic
	Trending: Y

Unit Configuration

AHU Type: VAV Single Zone Return Air Type: Return Air Unit

Fans: Supply

Heat Recovery Coil: None

Preheat Coil: N/A Reheat Coil: N/A

Cooling Coil: Chilled Water

Is Heating Coil Before or After

Cooling Coil?

Heating provided by radiant, heat at cool at the same time

Schedule

Schedule Type: 24/7

HVAC Schedule M - F:	24/7	Covid	24/7	Normal
HVAC Schedule S - S:	24/7	Covid	24/7	Normal
Space Schedule M - F:	24/7	Covid	24/7	Normal
Space Schedule S - S:	24/7	Covid	24/7	Normal

Existing Optimal Start: No

Tend of unit status: Yes Screen Shot of Trend: No

Fan Speed control

Constant Speed: No (If Yes, End of section)

Speed Control: VFD based on space temp PID

What is static pressure setpoint versus unit external capacity:

etpoint versus unit external capacity: 1.5

Review trend of fan speed avalible: Yes

Does the Fan speed modulate more than 10%?: Yes

Observed Fan speed HIGH: 30 hz
Observed Fan speed LOW: 30 hz

Rush Rhees Library
AHU Rm 206

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

Ventilation Control: Based on OA temp

If DCV, CO2 sensor location: Space | RA if not availble mark "N/A"

Record minimum OA Damper position setpoint: N/A if not avalible mark "N/A"

Record minimum OA airflow setpoint: N/A if not avalible mark "N/A"

Record Observed Points:

Date & Time 4/7/2021

OA Damper Position: 0% if not avalible mark "N/A"

OA Air Flow: 100% if not avalible mark "N/A"

SA Fan Speed: 50% SA Fan CFM: No drawings

OA Temp: 42
RA Temp: 75.3
MA Temp: 75.3

Confirm Trends: Yes | No

Discharge Air Temperature Control

Discharge Air Temp: Varies on temp space

SA Temp Setpoint:

SA Temp Base on: Based on calls for cooling?, Definely could be based on outdoor air

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? Yes

Resest Temp HIGH: F Calls for cool Other

Resest Temp Low: F Calls for cool Other

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer (40%)

Economizer Control Type: OA Drybulb

Other

Dehumidification Contorl: NO
Humidification Contorl: NO
Face & Bypass NO

FIELD SURVEY	1
John	

AIR HANDLING SYSTEM FIELD REVIEW

Assigned 1	to
SDM	

Field Audit			
Outdoor Air (OA) Damper: Observed w/ Photo No Acc	cess	Not Ap	plicable
Observed approx damper position:	C)	%open
Is the Damper Stuck Open or Close?:	N	10	Open Closed
Do some blades appeard to be not working?:	N	No	
Are any actuators broke / disconnected?:	N	No	
Return Air (RA) Damper: Observed w/ Photo No Acc	cess	Not Ap	plicable
Observed approx damper position:	10	00	%open
Is the Damper Stuck Open or Close?:	N	10	Open Closed
Do some blades appeard to be not working?:	N	No	
Are any actuators broke / disconnected?:	N	10	
Fan VFD or starter: Observed w/ Photo No Acc		Not Ap	plicable
Observed Fan Speed:	5	0	Hz
Observed Fan power:			Amp or kW
Is the drive in hand or bypass	N	10	•
Is the starter in hand or bypass	N	No	
Valves: No Access			
Chilled Water Valve:	2-way		
Chilled Water Valve Actuator:	connec	cted	
Hot Water Valve:	N/A		
Hot Water Valve Actuator:	N/A		
Steam Valve:	N/A		
Steam Valve Actuator:	N/A		
Glycol Hot Water Valve:	N/A		
Glycol Hot Water Valve Actuator:	N/A		
Air Tightness: No Access			
Observed holes in duct connections:	N	lo	
Door close tight:	N	lo	
Other Notes:			
Economizer needs to be reprogrammed. Call for cool du	uring h	eating	with radiant and using CHW

Rush Rhees Library
AHU Rm 207

Assigned to
SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

7		• · - · · · · · · · · · · · · · · · · · · ·		
System Servces				_
Room 207				
Control System Type				
Туре:	DDC			
Manufacturer:	utomated Log	ic		
Trending:	Υ			
<u>Unit Configuration</u>				
AHU Type:	VAV Single Zo	one		
Return Air Type:	Return Air Un	it		
Fans:	Supply			
Heat Recovery Coil:	None			
Preheat Coil:	N/A			
Reheat Coil:	N/A			
Cooling Coil:	Chilled Water	•		
Is Heating Coil Before or After	Heating	provided by ra	adiant, heat at	cool at the same time
Cooling Coil?				
Cabadula				
Schedule Type:				
Schedule Type:	24/7			
HVAC Schedule M - F:	24/7	Covid	24/7	Normal
HVAC Schedule S - S:	24/7	Covid	24/7	Normal
Space Schedule M - F:	24/7	Covid	24/7	Normal
Space Schedule S - S:	24/7	Covid	24/7	Normal
Existing Optimal Start:	No	1	· · · · · · · · · · · · · · · · · · ·	I
Tend of unit status:				
Fan Speed control				
Constant Speed:	No	(If Yes, End o	f section)	

Constant Speed: No (If Yes, End of section)

Speed Control: VFD based on space temp PID

What is static pressure setpoint versus unit external capacity:

setpoint versus unit external capacity: N/A

Review trend of fan speed avalible: Yes

Does the Fan speed modulate more than 10%?: Yes

Observed Fan speed HIGH: 50 hz
Observed Fan speed LOW: 50 hz

Rush Rhees Library
AHU Rm 207

REMOTE CONTROL	

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control				
Is the Unit 100% OA:	No	(If Yes, End of section)		
Ventilation Control:	Based on OA	temp		
	If	DCV, CO2 sensor location:	Space RA	if not avalible mark "N/A"
Record	l minimum OA	Damper position setpoint :	N/A	if not avalible mark "N/A"
	Record mir	nimum OA airflow setpoint :	N/A	if not avalible mark "N/A"
Record Observed Points:				
Date & Time	4/7/	2021		
OA Damper Position:	0%	if not avalible mark "N/A"		
OA Air Flow:		if not avalible mark "N/A"		
SA Fan Speed:	30%	SA Fan CFM:	No drawings	
OA Temp:	42			
RA Temp:	74			

Confirm Trends: Yes | No

MA Temp:

Discharge Air Temperature Control

Discharge Air Temp: Varies on temp space

74

SA Temp Setpoint:

SA Temp Base on: Based on calls for cooling?, Definely could be based on outdoor air

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? Yes

Resest Temp HIGH: F Calls for cool Other

Resest Temp Low: F Calls for cool Other

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer (40%)

Economizer Control Type: OA Drybulb

Other

Dehumidification Contorl: NO Humidification Contorl: NO Face & Bypass NO

AIR HANDLING SYSTEM FIELD REVIEW

<u>Assigned</u>	to
SDM	

	AIR HANDLING STOTEW FIELD REVIEW				SDIVI
Field Audit					
	Outdoor Air (OA) Damper: Observed w/ Photo No Ad		Not		
	Observed approx damper position:		0	%open	
	Is the Damper Stuck Open or Close?:		No	Open Closed	
	Do some blades appeard to be not working?:		No		
	Are any actuators broke / disconnected?:		No		
	Return Air (RA) Damper: Observed w/ Photo No Ad	ress	I Not	Annlicable	
	Observed approx damper position:		100	%open	
	Is the Damper Stuck Open or Close?:		No	Open Closed	
	Do some blades appeard to be not working?:		No	open olosed	
	Are any actuators broke / disconnected?:		No		
	Fan VFD or starter: Observed w/ Photo No Ad	ccess		Applicable	
	Observed Fan Speed:		30	Hz	
	Observed Fan power:	-	-	Amp or kW	
	Is the drive in hand or bypass		No	·	
	Is the starter in hand or bypass		No		
	Valves: No Access				
	Chilled Water Valve:	2-wa	V		
	Chilled Water Valve Actuator:		•		
	Hot Water Valve:				
	Hot Water Valve Actuator:				
	Steam Valve:				
	Steam Valve Actuator:				
	Glycol Hot Water Valve:				
	Glycol Hot Water Valve Actuator:	N/A			
	Air Tightness: No Access				
	Observed holes in duct connections:		No		
	Door close tight:		No		
Other Notes:					

Rush Rhees Library Central Systems

Assigned to SDM

CENTRAL BUILDING SYSTEM CONTROLS REVIEW

Chilled Water System Control

System Seasonally Enabled: Yes | No

Chilled Water Pumping

Chilled Water System OA enabled setpoint: Constant/55 if not available mark "N/A"

Chilled Water System enabled date:

Chilled Water System disable date:

if not avalible mark "N/A" if not avalible mark "N/A"

Pump Setup: Building Chilled Water (Building Chilled water from district (main CHW), FCU,PAC C

What is static pressure setpoint: Con, 10

Is there a bypass valve?: No

Confirm Trends: No

Chiller Plant Logs: N/A if not avalible mark "N/A"

Heating System Control

System Seasonally Enabled: Yes | No

Heating System OA enabled setpoint:

Heating System enabled date:

Heating System disable date:

if not avalible mark "N/A"

if not avalible mark "N/A"

N/A N/A if not avalible mark "N/A"

Constant

N/A

N/A

Hot Water System: Yes

Pump Setup: Building Hot Water (HW Radiant 1, Radiant 2 Appogee)

What is static pressure setpoint:

Constant

Is there a bypass valve?: Yes | No

Steam System: Yes

Steam System Pressure Setpoint:

1.5

PSIG

6.39 Actual

Confirm Trends: No

Boiler Plant Logs: No if not avalible mark "N/A"

Building occupancy Schedule

BAS occupancy Schedule

8am-10pm 24/7

FIELD SURVEY

Rush Rhees Library Central Systems

CENTRAL BUILDING SYSTEM CONTROLS REVIEW

<u>Assigned</u>	to
SDM	

Field Audit
Chilled Water Primary Pumps: Observed/ Main CHW no pumps from district loop
Observed Speed: Hz
Observed power: Amp or kW
Is the drive in hand or bypass: N/A
Is the starter in hand or bypass: N/A
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VF
Chilled Water FCU/PAC Pumps: Observed w/ Photo No Access Not Applicable
Observed Speed: 33.9 Hz
Observed power: Amp or kW
Is the drive in hand or bypass: No
Is the starter in hand or bypass: No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VF
Hot Water Primary Pumps: Observed Constant Speed
Observed Speed: 60 Hz
Observed power: Amp or kW
Is the drive in hand or bypass: No
Is the starter in hand or bypass: No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VF
Hot Water Seconday Pumps: Not Applicable
Observed Speed: Hz
Observed power: Amp or kW
Is the drive in hand or bypass: No
Is the starter in hand or bypass: No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VF
Cond. Water Pumps: Not Applicable
Observed Speed: Hz
Observed power: Amp or kW
Is the drive in hand or bypass: Yes No
Is the starter in hand or bypass: Yes No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VF

Project Nan	ne	Building Name
Rochester F	CX Scoping	Danforth Dining
Building Typ	oe e	Year Built
Dinning Hal		Renovated 2011
Gross Area		No. Stories
35,128		1
•		
Space Type	S	Initial Walk-Through Date:
Kitchen		4/13/2021
Offices		
Cafateria		
Key Contact	ts	
Name	Richard D. Stein	
Title/Role	Assistant Director Building Controls	
Phone	585.275.2432	
Email	rstein8@facilities.rochester.edu	
Notes		
Building has	S Chilled water for WIC/WIF.	
1		

Danforth Dining

Pre Audit	Assigned to
✓ Introduciton to Client	JGD
✓ Initial Visit Scheduled 2 weeks in advance	JGD
✓ Pull-in Checklists & Templates	JGD
✓ Floor Plans Downloaded	SDM
Utility Data Downloaded	JGD
Utility Analysis Completed	JGD
☐ Mechanical Plans and Schedules Downloaded	N/A
Offsite Work (Prep)	
☐ Mechanical Equipment Schedules Reviewed	N/A
☐ Site Facility Interview	JGD
Request Trend Data	SDM
Review Trend Data	SDM
☐ Benchmark Buildings	XYZ

Control System Summary

Type: DDC

Manufacturer: Siemens

Trending: N

Trending: N

Qualitative Verify temperature sensors are reading accurately (this is done by looking at BMS **Sensor Review:** readings and seeing if they are reasonable based upon the unit's operation)

AHU Qualitative Review Completed

Chilled Water Qualitative Review Completed Hot Water Qualitative Review Completed AHU Qualitative Review Completed

Danforth Dining AHU-1

Assigned to		
SDM		

AIR HANDLING SYSTEM CONTROLS REVIEW System Servces Kitchen/Cafeteria/Offices Control System Type Type: DDC Manufacturer: Siemens Trending: N **Unit Configuration** AHU Type: VAV Return Air Type: Return Air Unit Currently running as 100% OA for Covid Fans: Supply | Return Heat Recovery Coil: None Preheat Coil: Hot Water Reheat Coil: Cooling Coil: Chilled Water Is Heating Coil Before or After Yes Cooling Coil? **Schedule** Schedule Type: Unknown HVAC Schedule M - F: Unknown off Unknown HVAC Schedule S - S: Unknown Unknown off on Space Schedule M - F: Unknown Unknown off on Space Schedule S - S: Unknown on Unknown off **Existing Optimal Start: Unknown** Tend of unit status: No Screen Shot of Trend: No Fan Speed control Constant Speed: Yes (If Yes, End of section) Speed Control: VFD What is static pressure setpoint versus unit external capacity: 0.43 Review trend of fan speed avalible: No Does the Fan speed modulate more than 10%?: Unknown

hz

hz

Observed Fan speed HIGH:

Observed Fan speed LOW:

time

time

Danforth Dining AHU-1

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

65.59

Ventilation Control: DCV - Integrated with KEF

If DCV, CO2 sensor location: RA if not avalible mark "N/A" Record minimum OA Damper position setpoint: N/A if not avalible mark "N/A"

from drawings

Record minimum OA airflow setpoint : N/A if not avalible mark "N/A"

Record Observed Points:

Date & Time 5/3/2021 12:40

OA Damper Position: 100 if not avalible mark "N/A"

OA Air Flow: 29000 if not avalible mark "N/A"

SA Fan Speed: 83.10%

OA Temp: 70

RA Temp: 72.6

Confirm Trends: Yes | No

MA Temp:

Discharge Air Temperature Control

Discharge Air Temp: Varies

SA Temp Setpoint: 55

SA Temp Base on: Unknown

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? No

	SA Temp Actual:	
Resest Temp HIGH:	F	OA Temp RA Temp Other
Resest Temp Low:	F	OA Temp RA Temp Other

Confirm Trends: No

Economizer Cycle Control

Economizer: Unknown may need to check drawings

Economizer Limits: Full Economizer (100% airflow)

Economizer Control Type: Unknown

Other

Dehumidification Contorl: No Humidification Contorl: No Face & Bypass No

AIR HANDLING SYSTEM FIELD REVIEW

Assigned to SDM

F	iel	Ы	Αı	ıd	it

Outdoor Air	(OA) Daı	mper:	Observed
-------------	----------	-------	----------

Observed approx damper position: 100 %open

Is the Damper Stuck Open or Close?: No Open | Closed

Do some blades appeard to be not working?: No Are any actuators broke / disconnected?: No

Return Air (RA) Damper: Observed

Observed approx damper position: 0 %open

Is the Damper Stuck Open or Close?: No Open | Closed

Do some blades appeard to be not working?: No Are any actuators broke / disconnected?: No

Fan VFD or starter: Observed

Observed Fan Speed: 83.31 Speed
Observed Fan power: Amp or kW

Is the drive in hand or bypass No
Is the starter in hand or bypass No

Valves: Observed w/ Photo | No Access | Not Applicable

Chilled Water Valve: 2-way

Chilled Water Valve Actuator: connected

Hot Water Valve: 2-way

Hot Water Valve Actuator: connected

Steam Valve: N/A

Steam Valve Actuator: N/A

Glycol Hot Water Valve: N/A

Glycol Hot Water Valve Actuator: N/A

Air Tightness: Observed

Observed holes in duct connections: No

Door close tight: No

Other Notes:

Based on Days observed Discharge air setpoint needs adjustement an to be interlocked with fin radiation

Danforth Dining Central Systems

Assigned to SDM

CENTRAL BUILDING SYSTEM CONTROLS REVIEW

Chilled Water System Control

System Seasonally Enabled: No

Chilled Water System OA enabled setpoint:

Chilled Water System enabled date:

Chilled Water System disable date:

if not avalible mark "N/A"

if not avalible mark "N/A"

if not avalible mark "N/A"

Chilled Water Pumping

Pump Setup: Primary/Secondary Secondary is variable

What is static pressure setpoint: Unknown

Unknown

Unknown

Unknown

Is there a bypass valve?: No

Confirm Trends: No

Chiller Plant Logs: No

if not avalible mark "N/A"

Heating System Control

System Seasonally Enabled: Yes

Heating System OA enabled setpoint:

Unknown

if not avalible mark "N/A"

Heating System enabled date: Heating System disable date:

Unknown Unknown if not avalible mark "N/A" if not avalible mark "N/A"

Hot Water System: Yes

Pump Setup: Building Hot Water Variable

What is static pressure setpoint:

Unknown

Is there a bypass valve?: Yes | No

Steam System: No

Steam System Pressure Setpoint:

PSIG

Confirm Trends: No

Boiler Plant Logs: No

if not avalible mark "N/A"

Danforth Dining Central Systems

CENTRAL BUILDING SYSTEM CONTROLS REVIEW

Assigned to SDM

Field Audit
Chilled Water Primary Pumps: Observed
Observed Speed: 0 Hz
Observed power: 0 Amp or kW
Is the drive in hand or bypass: No
Is the starter in hand or bypass: No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VFL
Chilled Water Seconday Pumps: Observed w/ Photo No Access Not Applicable
Observed Speed: 0 Hz
Observed power: 0 Amp or kW
Is the drive in hand or bypass: No
Is the starter in hand or bypass: No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VFI
Hot Water Primary Pumps: Observed w/ Photo No Access Not Applicable
Observed Speed: 69.74 Hz
Observed power: Amp or kW
Is the drive in hand or bypass: No
Is the starter in hand or bypass: No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VFI
Hot Water Seconday Pumps: ot Applicable
Observed Speed: Hz
Observed power: Amp or kW
Is the drive in hand or bypass: Yes No
Is the starter in hand or bypass: Yes No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VFI
Cond. Water Pumps: Not Applicable
Observed Speed: Hz
Observed power: Amp or kW
Is the drive in hand or bypass: Yes No
Is the starter in hand or bypass: Yes No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VFI

Project Nan	ne	Building Name
Rochester RCX Scoping		Fredrick Douglass Commons
Building Typ	oe e	Year Built
Classrom/ k	Kitchen and Common are	1950
Gross Area		No. Stories
89,151		4
Space Type	s	Initial Walk-Through Date:
Kitchen		4/13/2021
Dining		
Office		
Key Contac	v.	
Name	Richard D. Stein	
Title/Role	Assistant Director Building Controls	
Phone	585.275.2432	
Email	rstein8@facilities.rochester.edu	
Notes		

Fredrick Douglass Commons

Pre Audit	Assigned to
✓ Introduciton to Client	JGD
✓ Initial Visit Scheduled 2 weeks in advance	JGD
☑ Pull-in Checklists & Templates	JGD
✓ Floor Plans Downloaded	SDM
Utility Data Downloaded	JGD
Utility Analysis Completed	JGD
☐ Mechanical Plans and Schedules Downloaded	N/A
Offsite Work (Prep)	
	N/A
☐ Site Facility Interview	JGD
Request Trend Data	SDM
Review Trend Data	SDM
☐ Benchmark Buildings	XYZ
Control System Summary	
Type: DDC	
Manufacturer: Automated Logic	
Trending: Y	
Trending: Y	

Qualitative Verify temperature sensors are reading accurately (this is done by looking at BMS **Sensor Review:** readings and seeing if they are reasonable based upon the unit's operation)

AHU Qualitative Review Completed

Chilled Water Qualitative Review Completed Hot Water Qualitative Review Completed AHU Qualitative Review Completed

Fredrick Douglass Commons RTU-1

REMOTE	1
CONTROL	i
	1

	_	Assigned to
AIR	HANDLING SYSTEM CONTROLS REVIEW	SDM
System Servces		
201		
Control System Type		
Type:	DDC	
Manufacturer:	utomated Logic	
Trending:		
_		
Unit Configuration		
AHU Type:	VAV single zone	
Return Air Type:	Return Air Unit	
Fans:	Supply	
Heat Recovery Coil:	None	
Preheat Coil:	HW Glycol	
Reheat Coil:		
Cooling Coil:	Chilled Water	
Is Heating Coil Before or After	before	
Cooling Coil?	belote	
Schedule Schedule		
Schedule Type:	24/7 Covid; Occ/Unocc with fan run on call for conditioning	
	2 1/ 1 cond, coo/ chock with fair on call for conditioning	
HVAC Schedule M - F:	24/7 Covid 5am-11pm Normal	
HVAC Schedule S - S:	24/7 Covid 5am-11pm Normal	
Space Schedule M - F:	7am-12am Covid 5am-11pm Normal	
Space Schedule S - S:	7am-12am Covid 5am-11pm Normal	
Existing Optimal Start:	Yes	
Tend of unit status:	Yes Screen Shot of Trend: No	
Fan Speed control		
Constant Speed:	No (If Yes, End of section)	
Speed Control:	VFD based on need for conditioning	
What is static pressu	ure setpoint versus unit external capacity: 0.75	
	Review trend of fan speed avalible: Yes	
Does t	he Fan speed modulate more than 10%? Yes	

60

60

hz

hz

Observed Fan speed HIGH:

Observed Fan speed LOW:

Fredrick Douglass Commons RTU-1

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

Ventilation Control: DCV

If DCV, CO2 sensor location: RA if not avalible mark "N/A" Record minimum OA Damper position setpoint: 35% if not avalible mark "N/A"

6500

from drawings

Record minimum OA airflow setpoint: 300 if not avalible mark "N/A"

Record Observed Points: 750 ppm setpoint

Date & Time 341 pm 5/6/21

OA Damper Position: 100% if not avalible mark "N/A"

OA Air Flow: 1991 if not avalible mark "N/A"

SA Fan Speed: 50% SA Fan CFM: SA Temp: 65.2

RA Temp: 65.2

64

Confirm Trends: Yes | No

MA Temp:

Discharge Air Temperature Control

Discharge Air Temp: Varies - Currently overiden to heating setpoint

SA Temp Setpoint: 69.2
SA Temp Base on: space temp

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? no

Resest Temp HIGH: 98 F Other
Resest Temp Low: 50 F Other

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer (note air flow)

Economizer Control Type: OA DB vs zone temp

Other

Dehumidification Contorl: No Humidification Contorl: No Face & Bypass No

AIR HANDLING SYSTEM FIELD REVIEW

Assigned to SDM

F	اما	Ы	Αı	ıd	iŧ
Г	ш	ıu	AI	Ju	Iι

Field Audit		
Outdoor Air (OA) Damper: Observed		_
Observed approx damper position:	100	%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	
Are any actuators broke / disconnected?:	No	
Return Air (RA) Damper: Observed		
Observed approx damper position:	0	%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	
Are any actuators broke / disconnected?:	No	
Fan VFD or starter: Observed		
Observed Fan Speed:	30	Hz
Observed Fan power:		Amp or kW
Is the drive in hand or bypass	No	_
Is the starter in hand or bypass	No	
Valves: Observed		
Chilled Water Valve:	2-way	
Chilled Water Valve Actuator:	connected	
Hot Water Valve:	N/A	
Hot Water Valve Actuator:	N/A	
Steam Valve:	N/A	
Steam Valve Actuator:	N/A	
Glycol Hot Water Valve:	2-way	
Glycol Hot Water Valve Actuator:	connected	
Air Tightness: Observed		
Observed holes in duct connections:	No	
Door close tight:		
Other Notes:		
SF locked below 55% because of noise		

Fredrick Douglass Commons RTU-2

	Assigned to
SYSTEM CONTROLS REVIEW	SDM

AIR I	HANDLING SY	STEM CONTRO	JLS REVIEW		SDM
System Servces					
202					
Outstand Outstand Toron					
Control System Type	DDO				
Type:		·			
Manufacturer:		IC			
Trending:	Y				
Unit Configuration					
AHU Type:	VAV single zo	ne			
Return Air Type:	Return Air Un	nit			
Fans:	Supply				
Heat Recovery Coil:	None				
Preheat Coil:	HW Glycol				
Reheat Coil:					
	Chilled Water	r			_
Is Heating Coil Before or After			before		
Cooling Coil?					
<u>Schedule</u>					
Schedule Type:					
3,700	24/7 Covid; (Occ/Unocc wit	th fan run on d	call for conditioning	
HVAC Schedule M - F:	24/7	Covid	5am-11pm	Normal	
HVAC Schedule S - S:	24/7	Covid	5am-11pm	Normal	
Space Schedule M - F:	7am-12am	Covid	5am-11pm	Normal	
Space Schedule S - S:	7am-12am	Covid	5am-11pm	Normal	
Existing Optimal Start:	Yes				
Tend of unit status:	Yes	Screen S	shot of Trend:	No	
Fan Speed control					
Constant Speed:	No	(If Yes, End o	f section)		
Speed Control:					
What is static pressu				0.75	
ac io otatio prodou			peed avalible:		
Does th			e than 10%?:		
Observed Fan	•	60	hz		

60

hz

Observed Fan speed LOW:

Fredrick Douglass Commons RTU-2

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

Ventilation Control: DCV

If DCV, CO2 sensor location: RA if not avalible mark "N/A" Record minimum OA Damper position setpoint: 35% if not avalible mark "N/A"

Record minimum OA airflow setpoint: 300 if not avalible mark "N/A"

750 ppm setpoint

Record Observed Points:

Date & Time 612 pm 5/6/21

OA Damper Position: 100% if not availble mark "N/A"
OA Air Flow: 2756 Set point 300 cfm

OA Air Flow: 2756 Set point 300 cm

SA Fan Speed: 50%
OA Temp: 67.3
RA Temp: MA Temp: 63.3

SA Fan CFM: 6500 from drawings

Confirm Trends: Yes | No

Discharge Air Temperature Control

Discharge Air Temp: Varies - Currently overiden to heating setpoint

SA Temp Setpoint: 60.7
SA Temp Base on: space temp

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? no

Resest Temp HIGH: 98 F
Resest Temp Low: 50 F

59.6 Other

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer (note air flow)

Economizer Control Type: OA DB vs zone temp

Other

Dehumidification Contorl: No Humidification Contorl: No Face & Bypass No

Fredrick Douglass Commons RTU-2

AIR HANDLING SYSTEM FIELD REVIEW

Assigned to
SDM

	اما	ы	Αı	ıd	i÷
П	ш	ıu	AI	Ju	IL

Field Audit		
Outdoor Air (OA) Damper: Observed		_
Observed approx damper position:	100	%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	
Are any actuators broke / disconnected?:	No	
Return Air (RA) Damper: Observed		7
Observed approx damper position:		%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	
Are any actuators broke / disconnected?:	No	
Fan VFD or starter: Observed		-
Observed Fan Speed:		Hz
Observed Fan power:		Amp or kW
Is the drive in hand or bypass	No	
Is the starter in hand or bypass	No	
Valves: Observed		
Chilled Water Valve:	2-way	
Chilled Water Valve Actuator:	connected	
Hot Water Valve:	N/A	
Hot Water Valve Actuator:	N/A	
Steam Valve:	N/A	
Steam Valve Actuator:	N/A	
Glycol Hot Water Valve:	2-way	
Glycol Hot Water Valve Actuator:	connected	
Air Tightness: Observed		
Observed holes in duct connections:	No	
Door close tight:	No	
Other Notes:		
SF locked below 55% because of noise		

Fredrick Douglass Commons RTU-3

REMOTE	Ì
CONTROL	į
	d

	Assigned to
DLING SYSTEM CONTROLS REVIEW	SDM

AIR I	HANDLING SY	STEM CONTRO	LS REVIEW		SDM	
System Servces						
203						
Control System Type					ı	
Type:	DDC					
Manufacturer:	utomated Log	ic				
Trending:	Υ	1				
Unit Configuration						
AHU Type:	VAV single zo	ne				
Return Air Type:	Return Air Un	it				
Fans:	Supply					
Heat Recovery Coil:	None					
Preheat Coil:	HW Glycol					
Reheat Coil:						
Cooling Coil:	Chilled Water	•				
Is Heating Coil Before or After			before			
Cooling Coil?			belole			
<u>Schedule</u>						
Schedule Type:	24/7 Covid: 0	Occ/Unocc wit	h fan run on ca	all for conditioning		
	,,			_		
HVAC Schedule M - F:	24/7	Covid		Normal		
HVAC Schedule S - S:	24/7	Covid	5am-11pm	Normal		
Space Schedule M - F:	7am-12am	Covid	5am-11pm	Normal		
Space Schedule S - S:	7am-12am	Covid	5am-11pm	Normal		
Existing Optimal Start:	Yes					
Tend of unit status:	Yes	Screen S	hot of Trend:	No		
Fan Speed control						
Constant Speed:	No	(If Yes, End of	f section)			
Speed Control:	VFD based or	n need for con	ditioning			
What is static pressu			· L	0.75		
Review trend of fan speed avalible: Yes						
Does the Fan speed modulate more than 10%?: Yes						
Observed Fan	speed HIGH:	60	hz			

60

hz

Observed Fan speed LOW:

Fredrick Douglass Commons RTU-3

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

Ventilation Control: DCV

If DCV, CO2 sensor location: RA if not avalible mark "N/A" Record minimum OA Damper position setpoint: 35% if not avalible mark "N/A"

Record minimum OA airflow setpoint: 300 if not availble mark "N/A"

Record Observed Points: 750 ppm setpoint

Date & Time 612 pm 5/6/21 **OA Damper Position:** 100% if not avalible mark "N/A" OA Air Flow: 2756 Set point 300 cfm SA Fan Speed: 50% SA Fan CFM: 6500 from drawings **OA Temp:** 60.5 RA Temp: MA Temp: 53.3

Confirm Trends: Yes | No

Discharge Air Temperature Control

Discharge Air Temp: Varies - Currently overiden to heating setpoint

SA Temp Setpoint: 57.2
SA Temp Base on: space temp

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? no

Resest Temp HIGH: 98 F Other
Resest Temp Low: 50 F Other

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer (note air flow)

Economizer Control Type: OA DB vs zone temp

Other

Dehumidification Contorl: No Humidification Contorl: No Face & Bypass No

Fredrick Douglass Commons RTU-3

AIR HANDLING SYSTEM FIELD REVIEW

<u>Assigned</u>	to
SDM	

		ы	Αι		:+
Г	ш	u	Αl	JU	ш

Field Audit		
Outdoor Air (OA) Damper: Observed		
Observed approx damper position:	100	%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	
Are any actuators broke / disconnected?:	No	
Return Air (RA) Damper: Observed		
Observed approx damper position:	0	%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	
Are any actuators broke / disconnected?:	No	
Fan VFD or starter: Observed		
Observed Fan Speed:	30	Hz
Observed Fan power:		Amp or kW
Is the drive in hand or bypass	No	_
Is the starter in hand or bypass	No	
Valves: Observed		
Chilled Water Valve:	2-way	
Chilled Water Valve Actuator:	connected	
Hot Water Valve:	N/A	
Hot Water Valve Actuator:	N/A	
Steam Valve:	N/A	
Steam Valve Actuator:	N/A	
Glycol Hot Water Valve:	2-way	
Glycol Hot Water Valve Actuator:	connected	
Air Tightness: Observed		
Observed holes in duct connections:	No	
Door close tight:	No	
Other Notes:		
SF locked below 55% because of noise		

Fredrick Douglass Commons RTU-4

REMOTE	1
CONTROL	i
	1

AIR HANDLING	SYSTEM	CONTROLS	REVIEW

Assigned to SDM

System Servces	
204	
Control System Type	
Type:	DDC
Manufacturer:	utomated Logic
Trending:	
_	
Unit Configuration	
AHU Type:	VAV single zone
Return Air Type:	Return Air Unit
Fans:	Supply
Heat Recovery Coil:	None
Preheat Coil:	HW Glycol
Reheat Coil:	
Cooling Coil:	Chilled Water
Is Heating Coil Before or After	
Cooling Coil?	before
<u>Schedule</u>	
Schedule Type:	24/7 Covid; Occ/Unocc with fan run on call for conditioning
HVAC Schedule M - F:	24/7 Covid 5am-11pm Normal

HVAC Schedule M - F: 24/7 Covid 5am-11pm Normal Normal Space Schedule S - S: 7am-12am Covid 5am-11pm Normal Space Schedule S - S: 7am-12am Covid 5am-11pm Normal Space Schedule S - S: 7am-12am Covid 5am-11pm Normal Start: Yes

Tend of unit status: Yes Screen Shot of Trend: No

Fan Speed control

Constant Speed: No (If Yes, End of section)

Speed Control: VFD based on need for conditioning

What is static pressure setpoint versus unit external capacity: 0.75

Review trend of fan speed avalible: Yes

Does the Fan speed modulate more than 10%?: Yes

Observed Fan speed HIGH: 60 hz
Observed Fan speed LOW: 60 hz

Fredrick Douglass Commons RTU-4

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

Ventilation Control: DCV

If DCV, CO2 sensor location: RA if not avalible mark "N/A" Record minimum OA Damper position setpoint: 35% if not avalible mark "N/A"

Record minimum OA airflow setpoint: 300 if not availble mark "N/A"

Record Observed Points:

Date & Time 612 pm 5/6/21

OA Damper Position: 65% if not avalible mark "N/A"

OA Air Flow: 2726 Set point 300 cfm

SA Fan Speed: 50%
OA Temp: 59.4
RA Temp: MA Temp: 54.5

SA Fan CFM: 6500 from drawings

750 ppm

setpoint

Confirm Trends: Yes | No

Discharge Air Temperature Control

Discharge Air Temp: Varies - Currently overiden to heating setpoint

SA Temp Setpoint: 68.5
SA Temp Base on: space temp

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? no

Resest Temp HIGH: 98 F
Resest Temp Low: 50 F

70.5 Other Other

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer (note air flow)

Economizer Control Type: OA DB vs zone temp

Other

Fredrick Douglass Commons RTU-4

AIR HANDLING SYSTEM FIELD REVIEW

Assigned :	to
SDM	

	1				••
Н	ıe	ıa	Aι	Ja	π

Field Audit		
Outdoor Air (OA) Damper: Observed		
Observed approx damper position:	100	%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	
Are any actuators broke / disconnected?:	No	
Return Air (RA) Damper: Observed		
Observed approx damper position:	0	%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	
Are any actuators broke / disconnected?:	No	
Fan VFD or starter: Observed		
Observed Fan Speed:	30	Hz
Observed Fan power:		Amp or kW
Is the drive in hand or bypass	No	
Is the starter in hand or bypass	No	
Valves: Observed		
Chilled Water Valve:	2-way	
Chilled Water Valve Actuator:	connected	
Hot Water Valve:	N/A	
Hot Water Valve Actuator:	N/A	
Steam Valve:	N/A	
Steam Valve Actuator:	N/A	
Glycol Hot Water Valve:	2-way	
Glycol Hot Water Valve Actuator:	connected	
Air Tightness: Observed		
Observed holes in duct connections:	No	
Door close tight:	No	
Other Notes:		
SF locked below 55% because of noise		

Fredrick Douglass Commons AHU-1

<u>Assigned</u>	to
SDM	

AIR HANDLING SYSTEM CONTROLS REVIEW

Out to the Community				L	
System Servces					
First Floor					
Control System Type					
Туре:	DDC				
Manufacturer:		ic			
Trending:		•			
Unit Configuration					
AHU Type:	VAV hw rehea	at			
Return Air Type:	Return Air Un	it			
	Supply Retu				
Heat Recovery Coil:	None				
.	HW Glycol				
Reheat Coil:	4.,, 55.				
	Chilled Water				
Is Heating Coil Before or After	Offilied Water				
Cooling Coil?			before		
Schedule Schedule					
Schedule Type:					
Concadio Typer	24/7				
HVAC Schedule M - F:	24/7	Covid	24/7	Normal	
HVAC Schedule S - S:	24/7	Covid	24/7	Normal	
	7am-12am	Covid	7am-12am	Normal	
Space Schedule M - F:		ł			
Space Schedule S - S:	7am-12am	Covid	7am-12am	Normal	
Existing Optimal Start:				N	
Tend of unit status:	Yes	Screen S	hot of Trend:	No	
Fan Canad assistant					
Fan Speed control		((6))			
Constant Speed:		(If Yes, End or	r section)		
Speed Control: VFD					
What is static pressure setpoint versus unit external capacity: 1.6					
Review trend of fan speed avalible: Yes					
	-	modulate mor	e than 10%?:	Yes	
Observed Fan	speed HIGH:	60	hz		

60

hz

Observed Fan speed LOW:

Fredrick Douglass Commons AHU-1

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

Ventilation Control: Time of Day

If DCV, CO2 sensor location: Space | RA if not availble mark "N/A"

26000

from drawings

Record minimum OA Damper position setpoint: N/A if not avalible mark "N/A"

Record minimum OA airflow setpoint: N/A if not avalible mark "N/A"

SA Fan CFM:

Record Observed Points:

Date & Time 341 pm 5/6/21

OA Damper Position: 65% if not avalible mark "N/A"

OA Air Flow: 26073 if not avalible mark "N/A"

 SA Fan Speed:
 100%

 OA Temp:
 59.7

OA Temp: 59.7

RA Temp: 71.1

MA Temp: 64

Confirm Trends: Yes | No

Discharge Air Temperature Control

Discharge Air Temp: Varies - Currently overiden to heating setpoint

SA Temp Setpoint: 65
SA Temp Base on: space temp

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? no

Resest Temp HIGH: 65 F
Resest Temp Low: 55 F

0ther

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer (note air flow)

Economizer Control Type: OA DB vs RA DB

Other

Fredrick Douglass Commons AHU-1

AIR HANDLING SYSTEM FIELD REVIEW

Assigned t	to
SDM	

F	اما	Ы	Αı	ıd	iŧ
Г	ш	ıu	AI	uu	Iι

Outdoor Air	(OA) Damper:	Observed
-------------	--------------	----------

Observed approx damper position: 100 %open

Is the Damper Stuck Open or Close?: No Open | Closed

Do some blades appeard to be not working?: No Are any actuators broke / disconnected?: No

Return Air (RA) Damper: Observed

Observed approx damper position: 100 %open

Is the Damper Stuck Open or Close?: No Open | Closed

Do some blades appeard to be not working?: No
Are any actuators broke / disconnected?: No

Fan VFD or starter: Observed

Observed Fan Speed: 60 Hz

Observed Fan power: N/A Amp or kW

Is the drive in hand or bypass No
Is the starter in hand or bypass No

Valves: Observed

Chilled Water Valve: 2-way

Chilled Water Valve Actuator: connected

Hot Water Valve: N/A

Hot Water Valve Actuator: N/A

Steam Valve: N/A

Steam Valve Actuator: N/A

Glycol Hot Water Valve: 2-way

Glycol Hot Water Valve Actuator: connected

Air Tightness: Observed

Observed holes in duct connections: No

Door close tight: No

Other Notes:

Vav under	control have RH	randomly overide	en	

Fredrick Douglass Commons AHU-2

REMOTE
CONTROL

<u>Assigned</u>	to
SDM	

AIR HANDLING SYSTEM CONTROLS REVIEW

System Servece			· · · · - · · ·	L	
System Servces					
First Floor					
Control System Type					
Туре:	DDC	_			
Manufacturer:	utomated Log	ic			
Trending:	Υ	•			
Unit Configuration					
AHU Type:	VAV hw rehea	at			
Return Air Type:	Return Air Un	it			
Fans:	Supply Retu	ırn			
Heat Recovery Coil:	None				
Preheat Coil:	HW Glycol				
Reheat Coil:					
Cooling Coil:	Chilled Water				
Is Heating Coil Before or After			before		
Cooling Coil?			Delote		
<u>Schedule</u>					
Schedule Type:	24/7				
		1		1	
HVAC Schedule M - F:	24/7	Covid	24/7	Normal	
HVAC Schedule S - S:	24/7	Covid	24/7	Normal	
Space Schedule M - F:	7am-12am	Covid	7am-12am	Normal	
Space Schedule S - S:	7am-12am	Covid	7am-12am	Normal	
Existing Optimal Start:	Yes				
Tend of unit status:	Yes	Screen S	hot of Trend:	No	
Fan Speed control		//C)/ = 1	<i>c</i>		
Constant Speed:		(If Yes, End o	f section)		
Speed Control:					
What is static pressu	•			1.3	
Review trend of fan speed avalible: Yes					
	-	modulate mor	e than 10%?:	Yes	
Observed Fan	speed HIGH:	60	hz		

60

hz

Observed Fan speed LOW:

Fredrick Douglass Commons AHU-2

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

Ventilation Control: Time of Day

If DCV, CO2 sensor location: Space | RA if not availble mark "N/A"

20435

Record minimum OA Damper position setpoint: N/A

from drawings

Record minimum OA airflow setpoint:

if not avalible mark "N/A" N/A if not avalible mark "N/A"

Record Observed Points:

Date & Time 355 pm 5/6/21 **OA Damper Position:** 100% if not avalible mark "N/A"

OA Air Flow: 15308 if not avalible mark "N/A" SA Fan CFM:

SA Fan Speed: 100% **OA Temp:** 60 **RA Temp:** 70.2

MA Temp: 57.2

Confirm Trends: Yes | No

Discharge Air Temperature Control

Discharge Air Temp: Varies -

SA Temp Setpoint: SA Temp Base on: space temp

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? no

SA Temp Actual: Resest Temp HIGH: 68 55 Resest Temp Low:

55 Other Other

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer

Economizer Control Type: OA DB vs RA DB

Other

Fredrick Douglass Commons AHU-2

AIR HANDLING SYSTEM FIELD REVIEW

Assigned to
SDM

Fi	e	ld	Aι	ıd	it

Outdoor Ai	r (OA) Damper:	Observed
-------------------	----------------	----------

Observed approx damper position: 100 %open

Is the Damper Stuck Open or Close?: No Open | Closed

Do some blades appeard to be not working?: No Are any actuators broke / disconnected?: No

Return Air (RA) Damper: Observed

Observed approx damper position: 100 %open

Is the Damper Stuck Open or Close?: No Open | Closed

Do some blades appeard to be not working?: No Are any actuators broke / disconnected?: No

Fan VFD or starter: Observed

Observed Fan Speed: 60 Hz

Observed Fan power: N/A Amp or kW

Is the drive in hand or bypass No
Is the starter in hand or bypass No

Valves: Observed

Chilled Water Valve: 2-way

Chilled Water Valve Actuator: connected

Hot Water Valve: N/A

Hot Water Valve Actuator: N/A

Steam Valve: N/A

Steam Valve Actuator: N/A

Glycol Hot Water Valve: 2-way

Glycol Hot Water Valve Actuator: connected

Air Tightness: Observed

Observed holes in duct connections: No

Door close tight: No

Other Notes:

Vav under	control have RH	randomly overide	en	

Fredrick Douglass Commons AHU-3

Assigned to
SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

System Servces				_	
Second Floo	r				
Control System Type					
Туре:	DDC				
Manufacturer:	utomated Log	ic			
Trending:	Υ	•			
Unit Configuration					
AHU Type:	VAV hw rehea	at			
Return Air Type:	Return Air Un	it			
Fans:	Supply Retu	ırn			
Heat Recovery Coil:	None				
Preheat Coil:	HW Glycol				
Reheat Coil:					
Cooling Coil:	Chilled Water	•			
Is Heating Coil Before or After			before		
Cooling Coil?			belole		
<u>Schedule</u>					
Schedule Type:	24/7				
		1		1	
HVAC Schedule M - F:	24/7	Covid	24/7	Normal	
HVAC Schedule S - S:	24/7	Covid	24/7	Normal	
Space Schedule M - F:	7am-12am	Covid	7am-12am	Normal	
Space Schedule S - S:	7am-12am	Covid	7am-12am	Normal	
Existing Optimal Start:	Yes				
Tend of unit status:	Yes	Screen S	hot of Trend:	No	
Fan Speed control	N.	((6)/ = 1	.		
Constant Speed:		(If Yes, End o	f section)		
Speed Control:					
What is static pressu				1.3	
Review trend of fan speed avalible: Yes					
	•	modulate mor	1	Yes	
Observed Fan	speed HIGH:	58	hz		

58

hz

Observed Fan speed LOW:

Fredrick Douglass Commons AHU-3

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

Ventilation Control: Time of Day

If DCV, CO2 sensor location: Space | RA if not availble mark "N/A"

Record minimum OA Damper position setpoint : N/A if not avalible mark "N/A"

Record minimum OA airflow setpoint : N/A if not avalible mark "N/A"

Record Observed Points:

Date & Time 355 pm 5/6/21

OA Damper Position: 60% if not avalible mark "N/A"

OA Air Flow: 20699 From BAS

SA Fan Speed: 98% SA Fan CFM: 19000 from drawings

OA Temp: 60
RA Temp: 70.6
MA Temp: 63.5

Confirm Trends: Yes | No

Discharge Air Temperature Control

Discharge Air Temp: Varies -

SA Temp Setpoint: 58
SA Temp Base on: space temp

Is setpoint being maintained? no

Is heating and cooling valve enabled at the same time? no

Resest Temp HIGH: 65 F Other
Resest Temp Low: 58 F Other

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer

Economizer Control Type: OA DB vs RA DB

Other

Fredrick Douglass Commons AHU-3

AIR HANDLING SYSTEM FIELD REVIEW

<u>Assigned</u>	to
SDM	

ıa	۸.	ıdit
	AI	16 111

Other Notes:

Outdoor Air (OA) Damper: Observed		
Observed approx damper position:	100	%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	
Are any actuators broke / disconnected?:	No	
Return Air (RA) Damper: Observed		
Observed approx damper position:	100	%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	open closed
Are any actuators broke / disconnected?:	No	
Fan VFD or starter: Observed	INO	
Observed Fan Speed:	58	Hz
Observed Fan power:		Amp or kW
Is the drive in hand or bypass	No	
Is the starter in hand or bypass	No	
10 the other minutes of 2) page		
Valves: Observed		
Chilled Water Valve:	2-way	
Chilled Water Valve Actuator:	connected	
Hot Water Valve:	N/A	
Hot Water Valve Actuator:	N/A	
Steam Valve:	N/A	
Steam Valve Actuator:	N/A	
Glycol Hot Water Valve:	2-way	
Glycol Hot Water Valve Actuator:	connected	
Air Tightness: Observed		
Observed holes in duct connections:	No	
Door close tight:	No	
_		

Fredrick Douglass Commons AHU-4

Assigned	to
SDM	

AIR HANDLING SYSTEM CONTROLS REVIEW

System Servces				_
Third Floor				
Control System Type				
Type:				
Manufacturer:	_	ic		
Trending:	Υ			
Unit Configuration				
Unit Configuration	VAV hw rehea	a+		
Return Air Type:				
	Supply Retu			
Heat Recovery Coil:	None	A111		
Preheat Coil:				
Reheat Coil:	Tim diyool			
	Chilled Water	•		
Is Heating Coil Before or After	Crimod Traco.			
Cooling Coil?			before	
<u>Schedule</u>				
Schedule Type:	24/7			
		امستم	04/7] _N
HVAC Schedule M - F: HVAC Schedule S - S:	24/7	Covid	24/7	Normal
	24/7 7am-12am	Covid Covid	24/7 7am-12am	Normal Normal
Space Schedule M - F: Space Schedule S - S:	7am-12am	Covid	7am-12am	Normal
Existing Optimal Start:		Covid	Taili-12aili	Inomia
Tend of unit status:		Screen S	hot of Trend:	No
rend of drift status.	103	Ociceno	niot of ficha.	NO
Fan Speed control				
Constant Speed:	No	(If Yes, End o	f section)	
Speed Control:	VFD			
What is static pressu	re setpoint ve	rsus unit exte	rnal capacity:	1.3
	Review	trend of fan sp	peed avalible:	Yes
Does th	e Fan speed	modulate mor	e than 10%?:	Yes
Observed Fan	speed HIGH:	58	hz	

58

hz

Observed Fan speed LOW:

Fredrick Douglass Commons AHU-4

Assigned to SDM

if not avalible mark "N/A"

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

Ventilation Control: Time of Day

If DCV, CO2 sensor location: Space | RA if not availble mark "N/A"

Record minimum OA Damper position setpoint: N/A

Record minimum OA airflow setpoint: N/A if not avalible mark "N/A"

Record Observed Points:

Date & Time 451 pm 5/6/21

OA Damper Position: 60% if not avalible mark "N/A"

OA Air Flow: 3866 From BAS

SA Fan Speed: 47%

OA Temp: 61

RA Temp: 70

MA Temp: 58.9

SA Fan CFM: 16100 from drawings

Confirm Trends: Yes | No

Discharge Air Temperature Control

Discharge Air Temp: Varies -

SA Temp Setpoint: 62
SA Temp Base on: space temp

Is setpoint being maintained? Yes

Is heating and cooling valve enabled at the same time? no

Resest Temp HIGH: 62 F
Resest Temp Low: 55 F

61.1 Other

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer

Economizer Control Type: OA DB vs RA DB

Other

AHU-4

Assigned to SDM

AIR HANDLING SYSTEM FIELD REVIEW

الانماما المرات			
Field Audit	Outdoor Air (OA) Damper: Observed		
	Observed approx damper position:	89	%open
	Is the Damper Stuck Open or Close?:	No	Open Closed
	Do some blades appeard to be not working?:	No	open i ciosed
	Are any actuators broke / disconnected?:	No	
	Are any actuators broke / disconnected:	140	
	Return Air (RA) Damper: Observed		
	Observed approx damper position:	13	%open
	Is the Damper Stuck Open or Close?:	No	Open Closed
	Do some blades appeard to be not working?:	No	
	Are any actuators broke / disconnected?:	No	
	Fan VFD or starter: Observed		<u>_</u>
	Observed Fan Speed:	28	Hz
	Observed Fan power:	N/A	Amp or kW
	Is the drive in hand or bypass	No	_
	Is the starter in hand or bypass	No	
	Valves: Observed		
	Chilled Water Valve:	2-way	
	Chilled Water Valve Actuator:	connected	
	Hot Water Valve:	N/A	
	Hot Water Valve Actuator:	N/A	
	Steam Valve:	N/A	
	Steam Valve Actuator:	N/A	
	Glycol Hot Water Valve:	2-way	
	Glycol Hot Water Valve Actuator:	connected	
	Air Tightness: Observed		
	Observed holes in duct connections:	No	
	Door close tight:	No	
Other Notes:	bool close tight.	140	

Fredrick Douglass Commons AHU-5

REMOTE	Ì
CONTROL	į
	i

Assigned to
SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

System Servces	
Third Floor	
Control System Type	
•	DDC
	utomated Logic
Trending:	Y
<u>Unit Configuration</u>	
<u>-</u>	VAV hw reheat
Return Air Type:	
Fans:	Supply Return
Heat Recovery Coil:	None
Preheat Coil:	HW Glycol
Reheat Coil:	
Cooling Coil:	Chilled Water
Is Heating Coil Before or After	before
Cooling Coil?	3000
Schedule	
Schedule Type:	
Schedule Type.	24/7
HVAC Schedule M - F:	24/7 Covid 24/7 Normal
HVAC Schedule S - S:	24/7 Covid 24/7 Normal
Space Schedule M - F:	7am-12am Covid 7am-12am Normal
Space Schedule S - S:	7am-12am Covid 7am-12am Normal
Existing Optimal Start:	Yes
Tend of unit status:	Yes Screen Shot of Trend: No
For Oursel control	
Fan Speed control	No. (If Yea, End of poetion)
Constant Speed:	
Speed Control:	
what is static pressu	re setpoint versus unit external capacity: 1.3 Review trend of fan speed avalible: Yes
Does th	ne Fan speed modulate more than 10%?: Yes
	n speed HIGH: 58 hz

58

Observed Fan speed LOW:

hz

Fredrick Douglass Commons AHU-5

Assigned to SDM

AIR HANDLING SYSTEM CONTROLS REVIEW

Ventilation Control

Is the Unit 100% OA: No (If Yes, End of section)

Ventilation Control: Time of Day

If DCV, CO2 sensor location: Space | RA if not availble mark "N/A"

Record minimum OA Damper position setpoint: N/A if not avalible mark "N/A"

> Record minimum OA airflow setpoint: N/A if not avalible mark "N/A"

Record Observed Points:

Date & Time 451 pm 5/6/21 **OA Damper Position:** 60% if not avalible mark "N/A"

OA Air Flow: 4673 From BAS

65.6

SA Fan Speed: 78% SA Fan CFM: 16100 from drawings **OA Temp:** 62 70

Confirm Trends: Yes | No

RA Temp:

MA Temp:

Discharge Air Temperature Control

Discharge Air Temp: Varies -SA Temp Setpoint:

SA Temp Base on: space temp

Is setpoint being maintained? no

Is heating and cooling valve enabled at the same time? no

SA Temp Actual: 67.4 Resest Temp HIGH: 65 Other 55 Resest Temp Low: Other

Confirm Trends: Yes

Economizer Cycle Control

Economizer: Yes may need to check drawings

Economizer Limits: Partial Economizer

Economizer Control Type: OA DB vs RA DB

Other

Fredrick Douglass Commons AHU-5

AIR HANDLING SYSTEM FIELD REVIEW

<u>Assigned</u>	to
SDM	

Other Notes:

Outdoor Air (OA) Damper: Observed		<u> </u>
Observed approx damper position:		%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:	No	
Are any actuators broke / disconnected?:	No	
- A Charmed		
Return Air (RA) Damper: Observed	60	□ _,
Observed approx damper position:		%open
Is the Damper Stuck Open or Close?:	No	Open Closed
Do some blades appeard to be not working?:		
Are any actuators broke / disconnected?:	No	
Fan VFD or starter: Observed	47	⊐
Observed Fan Speed:		Hz Amp or kW
Observed Fan power:		Amp or kW
Is the drive in hand or bypass		
Is the starter in hand or bypass	No	
Valves: Observed		
Chilled Water Valve:	2-way	
Chilled Water Valve Actuator:	connected	
Hot Water Valve:	N/A	
Hot Water Valve Actuator:	N/A	
Steam Valve:	N/A	
Steam Valve Actuator:	N/A	
Glycol Hot Water Valve:	2-way	
Glycol Hot Water Valve Actuator:	connected	
Air Tightness: Observed	• •	
Observed holes in duct connections:	No	
Door close tight:	No	

Fredrick Douglass Commons Central Systems

Assigned to SDM

CENTRAL BUILDING SYSTEM CONTROLS REVIEW

Chilled Water System Control

System Seasonally Enabled: Yes | No

Chilled Water System OA enabled setpoint:

Chilled Water System enabled date:

Chilled Water System disable date: N/A if not avalible mark "N/A"

if not avalible mark "N/A"

if not avalible mark "N/A"

Chilled Water Pumping

Pump Setup: Building Chilled Water Variable

What is static pressure setpoint:

55

N/A

Is there a bypass valve?: Yes

Confirm Trends: Yes | No

Chiller Plant Logs: Yes | No if not avalible mark "N/A"

Heating System Control Three separate systems Perimeter/RH,Glycol,Snow Melt

System Seasonally Enabled: System Enabled by OAT

Heating System OA enabled setpoint:

85/65/40

Perimeter/RH,Glycol,Snow Melt

Heating System enabled date:

Heating System disable date:

N/A N/A

if not avalible mark "N/A" if not avalible mark "N/A"

Hot Water System: Yes

Pump Setup: Building Hot Water Variable, Variable, Fixed

What is static pressure setpoint:

15,15,10

Is there a bypass valve?: No

Steam System: No

Steam System Pressure Setpoint:

N/A **PSIG**

Confirm Trends: Yes

Boiler Plant Logs: N/A if not avalible mark "N/A"

FIELD SURVEY

Fredrick Douglass Commons Central Systems

CENTRAL BUILDING SYSTEM CONTROLS REVIEW

<u>Assigned</u>	to
SDM	

Field Audit
Chilled Water Primary Pumps: Observed
Observed Speed: off Hz
Observed power: Amp or kW
Is the drive in hand or bypass: No
Is the starter in hand or bypass: No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VFL
Snow Melt Pumps: Observed
Observed Speed: 0 Hz
Observed power: Amp or kW
Is the drive in hand or bypass: Yes No
Is the starter in hand or bypass: Yes No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VFL
RH/Rad Hot Water Primary Pumps: Observed
Observed Speed: 34 Hz
Observed power: Amp or kW
Is the drive in hand or bypass: No
Is the starter in hand or bypass: No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VFL
HW/Glycol Water Primary Pumps: Observed
Observed Speed: 40 Hz
Observed power: Amp or kW
Is the drive in hand or bypass: Yes No
Is the starter in hand or bypass: Yes No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VFI
Cond. Water Pumps: Not Applicable
Observed Speed: Hz
Observed power: Amp or kW
Is the drive in hand or bypass: Yes No
Is the starter in hand or bypass: Yes No
Photos: pumps / motor nameplate / pump nameplate / triple duty valve / pressure guage / starter / VFI

C RCX Initial Building List

Please find the Initial Building List on the following page.

Building Name	Building Abbreviation	Building Use
Autoclave	Autoclave	Autoclave
Kornberg Medical Research Building	Addodavo	Lab/Research
Del Monte Institute		Lab/Research
Hutchinson Hall	Hutchison	Lab/Classroom/Office
Morey Hall	Morey	Classroom/Office
Danforth Dining Center	Danforth Dining	Dining/Kitchen
New York State Optics	NYS Optics	Office/Lab
School of Medicine and Dentistry Emergency Department	Emergency Dept/PICU	Hospital Hospital
Goergen Hall for Biomedical Engineering and Optics	Lineigency Depty Fico	Classroom/Lab/Office
Taylor Hall	Taylor	Office/Machine Shop
Galisano Childrens Hospital at Strong	GCHaS	Hospital
James P. Wilmot Cancer Center, JWCC		Hospital
Ambulatory Care Facility	Ambulatory Care	Hospital
Meliora Hall	Meliora	Classroom/Office/Vivarium
Strong Memorial Hospital	SMH	Hospital
Gavett Hall	Gavett	Engineering/Offices/Lab/Classroom/Offices
Fredric Douglass Dinning Center, FDC, FDB Rettner Hall	FDB Rettner Hall	Kitchen/Dining/Conf. Rooms Classroom/Office
Wilmot Building	Wilmot	Office/Classroom/Lab/Special Refrigeration Needs
Hoyt Hall	Hoyt	Auditorium/Office
Lattimore Hall	Lattimore	Classroom/Office
Wallis Hall	Wallis	Office
Medical Center Annex	Med Ctr Annex	Office/Lab
Sage Art Gallery	Sage Arts Center	Gallery/Office
Wilson Commons	Wilson Commons	Dining/Commons/Office
Levine Pavilion		Assembly/Conference
Eastman Dental Center	Eastman Dental	Medical
R-Wing	R Wing	Hospital
Interfaith Chapel Hylan Building	Interfaith Chapel Hylan	Assembly/Office Classroom/Office
Computer Studies Building, Carlson Library	Comp Studies/Lib	Library/Classroom/Office/Lab
Genesee Hall	Genesee Hall	Dorm
Rush Rheese Library	Rush Rhees Libr	Library/Office/Classroom
612 Willson Blvd		Office/Maintenance
Theta Chi		Dorm
Sigma Chi		Dorm
Hoeing Hall	Hoeing	Dorm
Hopeman Engineering Building	Hopeman	Engineering/Classroom/Lab/Office
Hill Court	Hill Court	Dorm
Goergen Athletics Center (GAC), Zornow Tiernan Hall	Goergen Gym	Athletics/Gymnasium/Pool/Fieldhouse Dorm
East River Road Medical Building	ERR_MB	Medical
Saunders Research Building	Saunders	Lab/Research
Lovejoy Hall	Lovejoy	Dorm
Burton Hall	Burton	Dorm
Susan B. Anthony Hall	SBA	Dorm
Alpha Delta Phi	ADP Fraternity	Dorm
University Health Services	UHS	Office/Medical
Community Living Center, Quad Annex, Sigma Phi Epsilon	Sig Ep	Dorm
Schlegel Hall (Includes Gleason Wing)	Oversland	Classroom/Office
Crosby Hall	Crosby	Dorm Office (Porm
Hellenwood Hall Harkness Hall	Helen Wood Hall Harkness	Office/Dorm Engineering/Classroom/Lab/Office
Wegmans Hall	Wegmans Hall	Classroom/Office
Dewey Hall	Dewey	Classroom/Office
Gilbert Hall	Gilbert	Dorm
O'Brien Hall	O'Brien	Dorm
Goler House		Apartments
Delta Kappa Epsilon	DKE Fraternity	Dorm
Wilder Hall		Dorm
Access Center	Drama II	Medical/Administration
Drama House	Drama House	Dorm
ouglass Leadership House, Delta Upsilon, Medieval Hous Anderson Hall	Anderson	Dorm Dorm
Strong Auditorium	Strong Auditorium	Assembly
Spurrier Gymnasium	Spurrier	Gymnasium/Classroom/Office
Bausch and Lomb Hall	Bausch & Lomb	Classroom/Lab/Office
Sigma Alpha MU		Dorm
LeChase Hall	LeChase	Classroom/Office
Psi Upsilon	Psi U Fraternity	Dorm
Todd Union	Todd Union	Office/Post Office
Fauver Stadium	Fauver	Office/Sports
University Facilities Center		Offices/Utility

Technical Appendix 5

Photovoltaic System ECM

River Campus Rooftop Solar

- Savings Summary
- Cost Estimate
- Roof Area Maps

Medical Campus Rooftop Solar

- Savings Summary
- Cost Estimate
- Roof Area Maps

South Campus Rooftop Solar

- Savings Summary
- Cost Estimate
- Roof Area Maps

Eastman Campus Rooftop Solar

- Savings Summary
- Cost Estimate
- Roof Area Maps

Technical Appendix 5 - RC

Photovoltaic System ECM

River Campus Rooftop Solar

- Savings Summary
- Cost Estimate
- Roof Area Maps

UNIVERSITY OF ROCHESTER


River Campus Rooftop Solar

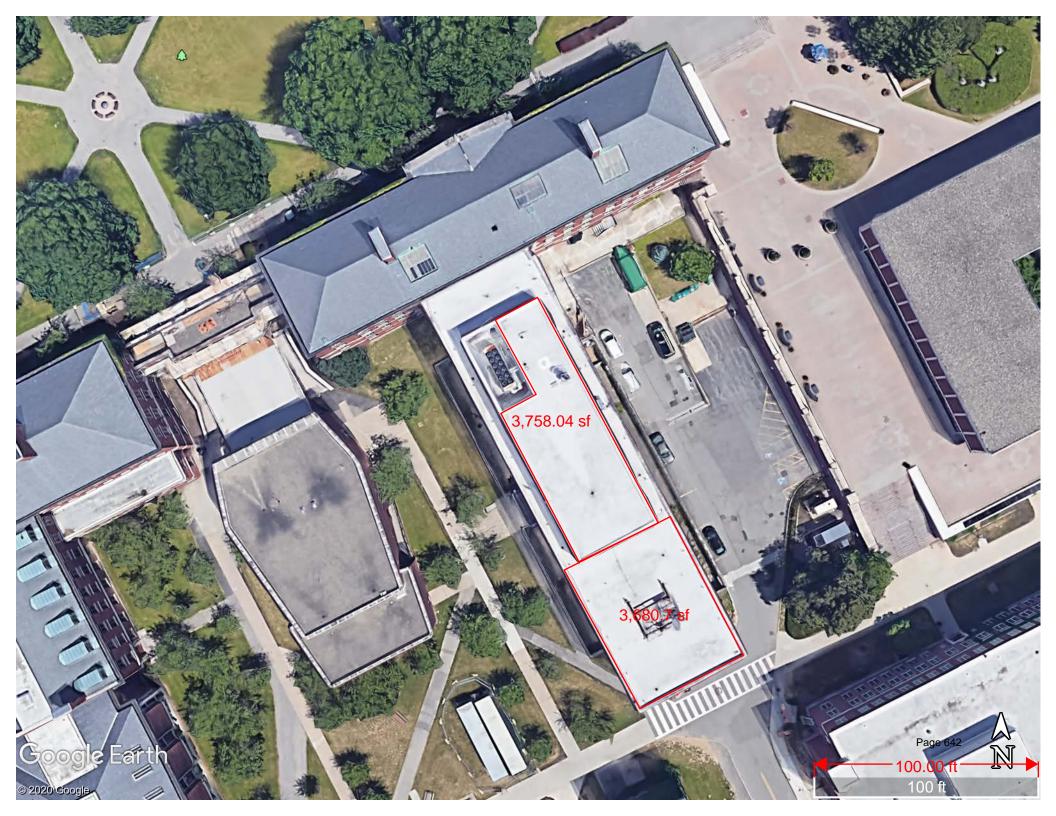
Energy Conservation Measure Summary

Table 1-1

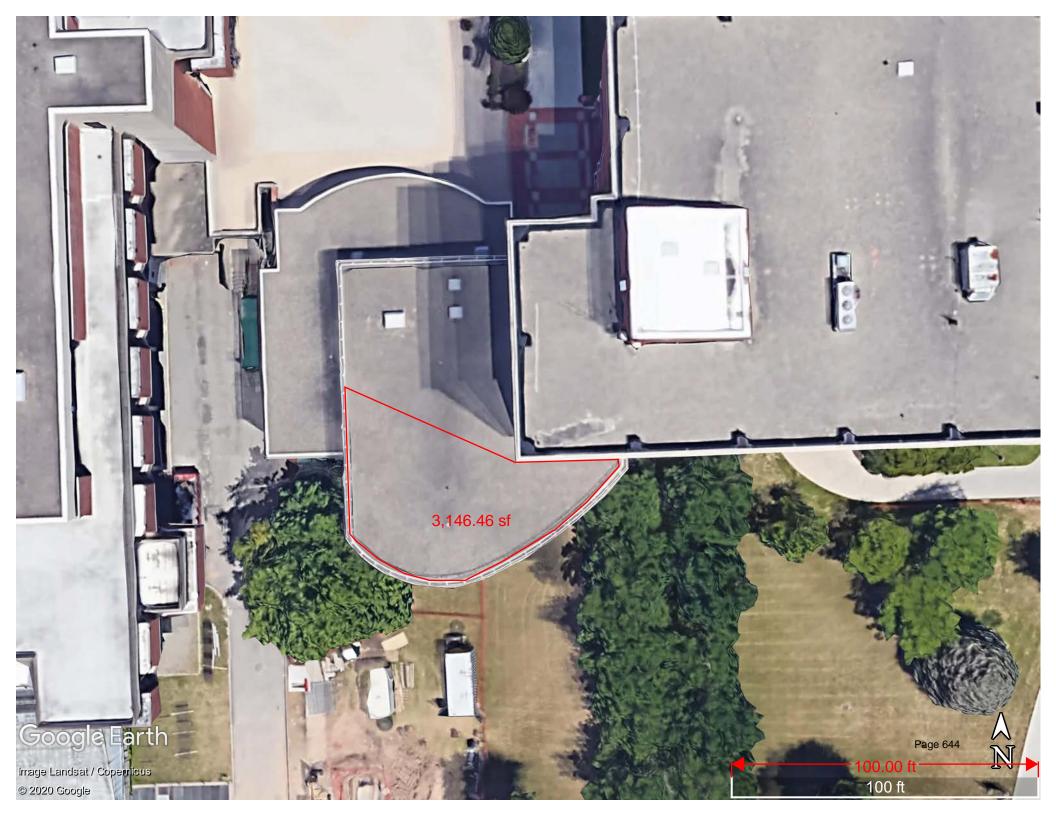
Measure Summary										
Building Level Energy Savings										
Electrical Energy Savings	16,441	mmBtu/Year								
Chilled Water Savings	-	mmBtu/Year								
Steam Savings	-	mmBtu/Year								
Total Energy Savings	16,441	mmBtu/Year								
Building Leve	Building Level Utility Savings									
Electrical Energy Savings	4,818,644	kWh/Year								
Chilled Water Savings	-	Ton-Hour/Year								
Steam Savings	-	klbs/Year								
Water Savings	-	kGal/Year								
Annual O&M Savings (\$)										
Operational & Maintenance Savings	-\$26,406	Per Year								

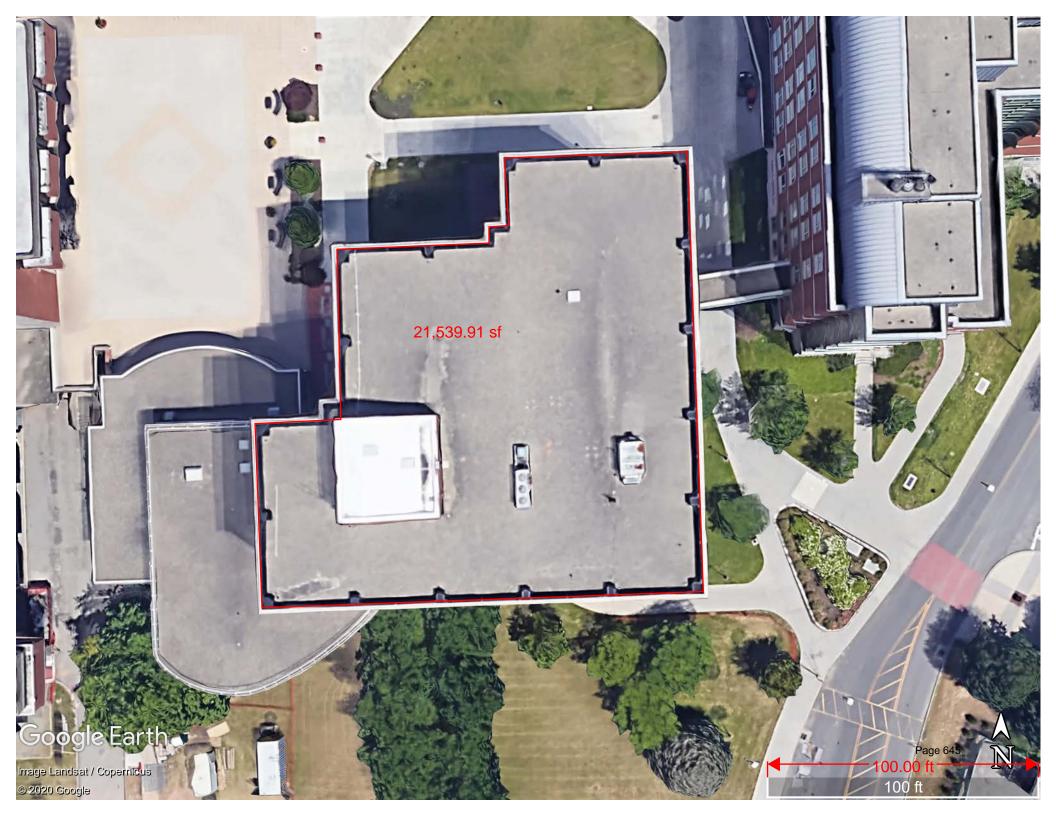
alue Stack Calculator v 2.3, for Projects Impacted by			uei jųu	aiiiieu ai	lei //20/	2010)																
otal project value (\$2019), by YEAR:	tile 2019 Value 3	reacit Of																				
	2019	202	0 202	1 202	2023	2024	2025	2026	2027 2028	2029	2030	2031 20	32 2033	2024	2025	2025	2027	2020	2020	2040	2041	2042
	2019	. 202			2023									2034	2035	2030	2037	2038	2039	2040	2041	
mpensation for exports from solar (\$2019) lue of solar kWh consumed on site (\$2019)	Ş -	\$ -	\$ -		\$ -	\$ - !	5 - \$ \$ 368,606 \$		- \$ - 1.672 \$ 385.329	5 - \$ 5 391.071 \$ 3			ş -						- 5	- 5	\$ - \$	- \$
ue of solar KWn consumed on site (\$2019) Retail rate is taken from User Inputs Row 95	\$ 337,305	\$ 342,331	. \$ 347,43.	2 \$ 352,600	\$ 357,862	\$ 363,194	\$ 368,606 \$	374,098 \$ 379	1,672 \$ 385,329	391,0/1 \$:	396,898 \$ 402	1,812 \$ 408,8	13 \$ 414,905	\$ 421,087	\$ 427,361	433,729	\$ 440,191 \$	446,750 \$	453,407	\$ 460,163	\$ 467,019 \$	\$ 4/3,9/8 \$
mpensation for solar exports from storage (\$2019)	\$ -	s -	s -	s -	s -	s - :	s - s	- s	- s -	s - s	- S	- s -	s -	s - :	s - s	9	- s	- s	- s	5 - 5	s - s	- s
ue of onsite bill reduction from storage (\$2019)	\$ -	\$ -	\$ -	\$ -	\$ -	s - :	s - s	- \$	- \$ -	- \$	- \$	- \$ -	\$ -	\$ - !	s - s	- 9	- \$	- \$	- \$		s - s	· - \$
changes from solar parasitic loads on site, at retail rate (\$2019)	\$ (70)	\$ (71) S (7:	3) S (74) S (76)	S (77)	S (79) S	(80) S	(82) \$ (84)	(85) S	(87) S	(89) \$ (9	1) S (92)	S (94)	S (96) S	(98)	S (100) S	(102) 5	(104) 5	\$ (106)	S (108) S	S (110) S
Total value of energy produced	\$ 337,235	\$ 342,260	\$ 347.35	9 \$ 352.534	\$ 357,787	\$ 363,117	S 368,527 S	374.018 S 379	.590 \$ 385.246	390,986 S 3	396.811 \$ 402.	.723 \$ 408.72	3 \$ 414.812	\$ 420,993	\$ 427.265	433,631	S 440.091 S	446,648 S	453,303	\$ 460.056	\$ 466,911 \$	\$ 473,867 \$
TAL PROJECT VALUE (\$2019 / kWh), BY YEAR:																						
TAL PROJECT VALUE (\$2019 / KWh), BY YEAR:	2019	202	0 202	1 202	2 2023	2024	2025	2026	2027 2028	2029	2030	2031 20	32 2033	2034	2035	2036	2037	2038	2039	2040	2041	2042
	2019 -	202	0 202	1 202	2 2023	2024	2025	2026	2027 2028	2029	2030	2031 20	32 2033	2034	2035	2036	2037	2038	2039	2040	2041	2042
r generation immediately exported by solar system (kWh)	2019 - 4,818,644	2020 - 4,794,551	-	-	-	2024 - 4,699,377		-	2027 2028 3,238 4,606,092	-	2030 : 560,146 4,537	-	-	2034 - 4,469,625	2035 - 4,447,277	-	-	-	-	-	-	2042 - 4,293,938 4
r generation immediately exported by solar system (kWh) itle consumption served by solar (kWh) its parastic load during hours with no solar generation (kWh)	-	-	4,770,57	9 4,746,72	4,722,992	-		,652,501 4,629		-	- 560,146 4,537		9 4,492,086	2034 - 4,469,625 1,000	2035 - 4,447,277 1,000	-	-	-	-	-	-	-
r generation immediately exported by solar system (kWh) like consumption served by solar (kWh) like parasitic load during hours with no solar generation (kWh) harage from storage exported to the girld (kWh)	4,818,644	4,794,551	4,770,57	9 4,746,72	4,722,992	4,699,377	4,675,880 4,	,652,501 4,629	 9,238 4,606,092	4,583,062 4,5	- 560,146 4,537	7,346 4,514,6	9 4,492,086	4,469,625	4,447,277	4,425,041	4,402,915	1,380,901	4,358,996	4,337,201	4,315,515	4,293,938 4
generation immediately exported by solar system (kWh) to consumption served by solar (kWh) to parasitic load during hours with no solar generation (kWh) arge from storage exported to the grid (kWh)	4,818,644	4,794,551	4,770,57	9 4,746,72	4,722,992	4,699,377	4,675,880 4,	,652,501 4,629	 9,238 4,606,092	4,583,062 4,5	- 560,146 4,537	7,346 4,514,6	9 4,492,086	4,469,625	4,447,277	4,425,041	4,402,915	1,380,901	4,358,996	4,337,201	4,315,515	4,293,938 4
generation immediately exported by solar system (kWh) to consumption served by solar (kWh) to consumption served by solar (kWh) the parasitic load during hours with no solar generation (kWh) (kWh) garge from storage exported to the grid (kWh) arge from storage consumed by building load (kWh)	4,818,644	4,794,551	4,770,57	9 4,746,72	4,722,992	4,699,377	4,675,880 4,	,652,501 4,629 1,000 1	 9,238 4,606,092	4,583,062 4,5	560,146 4,537 1,000 1,	7,346 4,514,6	59 4,492,086 00 1,000 -	4,469,625 1,000	4,447,277 1,000	4,425,041 1,000 -	4,402,915 1,000 -	1,380,901	4,358,996 1,000	4,337,201	4,315,515 1,000	4,293,938 4
generation immediately exported by solar system (KWh) the consumption served by solar (KWh) the parasitic load during hours with no solar generation (KWh) targer from storage exported to the grid (KWh) arger from storage consumed by building load (KWh) compensation for exports from solar (\$2.013/KWh) compensation for exports from solar (\$2.013/KWh)	4,818,644 1,000 - - \$ -	4,794,551 1,000 - - - -	4,770,57 1,000	9 4,746,72 0 1,000 - -	4,722,992 1,000 - - -	4,699,377 1,000 - -	4,675,880 4, 1,000 -	,652,501 4,629 1,000 1 - -	3,238 4,606,092 ,000 1,000	4,583,062 4,5 1,000 - - \$	560,146 4,537 1,000 1,	7,346 4,514,6: 1,000 1,00 	59 4,492,086 00 1,000 - - \$ -	4,469,625 1,000 - -	4,447,277 1,000 - - - \$ - \$	4,425,041 1,000 - -	4,402,915 1,000 - - -	1,380,901 1,000 - - - - \$	4,358,996 1,000 - - - - - - \$	4,337,201 1,000 - -	4,315,515 1,000 - - - -	4,293,938 4 1,000 - - - - - - \$
r generation immediately exported by solar system (kWh) ite consumption served by solar (kWh) ite consumption served by solar (kWh) harge from storage exported to the gird (kWh) harge from storage consumed by building load (kWh) Compensation for exports from solar (\$2019/kWh) Value of Joshr kWh consumed on site (\$2019/kWh) Regal late is take from lose inpost from so	4,818,644 1,000 - - \$ -	4,794,551 1,000 - - \$ - \$ 0.0714	\$ - \$ 0.072	9 4,746,72: 0 1,000 - - \$ - 8 \$ 0.074:	4,722,992 1,000 - - -	4,699,377 1,000 - -	4,675,880 4, 1,000 - - -	.652,501 4,629 1,000 1 - - - \$ 0.0804 \$ 0.0	9,238 4,606,092 1,000 1,000 	4,583,062 4,5 1,000 - - \$	560,146 4,537 1,000 1,	7,346 4,514,6 1,000 1,00 - \$ - 0888 \$ 0.090	59 4,492,086 30 1,000 - - \$ - 16 \$ 0.0924	4,469,625 1,000 - - \$ - \$ 0.0942	4,447,277 1,000 - - \$ - \$ \$ 0.0961	4,425,041 1,000 - - - 5 - \$	4,402,915 4 1,000 - - 5 - \$ \$ 0.1000 \$	1,380,901 1,000 - - - - \$	4,358,996 1,000 - - - - - - \$	4,337,201 1,000 - -	4,315,515 1,000 - - - -	4,293,938 4 1,000 - - - - - - \$
or generation immediately exported by solar system (kWh) site consumption served by solar (kWh) site parasitic load during hours with no solar generation (kWh) harge from storage exported to the grid (kWh) harge from storage exported to the grid (kWh) harge from storage consumed by building load (kWh) Compensation for exports from solar (\$2019/kWh) Value of solar kWh consumed on site (\$2019/kWh) Retal sites it ken from User hipsit. Row 95 Compensation for solar exports from storage (\$2019/kWh)	4,818,644 1,000 - - \$ - \$ 0.0700	4,794,551 1,000 - - \$ - \$ 0.0714	\$ - \$ 0.072	9 4,746,72 0 1,000 	4,722,992 1,000 - - \$ - \$ 0.0758	4,699,377 1,000 - - \$ - \$ 0.0773	4,675,880 4, 1,000 - - - 5 - \$ \$ 0.0788 \$.652,501 4,629 1,000 1 \$ 0.0804 \$ 0.0	0,238 4,606,092 ,,000 1,000 - \$ - 0820 \$ 0.0837	4,583,062 4,5 1,000	560,146 4,537 1,000 1, \$ 0.0870 \$ 0.0	7,346 4,514,6: 1,000 1,00 0888 \$ 0.090	59 4,492,086 30 1,000 - - \$ - 16 \$ 0.0924	4,469,625 1,000 - \$ - \$ 0.0942 \$ -	4,447,277 1,000 - - \$ - \$ \$ 0.0961	4,425,041 1,000 - - - - - - - - - - - - - - - - - -	4,402,915 4 1,000 - - 5 - \$ \$ 0.1000 \$	1,380,901 1,000 - - - - \$	4,358,996 1,000 - - - - - - - - 5 0.1040 \$	4,337,201 1,000 - 5 - \$ \$ 0.1061 \$	4,315,515 1,000 - - \$ - \$ \$ 0.1082 \$	4,293,938 4 1,000 - - - - - - \$
TAL PROJECT VALUE (\$2019 / kWh), BY YEAR: ar generation immediately exported by solar system (kWh) -the parasitic load during hours with no solar generation (kWh) -the parasitic load during hours with no solar generation (kWh) -tharge from storage exported to the gird (kWh) -tharge from storage exported 10 the gird (kWh) -tharge from storage consumed by building load (kWh) -tharge from storage consumed by building load (kWh) -tharge from storage consumed to see the solar so	4,818,644 1,000 - - \$ - \$ 0.0700	4,794,551 1,000 - - \$ - \$ 0.0714 \$ - \$ -	\$ - \$ 0.0721	9 4,746,721 0 1,000 	4,722,992 1,000 - - - \$ 0.0758	4,699,377 1,000 - - \$ - : \$ 0.0773	4,675,880 4, 1,000 - - - \$ - \$ \$ 0.0788 \$.652,501 4,629 1,000 1 \$ 0.0804 \$ 0.0	2,238 4,606,092 ,000 1,000 	4,583,062 4,1 1,000	- 4,537 1,000 1, - 5 0.0870 \$ 0.0	7,346 4,514,6: 1,000 1,00 	59 4,492,086 00 1,000 - - - 5 5 - 06 \$ 0.0924 \$ - \$ -	4,469,625 1,000 - - \$ 0.0942 \$ -	4,447,277 1,000 - - - \$ - \$ \$ 0.0961	4,425,041 1,000 - - - - - - - - - - - - - - - - - -	4,402,915 4 1,000 - - - 5 - \$ \$ 0.1000 \$	1,380,901 1,000 - - - - \$ 0.1020 \$	4,358,996 1,000 - - - - 5 0.1040 \$	4,337,201 1,000 - - 5 - \$ \$ 0.1061 \$	4,315,515 4,1000	4,293,938 4 1,000 - - - 5 - \$ \$ 0.1104 \$

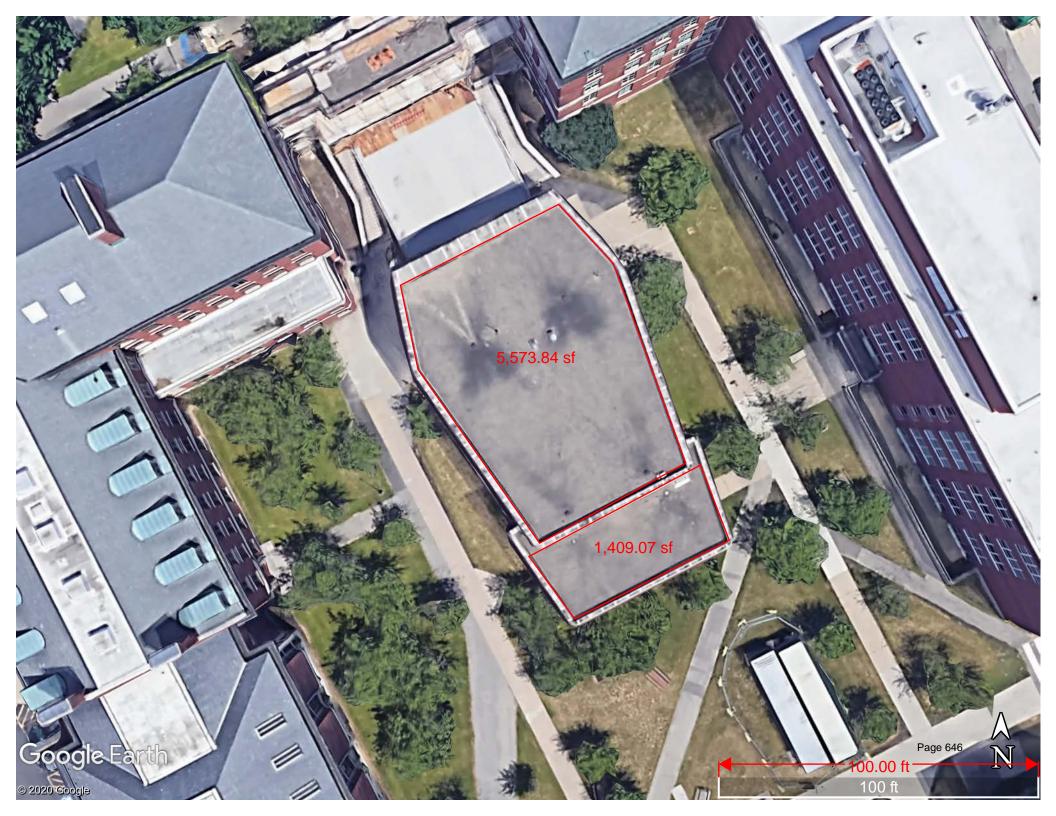
MATERIAL & LABOR COST ESTIMATE

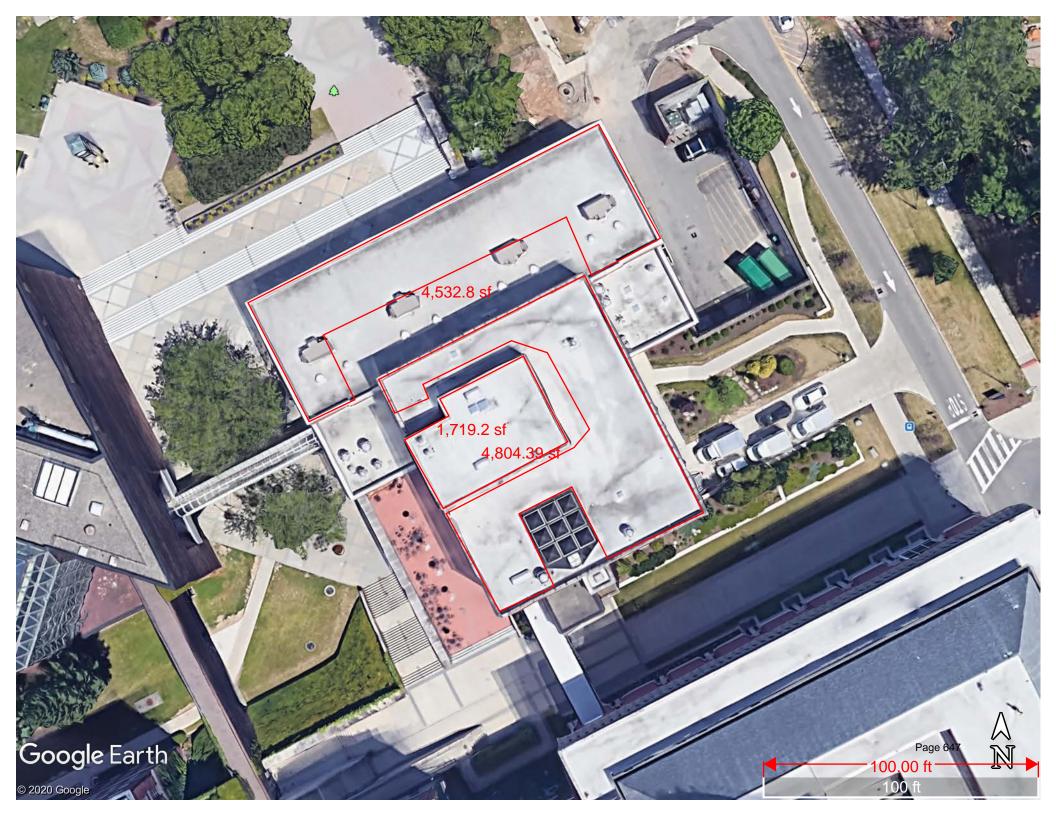

Project: University of Rochester Project #: 402805 Measure: Rooftop Solar River Campus Date: 04/01/21

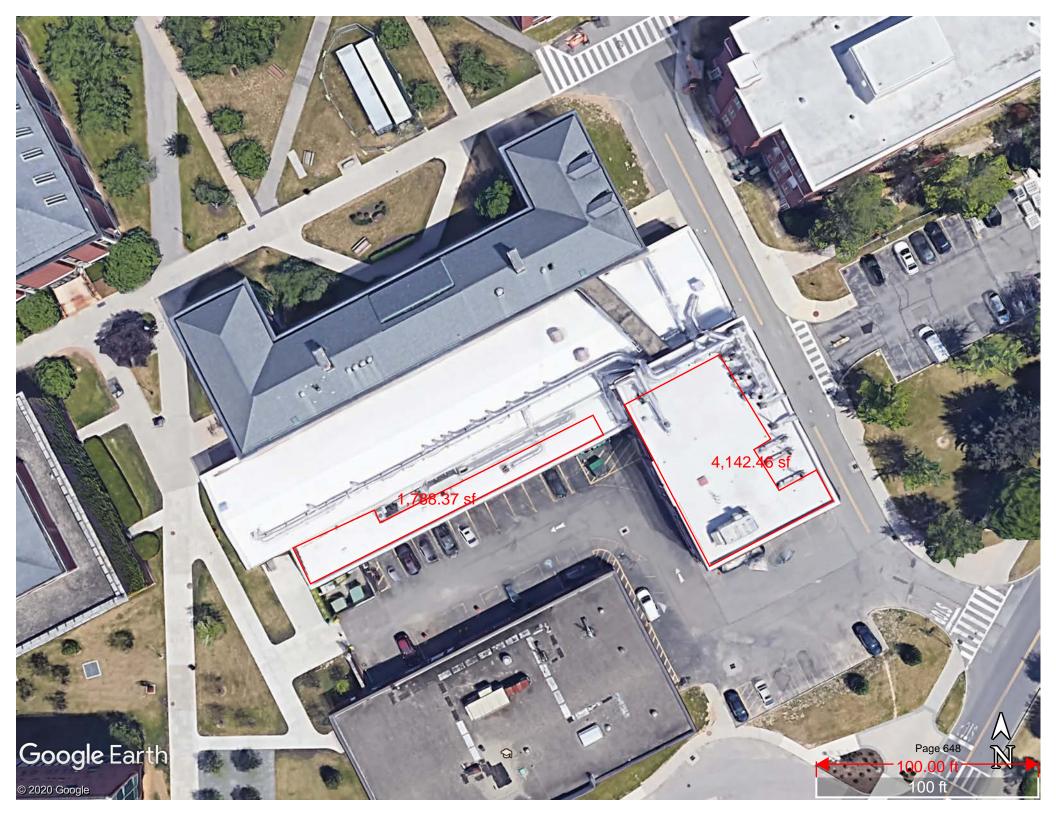
Estimated by: SDM Checked by: Approved by:

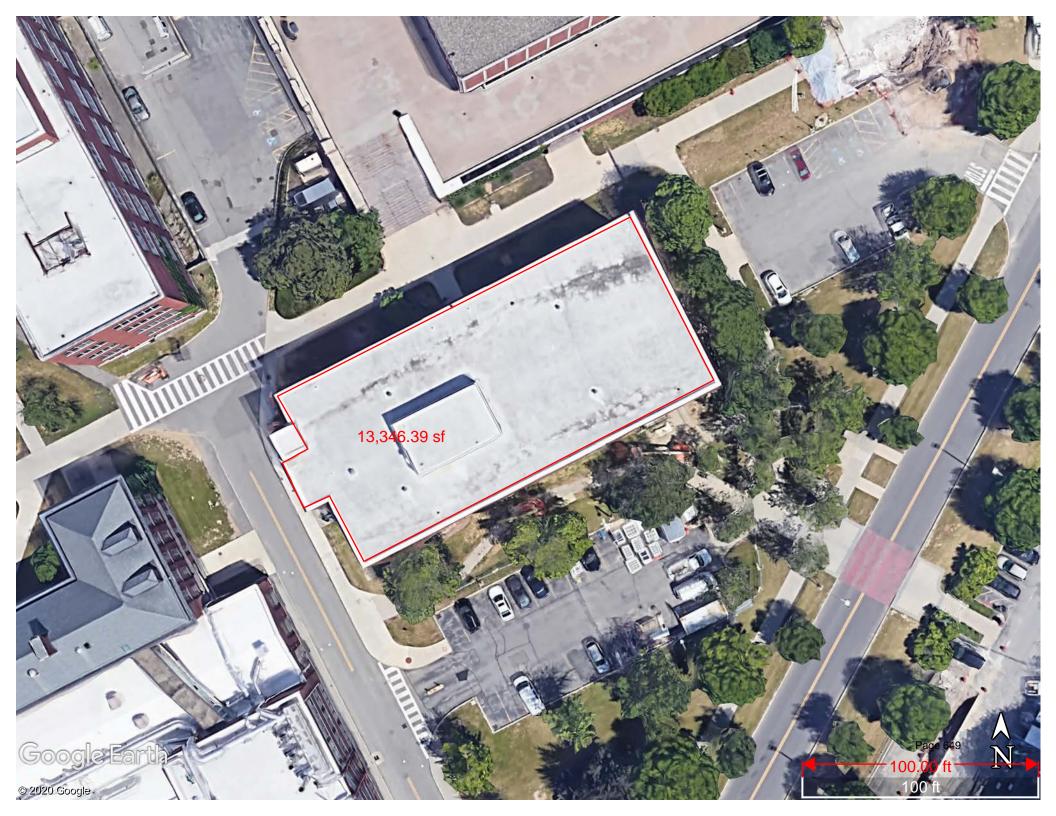

File: Cost Estimate

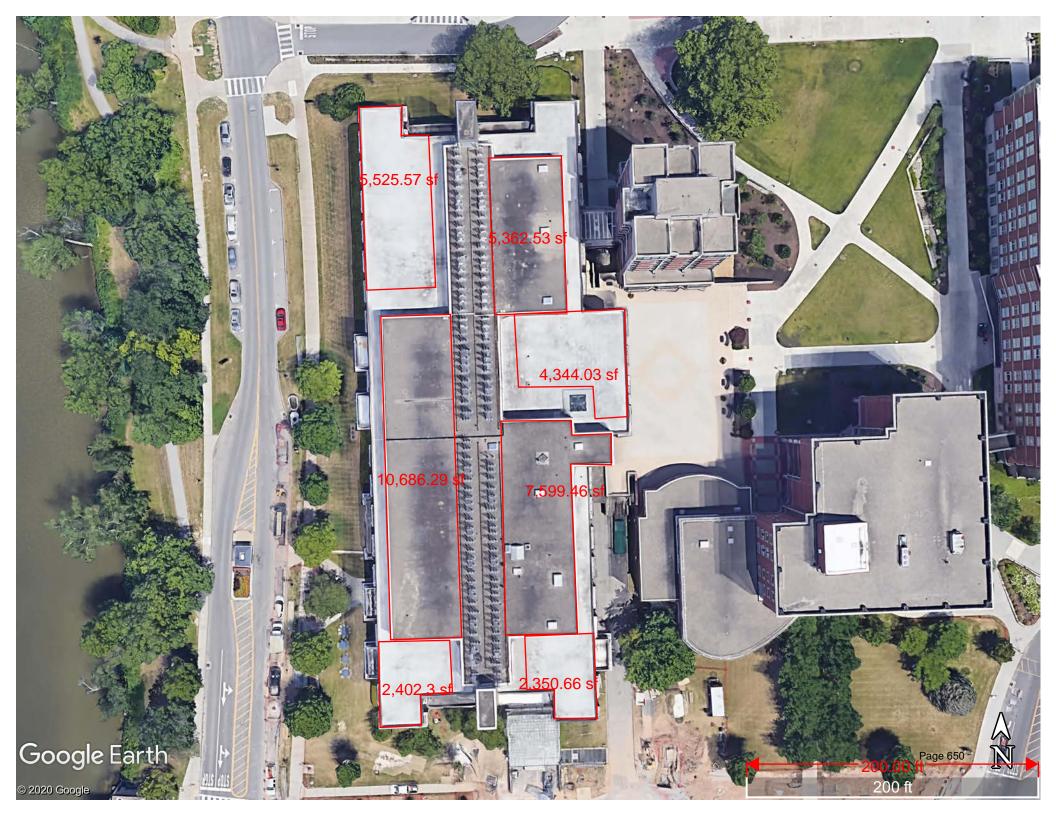

Item	B	0.		Mate	erial		Labor		Total Cost
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total		Labor & Material
1	Solar Array	1	3,904	\$1,140.00	\$4,450,884	\$760.00	\$2,967,256		\$7,418,139.85
	NY Megawatt Block Rebate	1	3,904	(\$130.00)	(\$507,557)				(\$507,556.94)
			1						
			-						
			SUBTOTALS:	Materials:	\$3,943,327	Labor:	\$2,967,256		\$6,910,582.91
					•	Asbest	os Abatement Cost:		\$0.00
							TOTAL:		\$6,910,582.91
	_		•			•	<u> </u>		
							ONSTRUCTION COST:		\$6,910,582.91
				Engineerin	ng, Commissioning	, Project & Constr	uction Management:	15%	\$1,036,587.44
							SUBTOTAL:		\$7,947,170.35
							TOTAL:		\$7,947,170.35

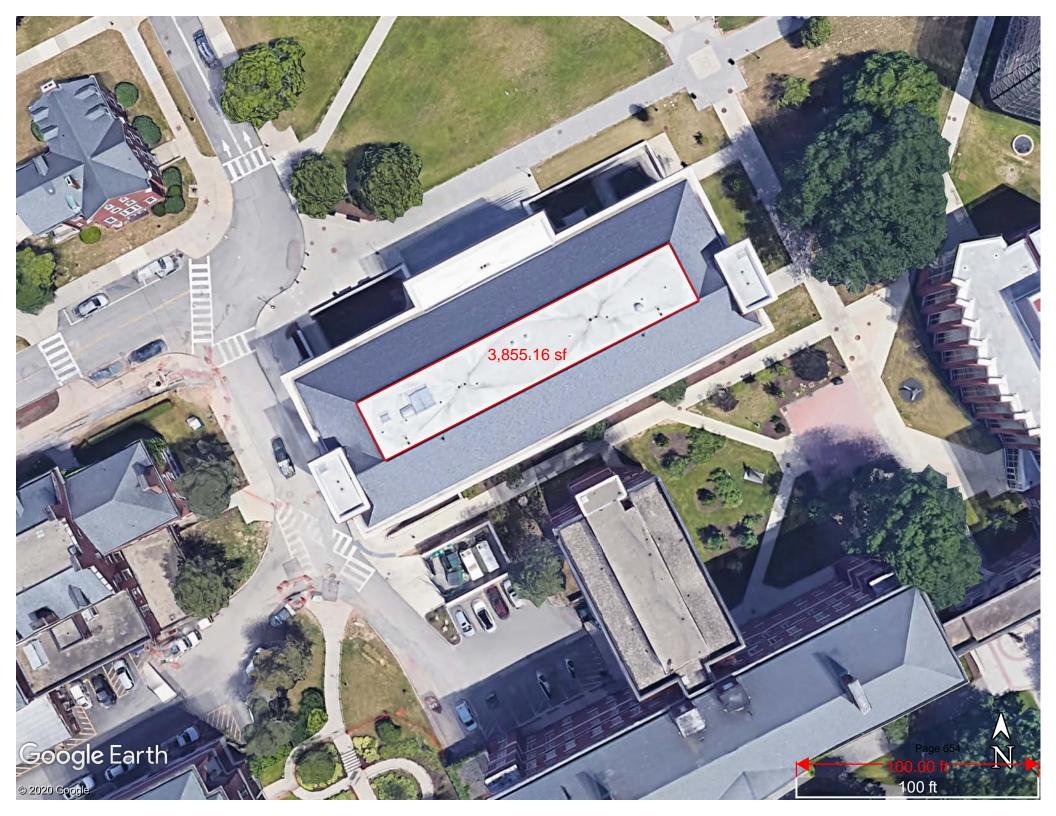


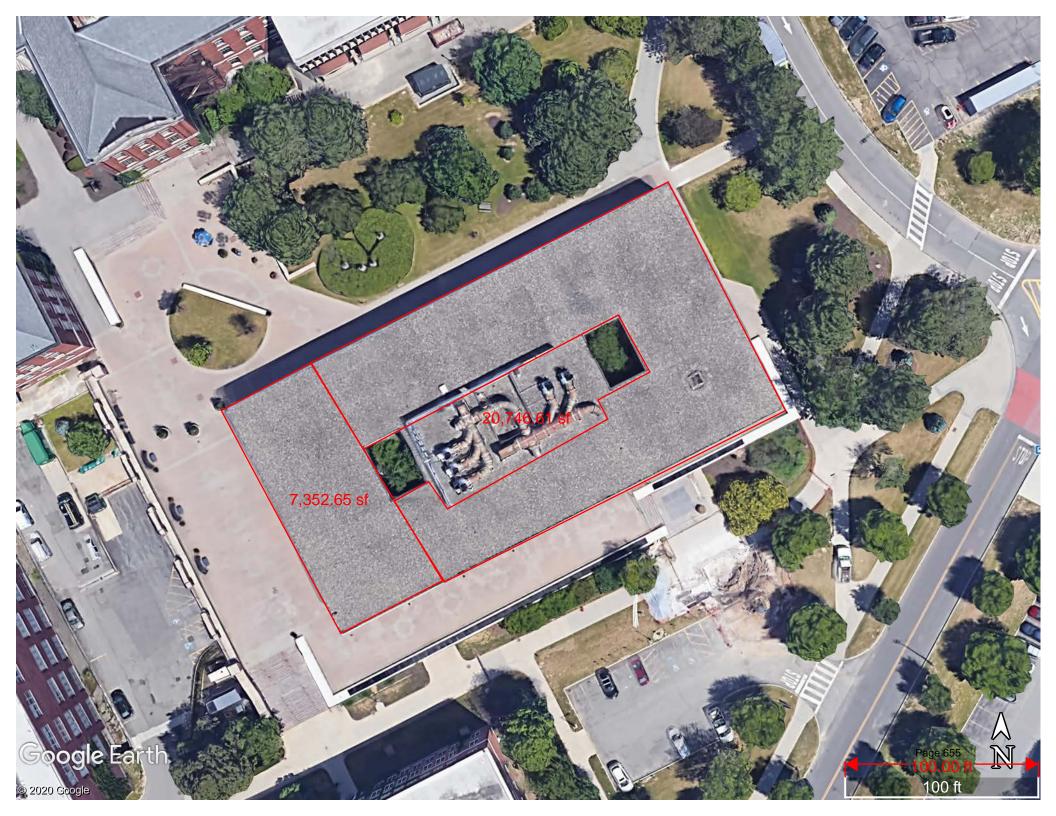


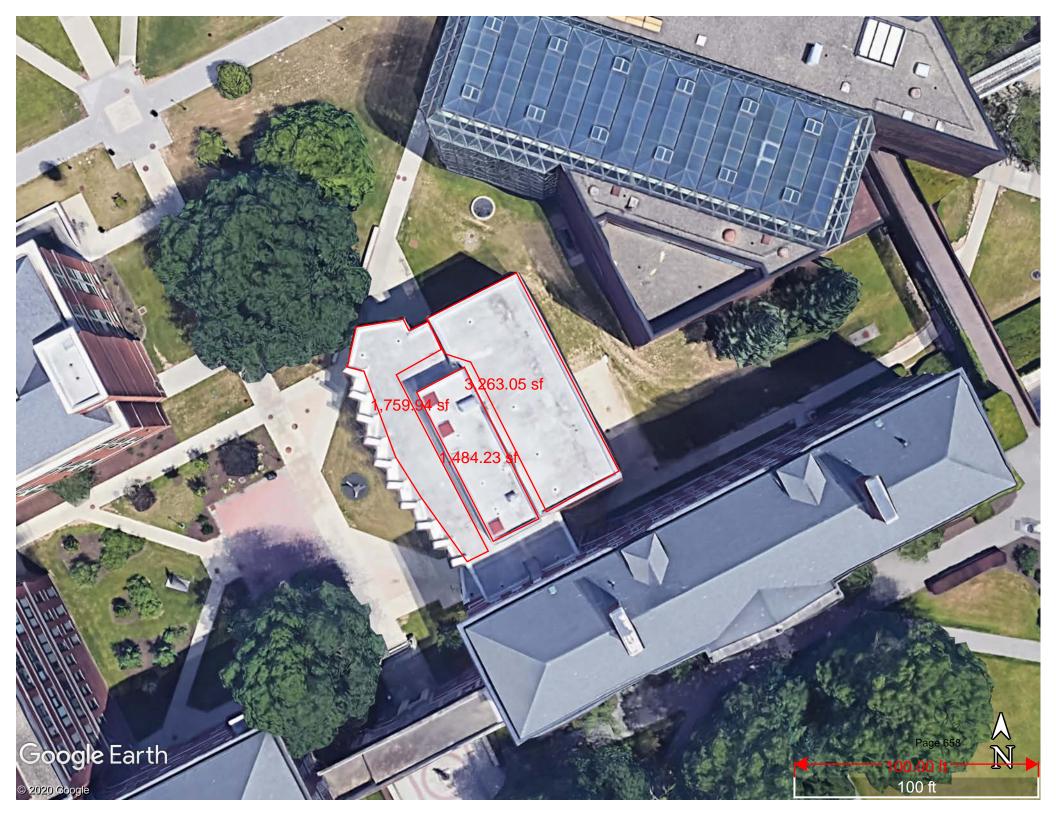


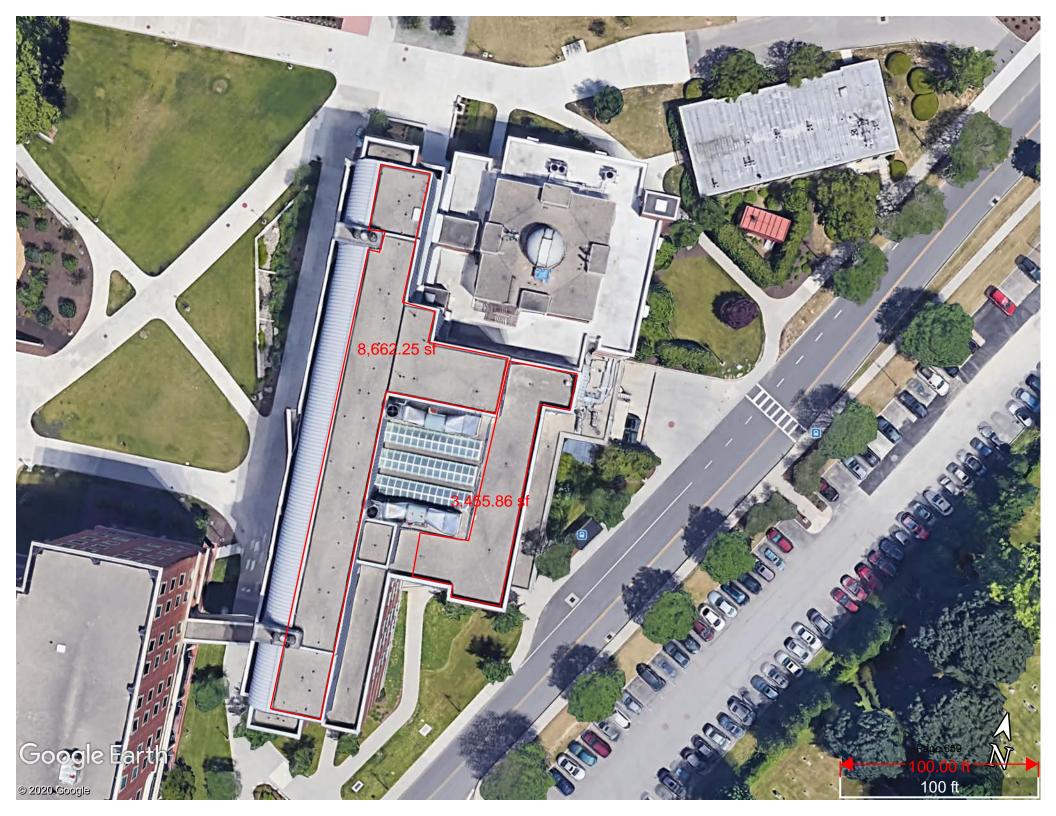




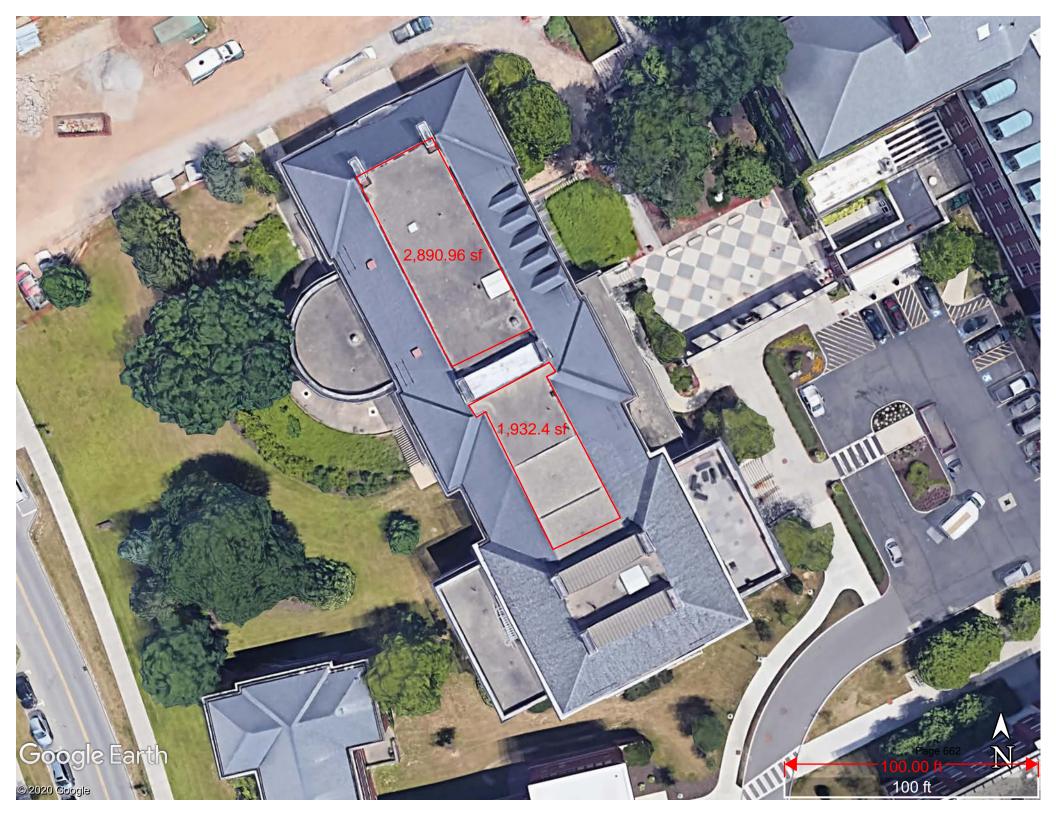




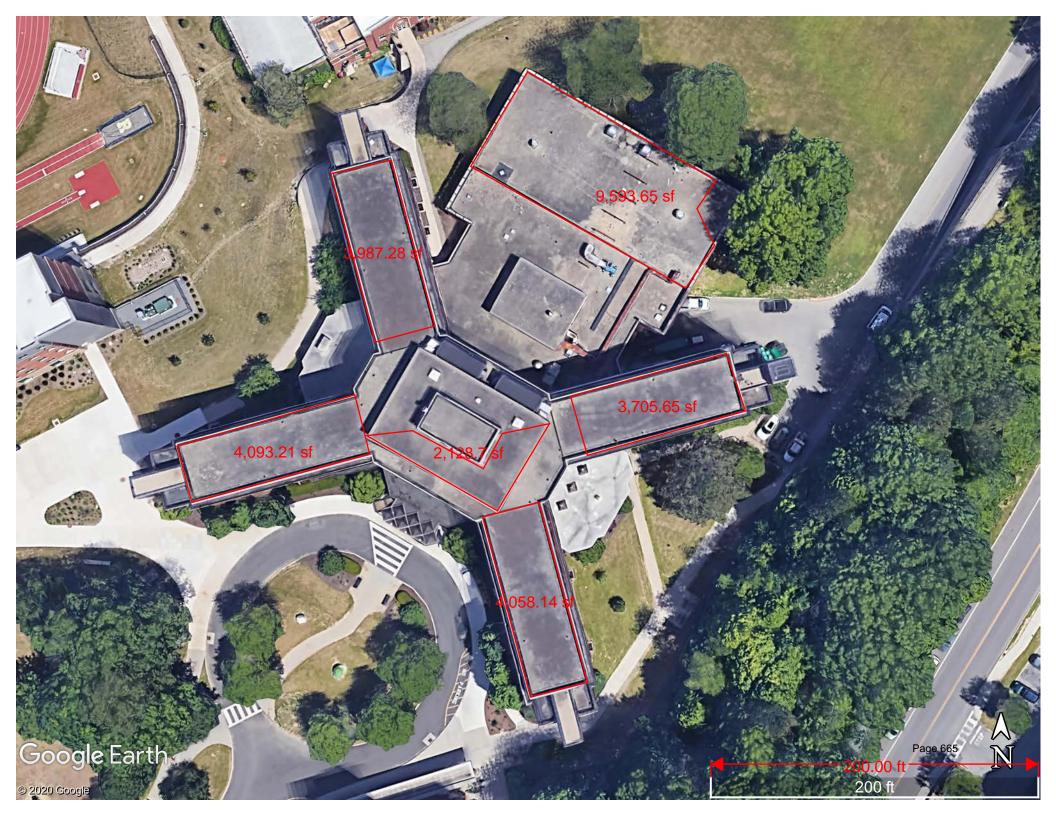


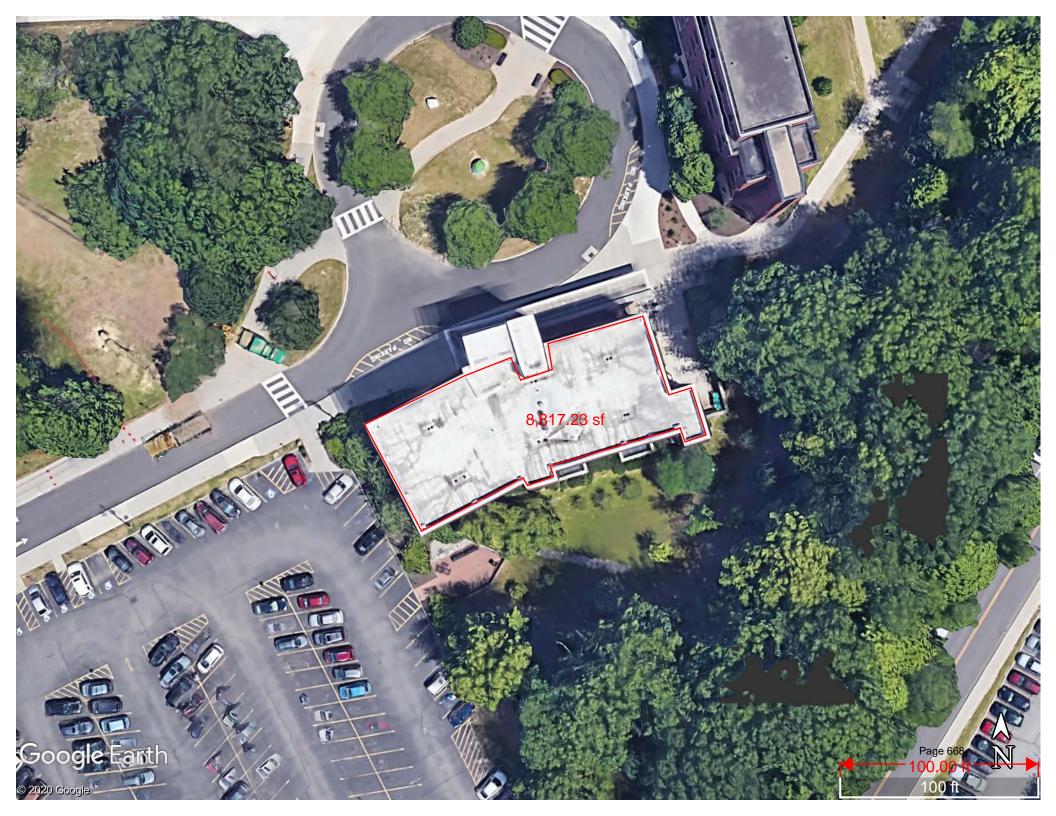


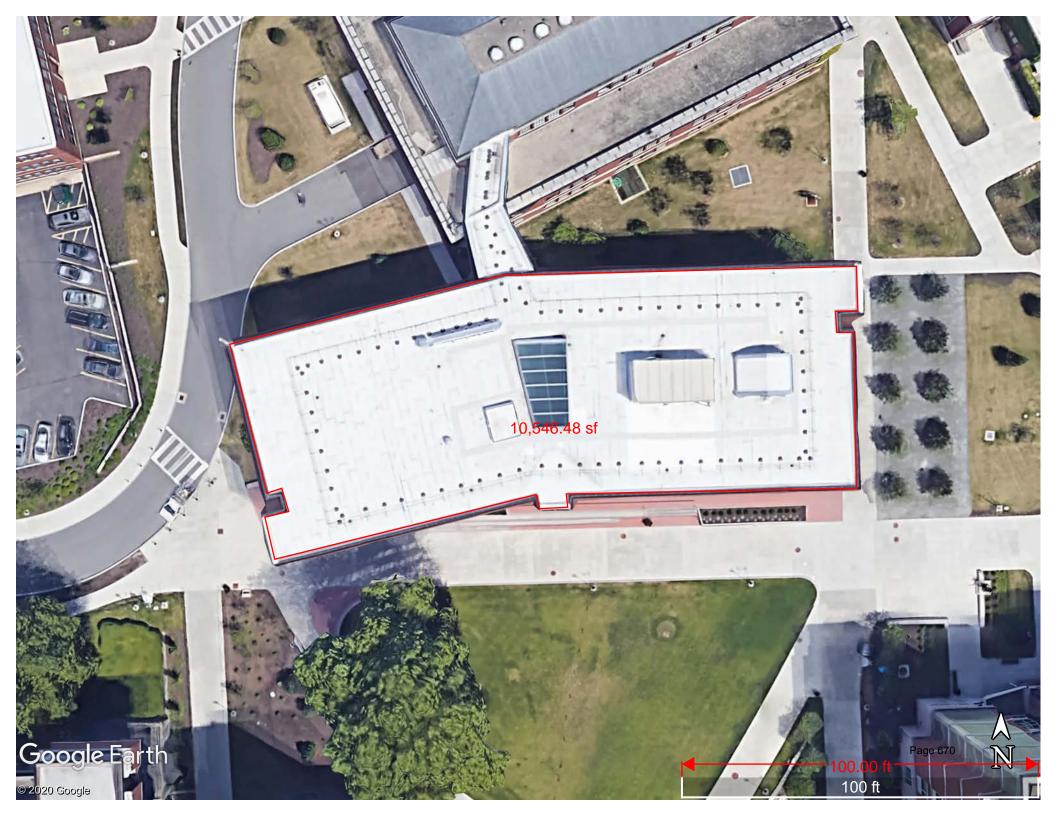


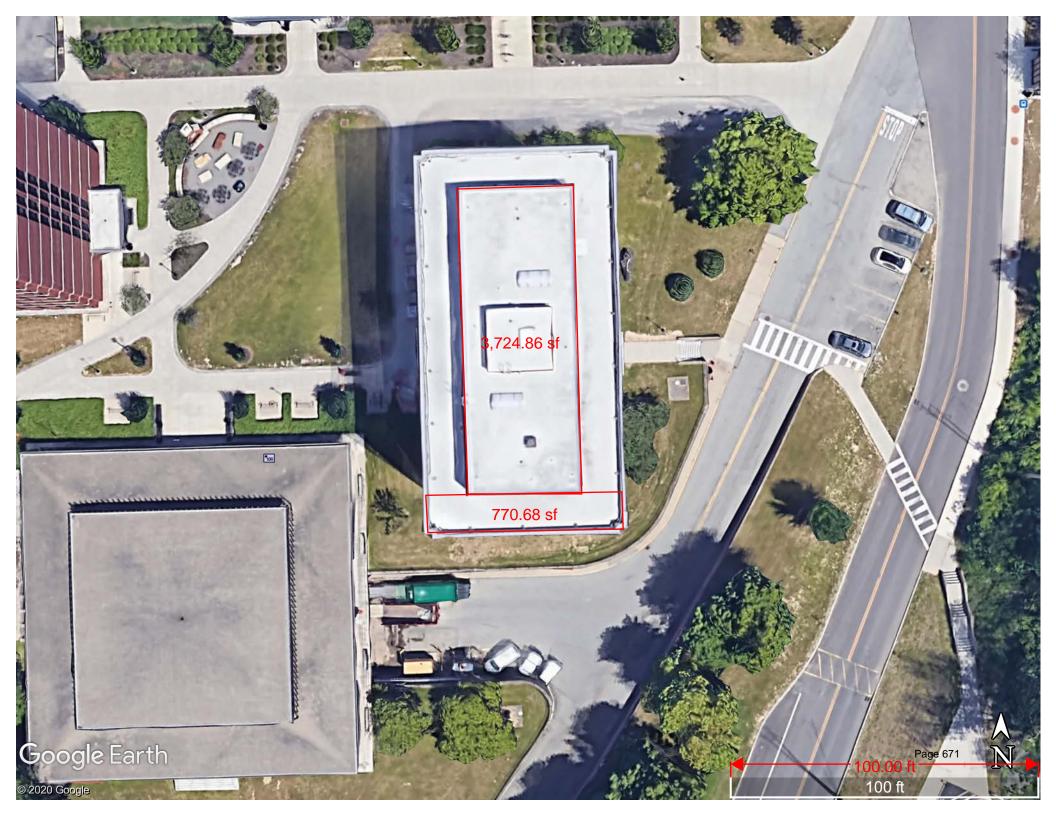


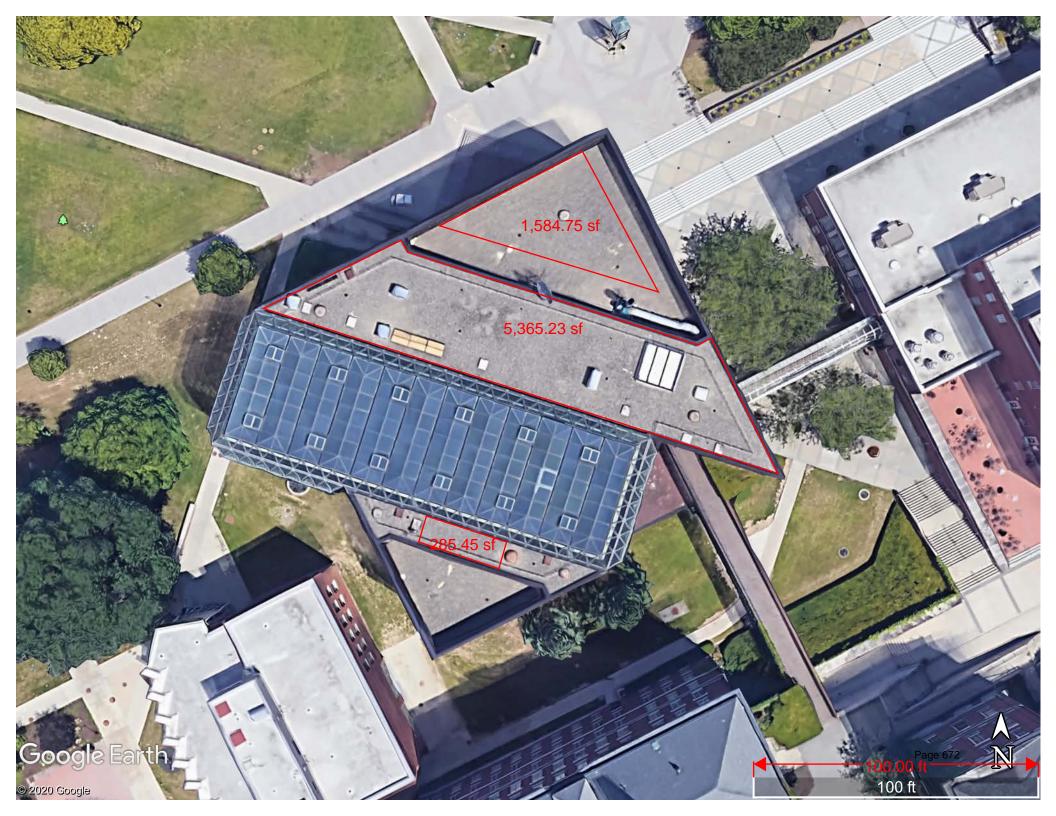












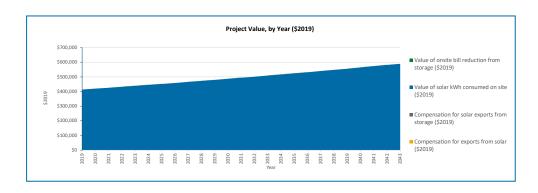
Technical Appendix 5 - MC

Photovoltaic System ECM

Medical Campus Rooftop Solar

- Savings Summary
- Cost Estimate
- Roof Area Maps

UNIVERSITY OF ROCHESTER


Medical Campus Rooftop Solar

Energy Conservation Measure Summary

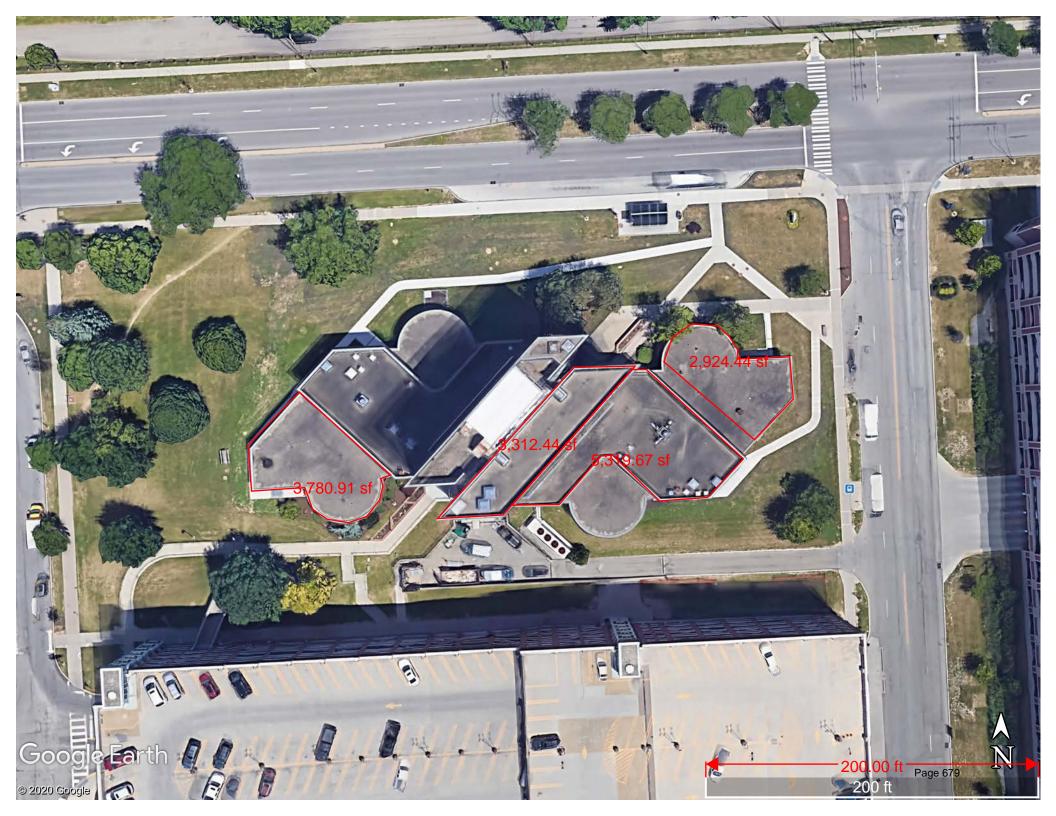
Table 1-1

Measure Summary											
Building Level Energy Savings											
Electrical Energy Savings	20,150	mmBtu/Year									
Chilled Water Savings	-	mmBtu/Year									
Steam Savings	-	mmBtu/Year									
Total Energy Savings	20,150	mmBtu/Year									
Building Level Utility Savings											
Electrical Energy Savings	5,905,583	kWh/Year									
Chilled Water Savings	-	Ton-Hour/Year									
Steam Savings	-	klbs/Year									
Water Savings	-	kGal/Year									
Annual O&M Savings (\$)											
Operational & Maintenance Savings -\$32,362 Per Year											

Value Steels Calculators 2.2. for Ducinete Immedial his	Aha 2010 Value	Charle Ove	las (Ouali	fied ofte	* 7 /2C /2	010)																			
Value Stack Calculator v 2.3, for Projects Impacted by TOTAL PROJECT VALUE (\$2019), BY YEAR:	the 2019 value	Stack Ore	ier (Quai	illed afte	1 //20/2	010)																			
(
	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043
Compensation for exports from solar (\$2019)	\$ -	\$ -	\$ -	\$ - \$	- :	\$ - !	\$ - \$	- :	- \$	- \$	- \$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Value of solar kWh consumed on site (\$2019) Retail rate is taken from User Inputs Row 95	\$ 413,391	\$ 419,550	\$ 425,802	\$ 432,146	\$ 438,585	\$ 445,120	\$ 451,752 \$	458,483	\$ 465,315	472,248 \$	479,284 \$	486,426	\$ 493,674	\$ 501,029	\$ 508,495	\$ 516,071	\$ 523,761	\$ 531,565	\$ 539,485	\$ 547,523	\$ 555,681	\$ 563,961	\$ 572,364	\$ 580,892	\$ 589,548
Compensation for solar exports from storage (\$2019)	\$ -	\$ -	\$ -	s - s	:	s - :	s - s	- :		- 9	9	-	\$ -	\$ -	ş -	\$ -	s -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	s -
Value of onsite bill reduction from storage (\$2019)	\$ -	\$ -	\$ -	\$ - \$	- :	\$ - !	\$ - \$	- :	- 5	- 9	- 9	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Bill changes from solar parasitic loads on site, at retail rate (\$2019)	\$ (70)						\$ (79) \$	(80)	(82) \$	(84) \$	(85) \$	(87)		\$ (91)	\$ (92)	\$ (94)	\$ (96)				\$ (104)				\$ (113)
Total value of energy produced	\$ 413,321	\$ 419,479	\$ 425,729	\$ 432,072	438,509	\$ 445,043	\$ 451,673 \$	458,403	\$ 465,233	472,164 \$	479,199 \$	486,339	\$ 493,585	\$ 500,939	\$ 508,402	\$ 515,977	\$ 523,665	\$ 531,467	\$ 539,385	\$ 547,421	\$ 555,577	\$ 563,855	\$ 572,256	\$ 580,782	\$ 589,435
TOTAL PROJECT VALUE (\$2019 / kWh), BY YEAR:																									
	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043
Solar generation immediately exported by solar system (kWh)							-					_	_	_	_	_	-	-		-	-				
On-site consumption served by solar (kWh)	5,905,583	5,876,056	5,846,675	5,817,442	5,788,355	5,759,413	5,730,616	5,701,963	5,673,453	5,645,086	5,616,860	5,588,776	5,560,832	5,533,028	5,505,363	5,477,836	5,450,447	5,423,195	5,396,079	5,369,098	5,342,253	5,315,541	5,288,964	5,262,519	5,236,206
On-site parasitic load during hours with no solar generation (kWh)	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Discharge from storage exported to the grid (kWh)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Discharge from storage consumed by building load (kWh)		-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-
Avg Compensation for exports from solar (\$2019/kWh)	\$ -	s -	s -	s - s	- :	s - :	s - s	- 3		- 9		-	s -	s -	s -	s -	s -	s -	s -	s -	s -	s -	s -	s -	s -
Avg Value of solar kWh consumed on site (\$2019/kWh)	\$ 0.0700	\$ 0.0714	\$ 0.0728	\$ 0.0743	\$ 0.0758	\$ 0.0773	\$ 0.0788 \$	0.0804	\$ 0.0820	0.0837 \$	0.0853 \$	0.0870	\$ 0.0888	\$ 0.0906	\$ 0.0924	\$ 0.0942	\$ 0.0961	\$ 0.0980	\$ 0.1000	\$ 0.1020	\$ 0.1040	\$ 0.1061	\$ 0.1082	\$ 0.1104	\$ 0.1126
Retail rate is taken from User Inputs Row 95																									
Avg Compensation for solar exports from storage (\$2019/kWh)				< . <	:	\$ - '							¢ .	¢ .	¢ .	¢ .	ς -	¢ .	٠.	ć				¢ .	ς -
	3 -	ş -		1 1			1 1						1	7	7	ĭ	I	ĭ	I	-	-	\$ -	5 -	1	I
Avg Value of onsite bill reduction from storage (\$2019/kWh)	\$ - \$ -	\$ -	\$ -	\$ - \$	- (0.0759)	\$ - !	\$ - \$	- (0.0904)	5 - 5	- 5	- S	- (0.0970)	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Avg Value of onsite bill reduction from storage (\$2019/kWh) Avg Bill changes from solar parasitic loads on site, at retail rate (\$2019/kWh) Average Project Value, \$2019 per kWh	\$ - \$ (0.0700)	\$ - \$ (0.0714)	\$ - \$ (0.0728)	\$ - \$ \$ (0.0743) \$	(0.0758)	\$ - \$ (0.0773)	\$ - \$ \$ (0.0788) \$	(0.0804)	(0.0820)	(0.0837)	(0.0853) S	(0.0870)	+ (=====)	+ ()	\$ (0.0924)	\$ - \$ (0.0942) \$ -	,	,	\$ - \$ (0.1000) \$ -		\$ - \$ (0.1040) \$ -	, , , , , ,	,	\$ - \$ (0.1104)	\$ - \$ (0.1126) \$ -

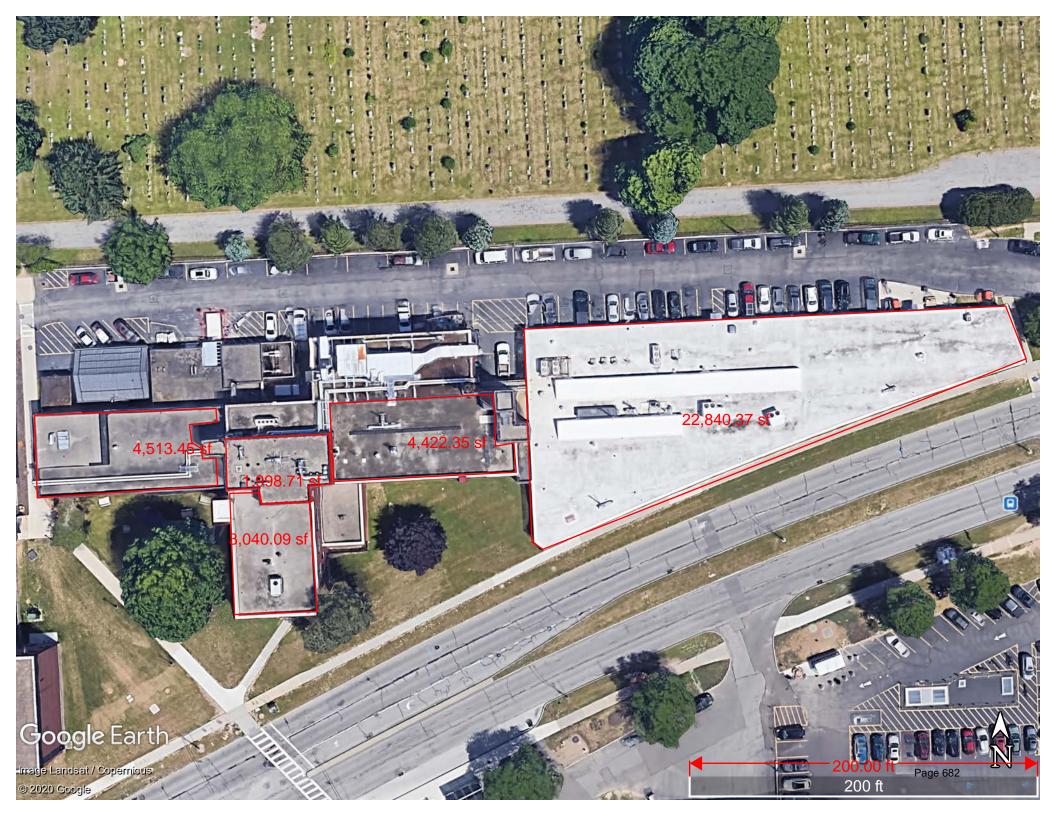
MATERIAL & LABOR COST ESTIMATE

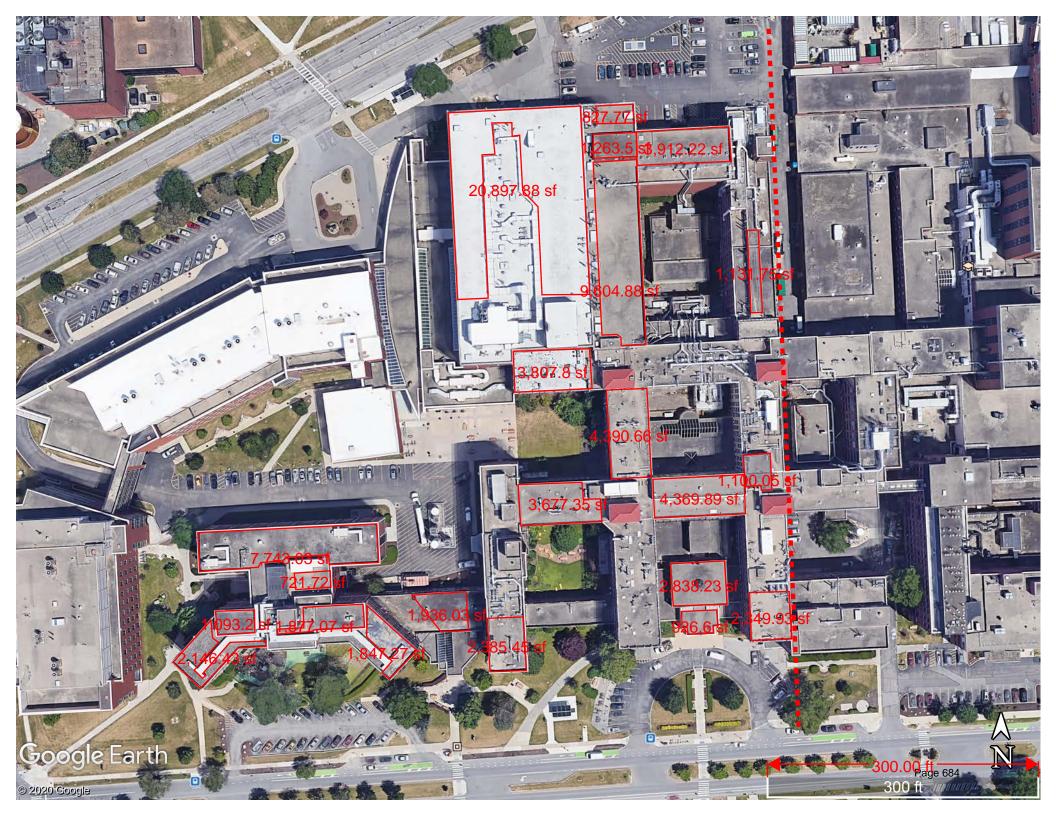

Project : University of Rochester Project # : 402805 Measure : Rooftop Solar Medical Campus Date : 04/01/21

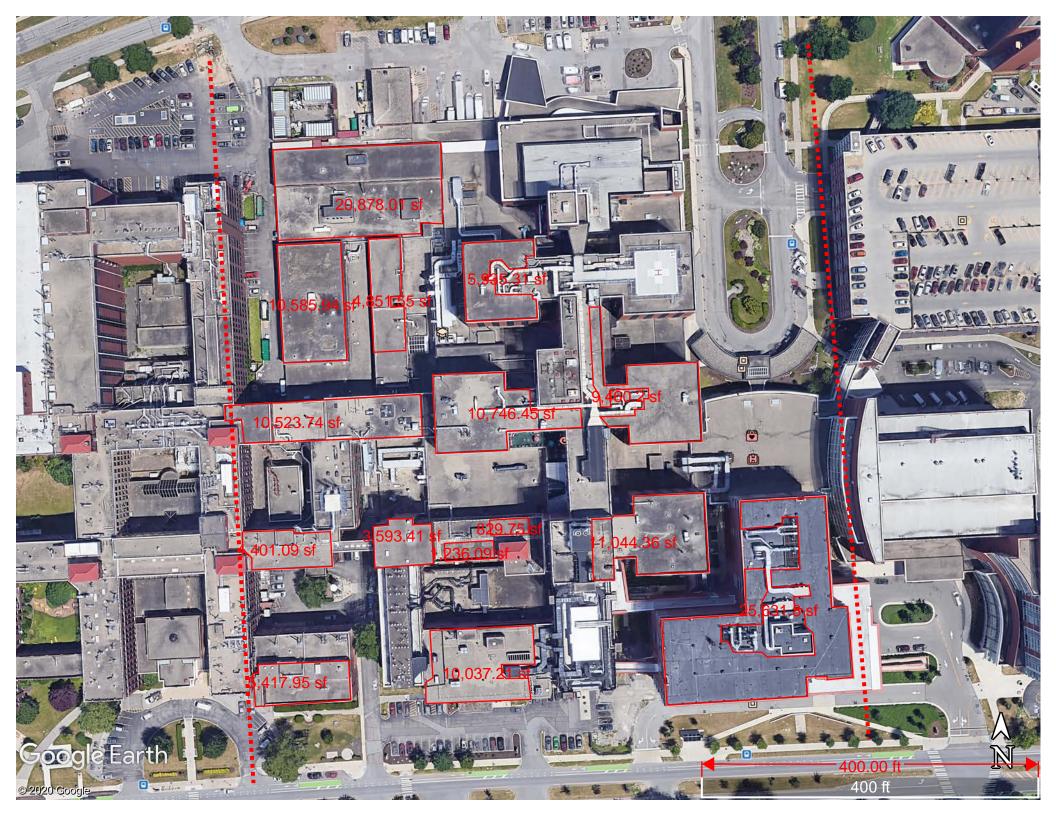

Estimated by: SDM Checked by: Approved by:

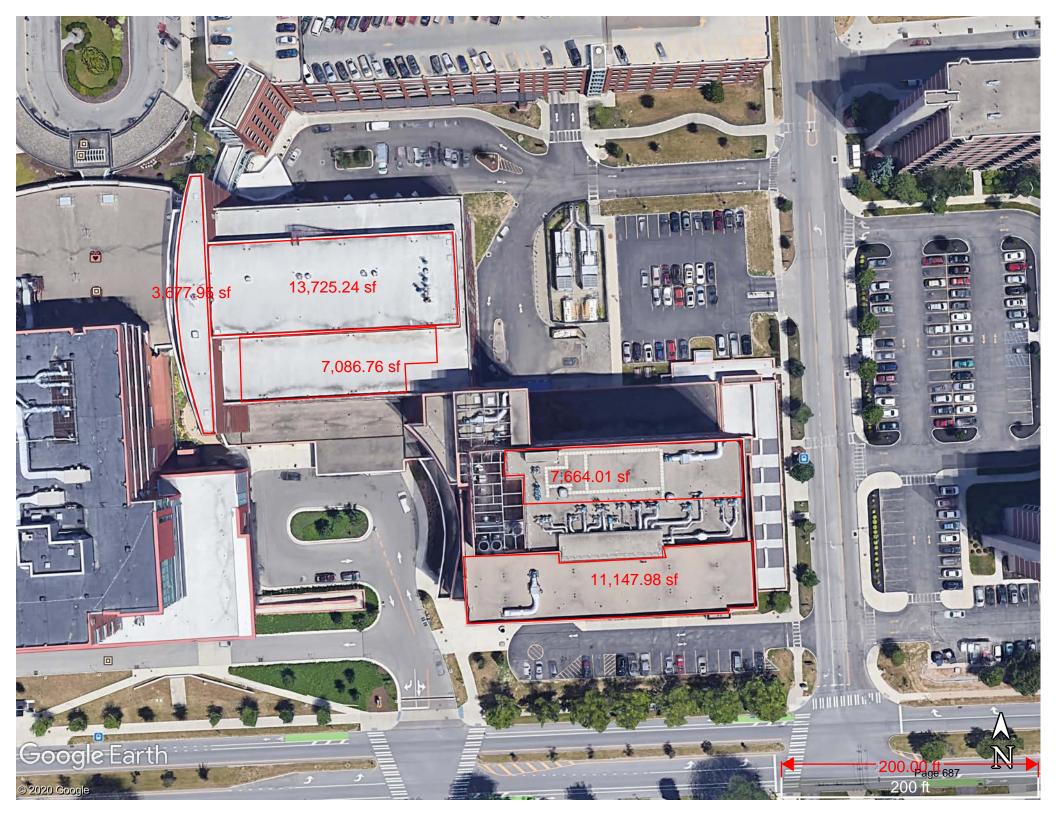
File: Cost Estimate

Item				Mate	rial		Labor		Total Cost		
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total		Labor & Material		
1	Solar Array	1	4,785	\$1,140.00	\$5,454,867	\$760.00	\$3,636,578		\$9,091,445.55		
	NY Megawatt Block Rebate	1	4,785	(\$130.00)	(\$622,046)				(\$622,046.27)		
			SUBTOTALS:	Materials:	\$4,832,821	Labor:	\$3,636,578		\$8,469,399.28		
				•		Asbest	os Abatement Cost:		\$0.00		
							TOTAL:		\$8,469,399.28		
							ONSTRUCTION COST:	,	\$8,469,399.28		
				Engineerin	g, Commissioning,	Project & Constr	ruction Management:	15%	\$1,270,409.89		
							SUBTOTAL:		\$9,739,809.17		
							TOTAL .	Ī	£0.720.000.47		
							TOTAL:		\$9,739,809.17		









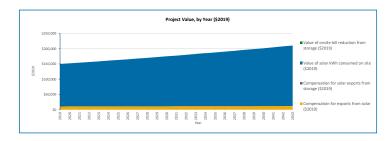
Technical Appendix 5 - SC

Photovoltaic System ECM

South Campus Rooftop Solar

- Savings Summary
- Cost Estimate
- Roof Area Maps

UNIVERSITY OF ROCHESTER

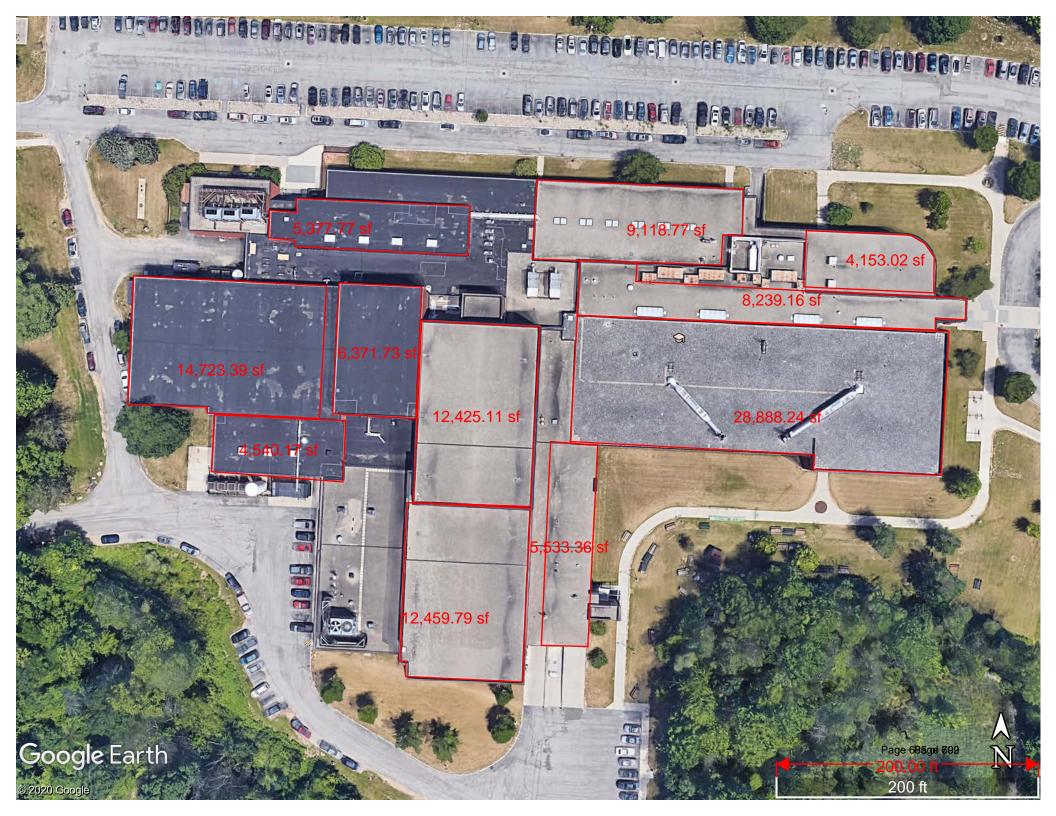

South Campus Rooftop Solar

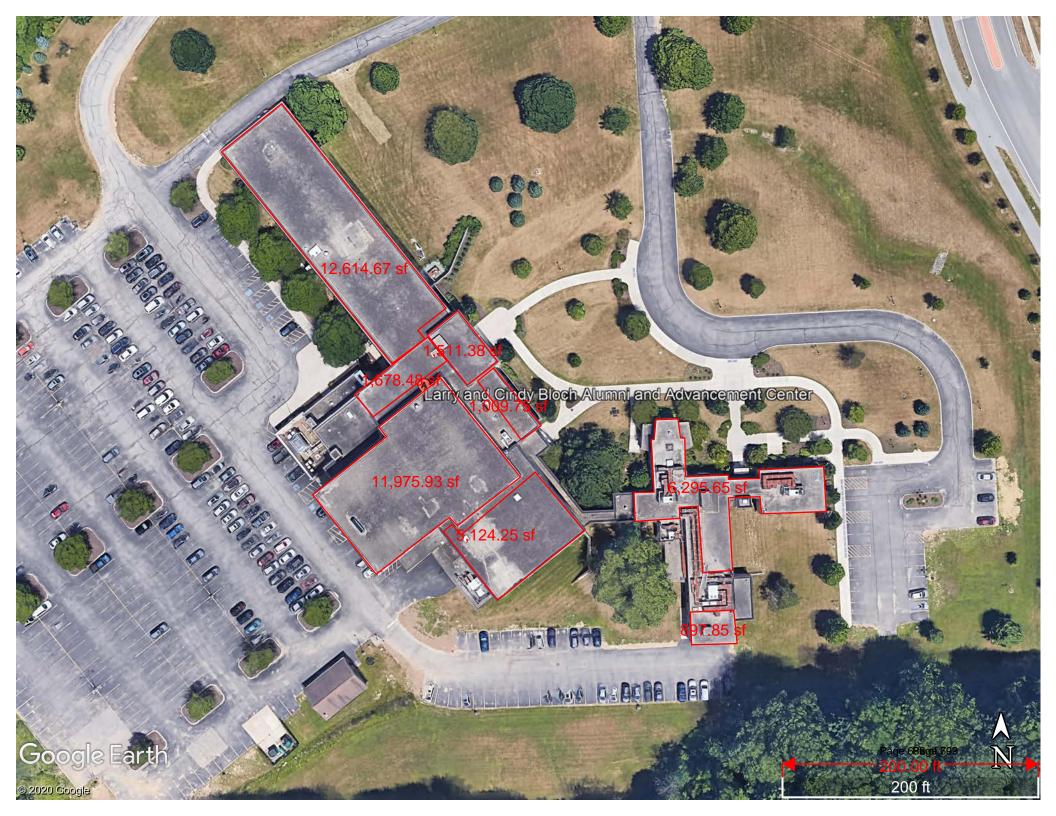
Energy Conservation Measure Summary

Table 1-1

Measure	Summary										
Building Level	Energy Savings										
Electrical Energy Savings	7,332	mmBtu/Year									
Chilled Water Savings - mmBtu/Year											
Steam Savings - mmBtu/Year											
Total Energy Savings	7,332	mmBtu/Year									
Building Leve	l Utility Savings										
Electrical Energy Savings	2,148,787	kWh/Year									
Chilled Water Savings	-	Ton-Hour/Year									
Steam Savings	-	klbs/Year									
Water Savings	-	kGal/Year									
Annual O&N	/I Savings (\$)										
Operational & Maintenance Savings	-\$11,775	Per Year									

Value Stack Calculator v 2.3, for Projects Impacted by the 20	019 Value St	ack Orde	r (Qualifi	ed after	7/26/201	8																			
TOTAL PROJECT VALUE (\$2019), BY YEAR:																									
	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043
Compensation for exports from solar (\$2019)	\$ 10.710	\$ 10.756	\$ 10.795	S 10.827 5	10.869	10.911	10.955	S 11.008	5 11.054 5	11.095 S	11.144 S	11.194	11.246	\$ 11.306	\$ 11.353	S 11.409	11.466	\$ 11.524	\$ 11.592	S 11.653	S 11.709	S 11.773	5 11.839	\$ 11,906	S 11.982
Value of solar kWh consumed on site (\$2019)	\$ 139,125	5 141,198	\$ 143,302	\$ 145,437	147,604	149,803 5	152,035	\$ 154,300	156,600 9	158,933 \$	161,301 \$	163,704	166,144	\$ 168,619	\$ 171,131	\$ 173,681	176,269	\$ 178,896	\$ 181,561	\$ 184,266	\$ 187,012	\$ 189,798	\$ 192,626	\$ 195,497	\$ 198,409
Retail rate is taken from User Inputs Row 95 Compensation for solar exports from storage (\$2019)															٠.										
Compensation for solar exports from storage (\$2019) Value of onsite bill reduction from storage (\$2019)	\$ -	5 -			- 3	- 5	- 3		- 5	- 3	- 5				\$ -	\$ - :		s -	5 -	\$ -	\$.	5 -	5 -	5 -	\$ -
Bill changes from solar parasitic loads on site, at retail rate (\$2019)	\$ (70)				(76) \$			5 (80) 5	(82) 5	(84) 5	(85) S	(87)	5 (89)	S (91)	s (92)				S (100)		5 (104)	\$ (106)	\$ (108)		S (113)
Total value of energy produced	\$ 149,765		5 154,023 :			160.637 5		S 165.228				174.811													\$ 210,279
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	,					,, ,	, ,			,	,	,	,,		,	,,	,	,,	,,	,,	,	,	,
TOTAL PROJECT VALUE (\$2019 / kWh), BY YEAR:																									
TOTAL PROJECT VALUE (\$2019 / KWh), BY YEAR:	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043
		2020											2031 151.875			2034	2035		2037 147 375	2038		2040 145 176			
TOTAL PROJECT VALUE (\$2019 / kWh), BY YEAR: Solar generation immediately exported by solar system (kWh) On-site consumption served by solar (kWh)	2019 161,291 1,987,496		2021 159,682 1.967,671	2022 158,883 1,957,833	2023 158,089 1,948,044	2024 157,299 1,938,303	2025 156,512 1.928,612	2026 155,730 1,918,969	2027 154,951 1,909,374	2028 154,176 1.899.827	2029 153,405 1,890,328	2030 152,638 1.880.876	2031 151,875 1.871,472	151,116	2033 150,360 1.852.804	149,608		2036 148,116 1.825.151	2037 147,375 1.816.025	146,639	145,905	2040 145,176 1.788.921	144,450	2042 143,728 1.771.076	2043 143,009 1.762.221
Solar generation immediately exported by solar system (kWh)	161,291	160,484	159,682	158,883	158,089	157,299	156,512	155,730	154,951	154,176	153,405	152,638	151,875	151,116	150,360	149,608	148,860	148,116	147,375	146,639	145,905		144,450	143,728	143,009
Solar generation immediately exported by solar system (WWh) On site consumption served by solar (WWh) On site parasitis load during hours with no solar generation (WWh) Discharge from solar generation (WWh) Discharge from solar gene generation to the glid (WWh)	161,291 1,987,496	160,484 1,977,559	159,682 1,967,671	158,883 1,957,833	158,089 1,948,044	157,299 1,938,303	156,512 1,928,612	155,730 1,918,969	154,951 1,909,374	154,176 1,899,827	153,405 1,890,328	152,638 1,880,876	151,875 1,871,472	151,116 1,862,115	150,360 1,852,804	149,608 1,843,540	148,860 1,834,322	148,116 1,825,151	147,375 1,816,025	146,639 1,806,945	145,905 1,797,910	1,788,921	144,450 1,779,976	143,728 1,771,076	143,009 1,762,221
Solar generation immediately exported by solar system (XVVh) On-site consumption served by solar (XVVh) On-site consumption served by solar (XVVh) On-site parasitic load during hours with no solar generation (XVMh)	161,291 1,987,496	160,484 1,977,559	159,682 1,967,671	158,883 1,957,833	158,089 1,948,044	157,299 1,938,303	156,512 1,928,612	155,730 1,918,969	154,951 1,909,374	154,176 1,899,827	153,405 1,890,328	152,638 1,880,876	151,875 1,871,472	151,116 1,862,115	150,360 1,852,804	149,608 1,843,540	148,860 1,834,322	148,116 1,825,151	147,375 1,816,025	146,639 1,806,945	145,905 1,797,910	1,788,921	144,450 1,779,976	143,728 1,771,076	143,009 1,762,221 1,000
Solar generation immediately exported by solar system (WWh) On-site consumption served by solar (WWh) On-site parasitic tend during hours with no colar generation (WWh) Discharge from storage separated to the glid (WWh) Discharge from storage consumed by building load (WWh)	161,291 1,987,496 1,000	160,484 1,977,559 1,000	159,682 1,967,671 1,000	158,883 1,957,833 1,000	158,089 1,948,044 1,000	157,299 1,938,303 1,000	156,512 1,928,612 1,000	155,730 1,918,969 1,000	154,951 1,909,374 1,000	154,176 1,899,827 1,000	153,405 1,890,328 1,000	152,638 1,880,876 1,000	151,875 1,871,472 1,000	151,116 1,862,115 1,000	150,360 1,852,804 1,000	149,608 1,843,540 1,000	148,860 1,834,322 1,000	148,116 1,825,151 1,000	147,375 1,816,025 1,000	146,639 1,806,945 1,000	145,905 1,797,910 1,000	1,788,921 1,000	144,450 1,779,976 1,000	143,728 1,771,076 1,000	143,009 1,762,221 1,000
Solar generation immediately exported by solar system (Wth) On-site consumption served by solar (Wth) On-site parasitic load during boars with no colar generation (Wth) On-site parasitic load during boars with no colar generation (Wth) Obtichage from strategy commond by the gift Wth) Obtichage from strategy commond by solaring boar (Wth) Obtichage from strategy commond by solaring boar (Wth) Age Compressation for export from solar (SOSSIWNO)	161,291 1,987,496 1,000 :	160,484 1,977,559 1,000	159,682 1,967,671 1,000	158,883 1,957,833 1,000	158,089 1,948,044 1,000	157,299 1,938,303 1,000	156,512 1,928,612 1,000 	155,730 1,918,969 1,000	154,951 1,909,374 1,000	154,176 1,899,827 1,000	153,405 1,890,328 1,000	152,638 1,880,876 1,000	151,875 1,871,472 1,000	151,116 1,862,115 1,000	150,360 1,852,804 1,000	149,608 1,843,540 1,000 	148,860 1,834,322 1,000 - - -	148,116 1,825,151 1,000	147,375 1,816,025 1,000 - - - 5 0.0787	146,639 1,806,945 1,000	145,905 1,797,910 1,000 - - S 0.0802	1,788,921 1,000	144,450 1,779,976 1,000 S 0.0820	143,728 1,771,076 1,000	143,009 1,762,221 1,000
Solar generation immediately exported by solar system (WWh) On-site consumption served by solar (WWh) On-site parasitic tend during hours with no colar generation (WWh) Discharge from storage separated to the glid (WWh) Discharge from storage consumed by building load (WWh)	161,291 1,987,496 1,000	160,484 1,977,559 1,000	159,682 1,967,671 1,000	158,883 1,957,833 1,000	158,089 1,948,044 1,000	157,299 1,938,303 1,000	156,512 1,928,612 1,000	155,730 1,918,969 1,000	154,951 1,909,374 1,000	154,176 1,899,827 1,000	153,405 1,890,328 1,000	152,638 1,880,876 1,000	151,875 1,871,472 1,000	151,116 1,862,115 1,000	150,360 1,852,804 1,000	149,608 1,843,540 1,000	148,860 1,834,322 1,000 - - -	148,116 1,825,151 1,000	147,375 1,816,025 1,000 - - - 5 0.0787	146,639 1,806,945 1,000	145,905 1,797,910 1,000 - - S 0.0802	1,788,921 1,000	144,450 1,779,976 1,000	143,728 1,771,076 1,000	143,009 1,762,221 1,000
Solar generation immediately exported by solar system (KMh) Chiefe consumption served by solar (KMH) Chiefe consumption served by solar (KMH) Chiefe generation (KMh) Chiefe generation (KMh) Chiefe generation (KMh) Chiefe generation (KMh) Age (Composition storage exposited to the sign of (KMh) Age (Composition (KMH) Age	161,291 1,987,496 1,000 :	160,484 1,977,559 1,000	159,682 1,967,671 1,000	158,883 1,957,833 1,000	158,089 1,948,044 1,000	157,299 1,938,303 1,000	156,512 1,928,612 1,000 	155,730 1,918,969 1,000	154,951 1,909,374 1,000	154,176 1,899,827 1,000	153,405 1,890,328 1,000	152,638 1,880,876 1,000	151,875 1,871,472 1,000	151,116 1,862,115 1,000	150,360 1,852,804 1,000	149,608 1,843,540 1,000 	148,860 1,834,322 1,000 - - -	148,116 1,825,151 1,000	147,375 1,816,025 1,000 - - - 5 0.0787	146,639 1,806,945 1,000	145,905 1,797,910 1,000 - - S 0.0802	1,788,921 1,000	144,450 1,779,976 1,000 S 0.0820	143,728 1,771,076 1,000	143,009 1,762,221 1,000
Solid generation immediately experied by yolds system (60th) On the consumption server to your 10th (91) On the consumption server to your 10th (91) On the parallel local length (party with to a large generation (10th) Ontology From targe experied to the yold (20th) Ontology From targe experied by building used (91th) Aga Compensation for experienced by building used (91th) Aga Compensation for experienced on the (2010)(40th) Section as the form to be consumed to the consumed on the (2010)(40th) Section as the first to the consumed on the (2010)(40th) Section (40th) of the consumed on the (2010)(40th) Section (40th) of the consumed on the (2010)(40th) Section (40th) of the consumed on the (2010)(40th) Section (40th) of the consumed (40th) Section (40th	161,291 1,987,496 1,000 - - - \$ 0.0664 \$ 0.0700 \$ - \$ -	160,484 1,977,559 1,000	159,682 1,967,671 1,000 - - \$ 0.0676 \$ 0.0728	158,883 1,957,833 1,000 - - - 5 0.0681 5 5 0.0743 5	158,089 1,948,044 1,000 - - - - - - - - - - - - - - - - - -	157,299 1,938,303 1,000 - - - - - - - - - - - - - - - - - -	156,512 1,928,612 1,000 - - - - - - - - - - - - - - - - - -	155,730 1,918,969 1,000	154,951 1,909,374 1,000	154,176 1,899,827 1,000	153,405 1,890,328 1,000 - - - 0.0726 \$ 0.0853 \$	152,638 1,880,876 1,000 - - - 0.0733 0.0870	151,875 1,871,472 1,000 - - - - - - - - - - - - - - - - - -	151,116 1,862,115 1,000 	150,360 1,852,804 1,000 \$ 0.0755 \$ 0.0924 \$	149,608 1,843,540 1,000 	148,860 1,834,322 1,000 - - - - - - - - - - - - - - - - - -	148,116 1,825,151 1,000 \$ 0.0778 \$ 0.0980 \$	147,375 1,816,025 1,000 - - \$ 0.0787 \$ 0.1000 \$ - \$ -	146,639 1,806,945 1,000 \$ 0.0795 \$ 0.1020 \$.	145,905 1,797,910 1,000 S 0.0802 S 0.1040 S .	1,788,921 1,000 S 0.0811 S 0.1061 S .	144,450 1,779,976 1,000 S 0.0820 S 0.1082 S .	143,728 1,771,076 1,000 \$ 0.0828 \$ 0.1104 \$.	143,009 1,762,221 1,000 - - \$ 0.0838 \$ 0.1126 \$ - \$ -
Solar generation immediately exported by solar system (100h) On-dar consumption served by solar (200h) On-dar paramit had furtly flour; with solar light solar (200h) On-law paramit had furtly flour; with solar law generation (100h) On-law paramit had consumed by solarify also plot (100h) Ang Charleger from store; consumed by solarify also plot (100h) Ang Campensation for export, from solar (520s)(100h) Ang Campensation for also this homeomed by solar (520s)(100h) Ang Campensation for seport, from solar (520s)(100h) Ang Campensation for seport from solar (520s)(100h) Ang Campensation for seport from solar (520s)(100h)	161,291 1,987,496 1,000 - - \$ 0.0664 \$ 0.0700	160,484 1,977,559 1,000	159,682 1,967,671 1,000 - - \$ 0.0676 \$ 0.0728	158,883 1,957,833 1,000 - - - 5 0.0681 5 0.0743 5 - 5 5 (0.0743)	158,089 1,948,044 1,000	157,299 1,938,303 1,000 - - - - - - - - - - - - - - - - - -	156,512 1,928,612 1,000 - - - - - - - - - - - - - - - - - -	155,730 1,918,969 1,000 - - 5 0.0707 : \$ 0.0804 :	154,951 1,909,374 1,000	154,176 1,899,827 1,000 - - - - - - - - - - - - - - - - - -	153,405 1,890,328 1,000 - - 0.0726 \$ 0.0853 \$	152,638 1,880,876 1,000 - - - 0.0733 0.0870	151,875 1,871,472 1,000 - - - - - - - - - - - - - - - - - -	151,116 1,862,115 1,000 - - - S 0.0748 S 0.0906 S - S (0.0906)	150,360 1,852,804 1,000 - - - S 0.0755 S 0.0924 \$ - 5 (0.0924)	149,608 1,843,540 1,000 - 5 0.0763 5 0.0942	148,860 1,834,322 1,000 - - - - - - - - - - - - - - - - - -	148,116 1,825,151 1,000	147,375 1,816,025 1,000 - - \$ 0.0787 \$ 0.1000 \$ - \$ 0.5000 \$ - \$ 0.1000	146,639 1,806,945 1,000 - - \$ 0.0795 \$ 0.1020 \$ - \$ (0.1020)	145,905 1,797,910 1,000 \$ 0.0802 \$ 0.1040 \$. \$ (0.1040)	1,788,921 1,000 S 0.0811 S 0.1061 S . S . S (0.1061)	144,450 1,779,976 1,000 - - \$ 0.0820 \$ 0.1082 \$ - \$ (0.1082)	143,728 1,771,076 1,000 \$ 0.0828 \$ 0.1104 \$. \$.	143,009 1,762,221 1,000 \$ 0.0838 \$ 0.1126 \$. \$.


MATERIAL & LABOR COST ESTIMATE


Project: University of Rochester Project #: 402805 Measure: Rooftop Solar South Campus Date: 04/01/21

Estimated by: SDM Checked by: Approved by:

File: Cost Estimate

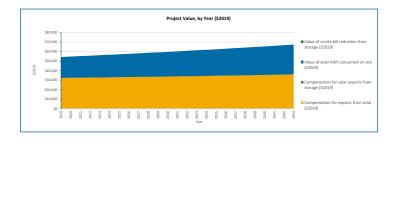
Item	Secretaria:	0.1	11.11	Mate	rial		Labor		Total Cost
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total		Labor & Material
1	Solar Array	1	1,741	\$1,140.00	\$1,984,791	\$760.00	\$1,323,194		\$3,307,985.10
	NY Megawatt Block Rebate	1	1,741	(\$350.00)	(\$609,366)				(\$609,365.68)
		1							
				-					
		-	-						
			SUBTOTALS:	Materials:	\$1,375,425	Labor:	\$1,323,194		\$2,698,619.42
						Asbest	os Abatement Cost:		\$0.00
							TOTAL:		\$2,698,619.42
							ONSTRUCTION COST:		\$2,698,619.42
				Engineerin	g, Commissioning,	Project & Constr	uction Management:	15%	\$404,792.91
							SUBTOTAL:		\$3,103,412.33
							TOTAL:		\$3,103,412.33

Technical Appendix 5 - ESM

Photovoltaic System ECM

Eastman Campus Rooftop Solar

- Savings Summary
- Cost Estimate
- Roof Area Maps


UNIVERSITY OF ROCHESTER

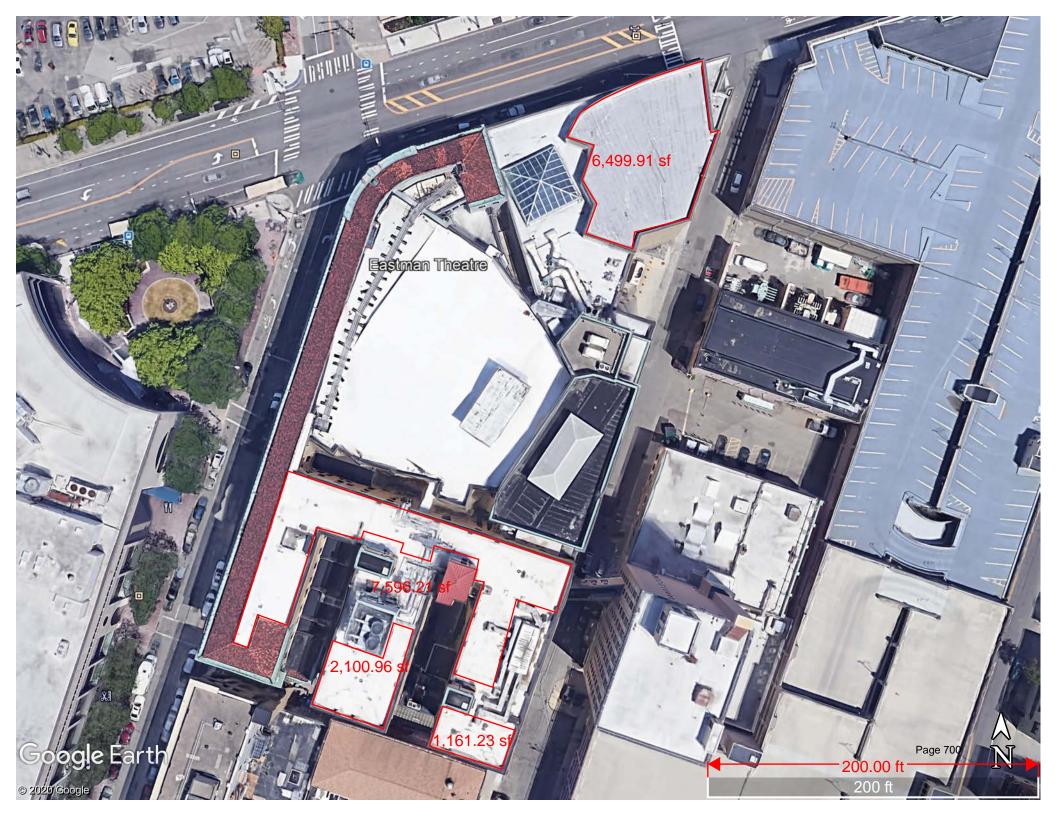
Eastman Campus Rooftop Solar

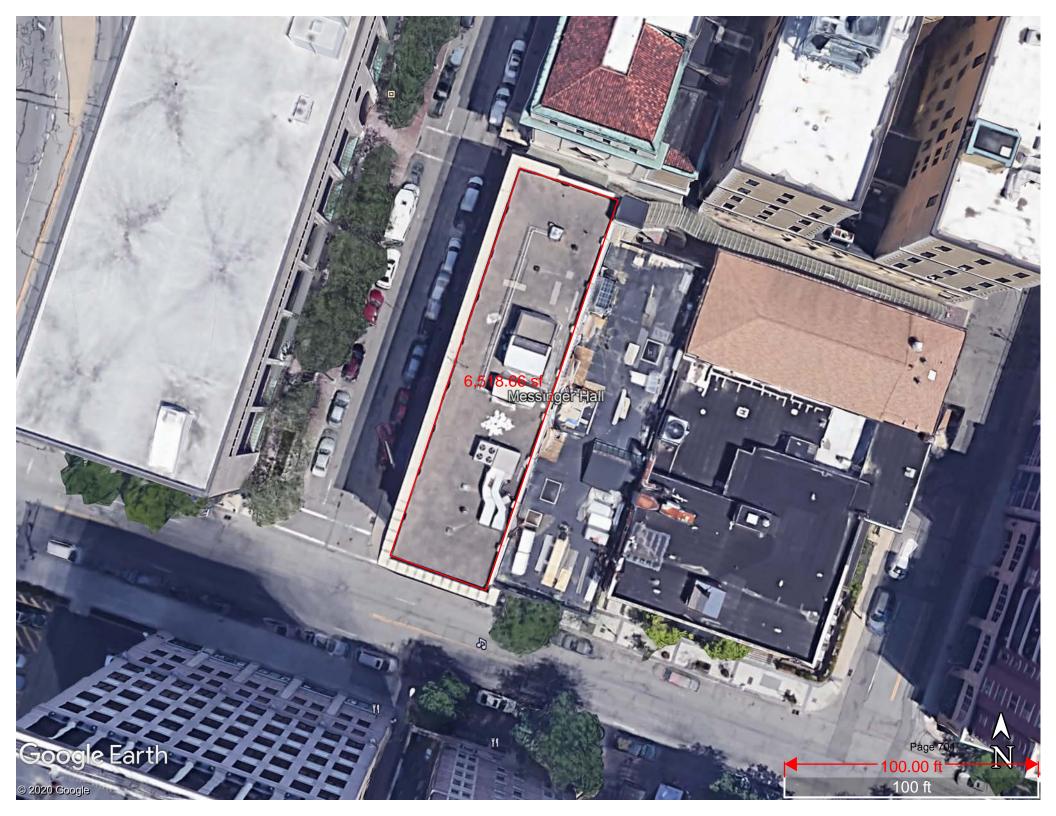
Energy Conservation Measure Summary

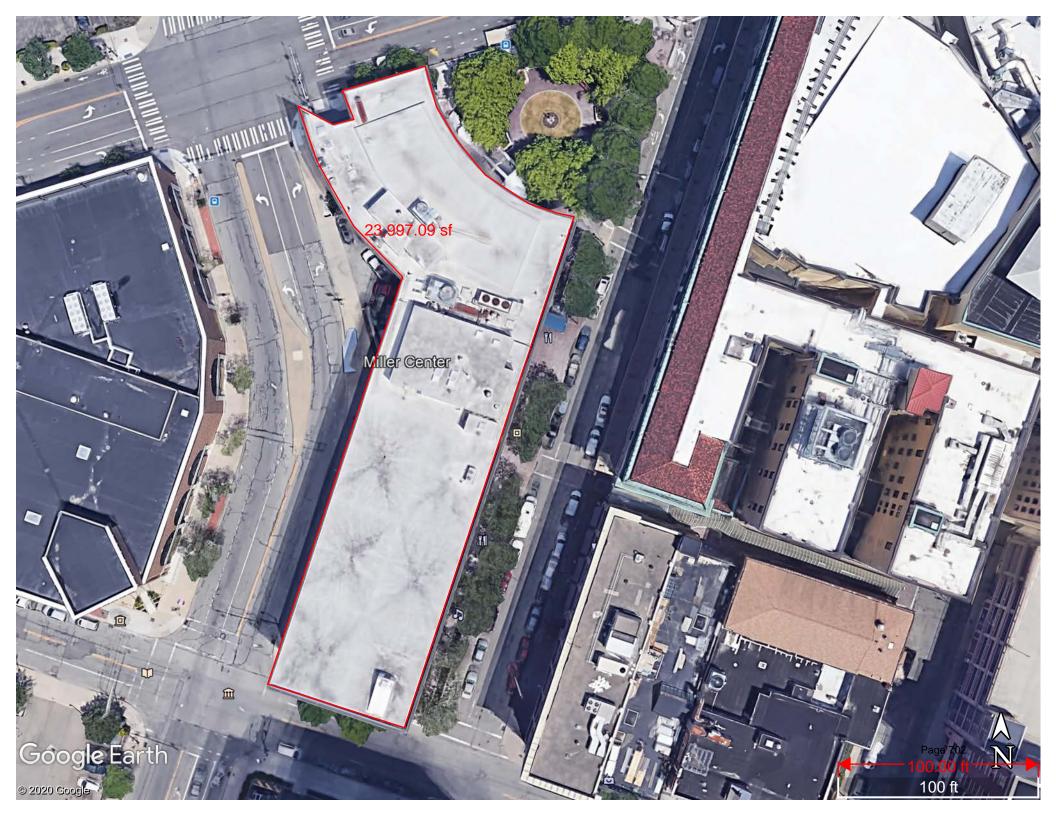
Building U	tility Impact											
Building Level	Energy Savings											
Electrical Energy Savings	2,521	mmBtu/Year										
Chilled Water Savings - mmBtu/Year												
Steam Savings - mmBtu/Year												
Total Energy Savings	2,521	mmBtu/Year										
Building Leve	l Utility Savings											
Electrical Energy Savings	738,717	kWh/Year										
Chilled Water Savings	-	Ton-Hour/Year										
Steam Savings	-	klbs/Year										
Water Savings	-	kGal/Year										
Annual O&N	/I Savings (\$)											
Operational & Maintenance Savings	-\$4,048	Per Year										

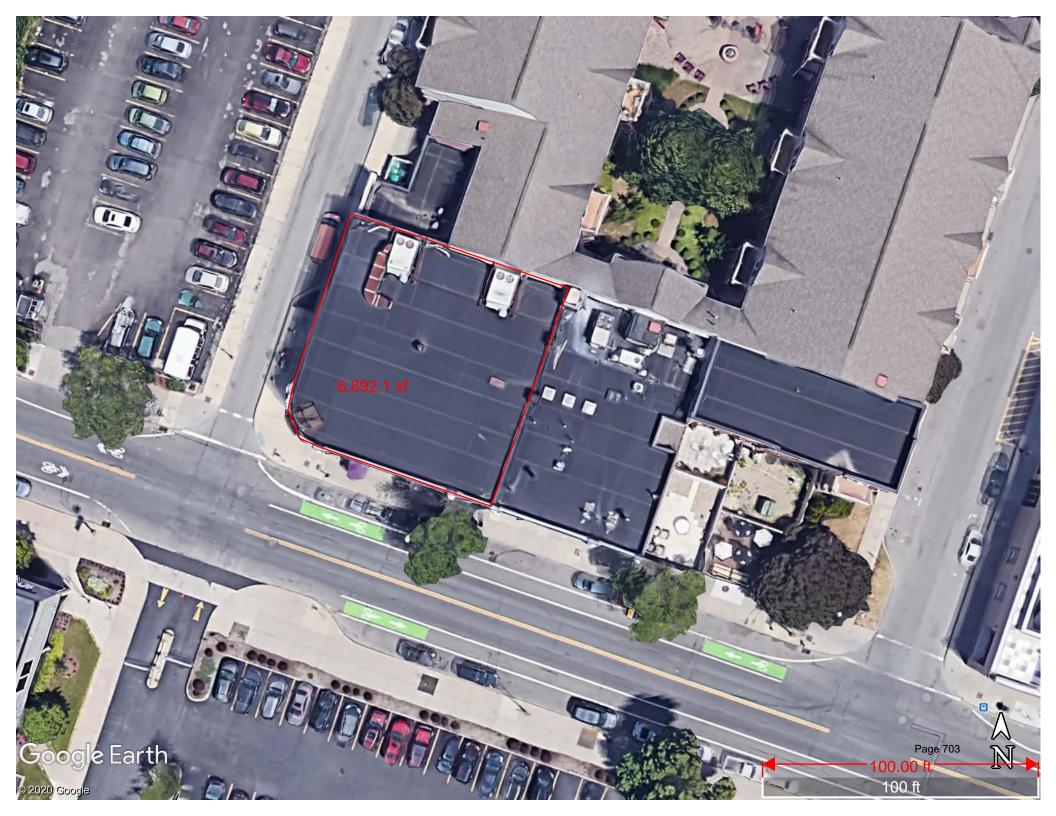
Value Stack Calculator v 2.3, for Projects Impacted by the 2	019 Value St	ick Orde	r (Qualifi	ed after 7	/26/201	.8																			
TOTAL PROJECT VALUE (\$2019), BY YEAR:																									
	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	20
Compensation for exports from solar (\$2019)	\$ 32.314	5 32.483	\$ 32,594	32.647 S	32.765 5	32.886 S	33.012 9	33.200 S	33.333 S	33.410 S	33.550 S	33.694	33.842	\$ 34.053	\$ 34.151	\$ 34,311	\$ 34,475	\$ 34,644	5 34.873	\$ 35,050	\$ 35.175	\$ 35.361	\$ 35.551	35.746	\$ 36.00
Value of solar kWh consumed on site (\$2019)	\$ 21,956	\$ 22,283	\$ 22,615	3 22,952 \$	23,294 5	23,641 \$	23,993 5	24,351 \$	24,714 \$	25,082 \$	25,456 \$	25,835	26,220	\$ 26,611	\$ 27,007	\$ 27,409	\$ 27,818	\$ 28,232	\$ 28,653	\$ 29,080	\$ 29,513	\$ 29,953	\$ 30,399	30,852	\$ 31,31
Compensation for solar exports from storage (\$2019)	\$ -	s - :	5 - 5	- \$	- \$	- 5	- \$	- \$	- s	- \$	- \$			\$ -	s -	\$ -	s -	s -	s -	ş -	s -	ş -	\$ -		s -
Value of onsite bill reduction from storage (\$2019)	\$ -	s - :	5 - 5	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$		-	\$ -	\$ -	\$ -	s -	s -	s -	\$ -	\$ -	\$ -	\$ -	- :	\$ -
Bill changes from solar parasitic loads on site, at retail rate (\$2019)	\$ (70)				(76) \$		(79) \$	(80) \$	(82) S	(84) \$	(85) \$	(87)	(89)	\$ (91)	\$ (92)					\$ (102)	\$ (104)	\$ (106)			\$ (113
Total value of energy produced	\$ 54,200	\$ 54,695	\$ 55,136	55,524 \$	55,983 \$	56,450 \$	56,926 \$	57,471 \$	57,965 \$	58,408 \$	58,920 \$	59,442	59,973	\$ 60,573	\$ 61,065	\$ 61,626	\$ 62,197	\$ 62,778	\$ 63,426	\$ 64,028	\$ 64,584	\$ 65,208	\$ 65,842	66,488	\$ 67,199
TOTAL PROJECT VALUE (\$2019 / kWh), BY YEAR:																									
	2019																								
		2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	204
Solar generation immediately generated by solar system (WWh)													2031	2032 398 246	2033	2034			2037	2038	2039	2040 382 592	2041 380 679	2042 378 776	204 376.882
Solar generation immediately exported by solar system (kWh) On-site consumption served by solar (kWh)	425,061 313,656	2020 422,936 312,088	2021 420,821 310,528	2022 418,717 308,975	2023 416,623 307,430	2024 414,540 305,893	2025 412,468 304,364	2026 410,405 302,842	2027 408,353 301,327	2028 406,311 299,821	2029 404,280 298,322	2030 402,258 296,830					2035 392,302 289,483	2036 390,341 288,036							204 376,882 278,105
On-site consumption served by solar (kWh) On-site parasitic load during hours with no solar generation (kWh)	425,061	422,936	420,821	418,717	416,623	414,540	412,468	410,405	408,353	406,311	404,280	402,258	400,247	398,246	396,255	394,273	392,302	390,341	388,389	386,447	384,515	382,592	380,679	378,776	376,882
On-site consumption served by solar (kWh) On-site parasitic load during hours with no solar generation (kWh) Discharge from storage exported to the grid (kWh)	425,061 313,656	422,936 312,088	420,821 310,528	418,717 308,975	416,623 307,430	414,540 305,893	412,468 304,364	410,405 302,842	408,353 301,327	406,311 299,821	404,280 298,322	402,258 296,830	400,247 295,346	398,246 293,869	396,255 292,400	394,273 290,938	392,302 289,483	390,341 288,036	388,389 286,596	386,447 285,163	384,515 283,737	382,592 282,318	380,679 280,907	378,776 279,502	376,882 278,105
On-site consumption served by solar (kWh) On-site parasitic load during hours with no solar generation (kWh)	425,061 313,656	422,936 312,088	420,821 310,528	418,717 308,975	416,623 307,430	414,540 305,893	412,468 304,364	410,405 302,842	408,353 301,327	406,311 299,821	404,280 298,322	402,258 296,830	400,247 295,346	398,246 293,869	396,255 292,400	394,273 290,938	392,302 289,483	390,341 288,036	388,389 286,596	386,447 285,163	384,515 283,737	382,592 282,318	380,679 280,907	378,776 279,502	376,882 278,105 1,000
On-site consumption served by solar (NWh) On-site parasitic load during hours with no solar generation (NWh) Discharge from storage exported to the grid (NWh) Discharge from storage consumed by building load (NWh)	425,061 313,656 1,000	422,936 312,088	420,821 310,528	418,717 308,975	416,623 307,430	414,540 305,893	412,468 304,364	410,405 302,842	408,353 301,327	406,311 299,821	404,280 298,322	402,258 296,830	400,247 295,346	398,246 293,869	396,255 292,400	394,273 290,938	392,302 289,483	390,341 288,036	388,389 286,596	386,447 285,163	384,515 283,737 1,000	382,592 282,318 1,000	380,679 280,907 1,000	378,776 279,502 1,000	376,882 278,105 1,000
On-site consumption served by solar (kWh) On-site parasitic load during hours with no solar generation (kWh) Discharge from storage exported to the grid (kWh)	425,061 313,656	422,936 312,088 1,000	420,821 310,528 1,000	418,717 308,975 1,000	416,623 307,430 1,000	414,540 305,893 1,000 - - -	412,468 304,364 1,000 - -	410,405 302,842 1,000	408,353 301,327 1,000	406,311 299,821 1,000	404,280 298,322 1,000	402,258 296,830 1,000	400,247 295,346 1,000	398,246 293,869 1,000	396,255 292,400 1,000	394,273 290,938 1,000	392,302 289,483 1,000	390,341 288,036 1,000 - - 5 0.0888	388,389 286,596 1,000 - - 5 0.0898	386,447 285,163 1,000	384,515 283,737 1,000	382,592 282,318 1,000	380,679 280,907 1,000	378,776 279,502 1,000	376,882 278,105 1,000
On-disc consumptions served by solids (VMN) On-disp parasitic lost enging (hours with no solar generation (WMh) Discharge from storage superies do the grid (VMh) Discharge from storage consumed by building boad (WMh) Discharge from storage consumed by building boad (WMh) Ang Campensation for exports from solar (SDSS)(VMh) Ang Value of calar VMN consumed on site (SDSS)(VMh) Send cates a text from to reports from solar (SDSS)(VMh) Send cates a text from to reports from the SDSS)(VMh) Send cates a text from to reports from the SDSS)(VMh) Send cates a text from to reports from the SDSS)(VMh) SEND (VMH)	425,061 313,656 1,000	422,936 312,088 1,000 - - - S 0.0768	420,821 310,528 1,000	418,717 308,975 1,000	416,623 307,430 1,000 - -	414,540 305,893 1,000 - - -	412,468 304,364 1,000 - -	410,405 302,842 1,000 	408,353 301,327 1,000	406,311 299,821 1,000	404,280 298,322 1,000	402,258 296,830 1,000	400,247 295,346 1,000	398,246 293,869 1,000	396,255 292,400 1,000	394,273 290,938 1,000	392,302 289,483 1,000	390,341 288,036 1,000 - - 5 0.0888	388,389 286,596 1,000 - - 5 0.0898	386,447 285,163 1,000	384,515 283,737 1,000	382,592 282,318 1,000	380,679 280,907 1,000	378,776 279,502 1,000	376,882 278,105 1,000
Do-site consumption served by solar (Volh) On-site practice listed in plant with no solar generation (100h) Discharge from storage exported to the pind (Woh) Discharge from storage exported of the pind (Woh) Application storage exported of the pind (Woh) Application storage exported from solar (2000) (Woh) Application storage export from solar (2000) (Woh) Application storage export from solar (2000) (Woh) Application storage export from solar (2000) Bordinaria state from later storage from solar (2000) Application storage (2000) (Woh) Application storage (2000) (Woh) Application storage (2000) (Woh) Application storage (2000) (Woh)	425,061 313,656 1,000	422,936 312,088 1,000 S 0.0768 S 0.0714	420,821 310,528 1,000 - - \$ 0.0775 :	418,717 308,975 1,000 - - 5 0.0780 \$ 5 0.0743 \$	416,623 307,430 1,000 - -	414,540 305,893 1,000 - - - - - - - - - - - - - - - - - -	412,468 304,364 1,000 - -	410,405 302,842 1,000 	408,353 301,327 1,000	406,311 299,821 1,000	404,280 298,322 1,000	402,258 296,830 1,000 - - 0.0838 0.0870	400,247 295,346 1,000 - - 0.0846 0.0888	398,246 293,869 1,000 - - \$ 0.0855 \$ 0.0906	396,255 292,400 1,000 - - S 0.0862 S 0.0924	394,273 290,938 1,000 \$ 0.0870 \$ 0.0942	392,302 289,483 1,000 - - 5 0.0879 5 0.0961	390,341 288,036 1,000 - - \$ 0.0888 \$ 0.0980	388,389 286,596 1,000 - - 5 0.0898 \$ 0.1000	386,447 285,163 1,000 - - \$ 0.0907 \$ 0.1020	384,515 283,737 1,000 S 0.0915 S 0.1040	382,592 282,318 1,000 \$ 0.0924 \$ 0.1061	380,679 280,907 1,000 - - S 0.0934 S 0.1082	378,776 279,502 1,000	376,882 278,105 1,000
On-site consumption served by yield y(00) On-site practice (and site planes with no sell and generation (100n) On-site parentize deal planes with no sell and generation (100n) On-site parent planes are parent from the part (100n) Age Compensation for exposer sourced by basiling should profit (2000) Age Compensation for exposit from sales (2000)(400n) Age Compensation for exposit from sales (2000)(400n) Age Compensation for site exposit from sales (2000) Age C	425,061 313,656 1,000 - - \$ 0.0760 \$ 0.0700	422,936 312,088 1,000 - - 5 0.0768 5 0.0714	420,821 310,528 1,000 - - 5 0.0775 : 5 0.0728 :	418,717 308,975 1,000 - - 5 0.0780 \$ 5 0.0743 \$ - 5 - \$	416,623 307,430 1,000 - - - 0.0786 \$ 0.0758 \$ - \$	414,540 305,893 1,000 - - - - - - - - - - - - - - - - - -	412,468 304,364 1,000 - - 0.0800 5 0.0788 5	410,405 302,842 1,000 - - - 0.0809 \$ 0.0804 \$	408,353 301,327 1,000	406,311 299,821 1,000	404,280 298,322 1,000 - - - 0.0830 \$ 0.0853 \$ - - - - -	402,258 296,830 1,000 - - 0.0838 0.0870	400,247 295,346 1,000 - 0.0846 0.0888	398,246 293,869 1,000 	396,255 292,400 1,000 S 0.0862 S 0.0924	394,273 290,938 1,000 \$ 0.0870 \$ 0.0942 \$.	392,302 289,483 1,000 - - S 0.0879 S 0.0961 S - S -	390,341 288,036 1,000 \$ 0.0888 \$ 0.0980 \$.	388,389 286,596 1,000 - - \$ 0,0898 \$ 0,1000 \$ - \$ -	386,447 285,163 1,000 \$ 0.0907 \$ 0.1020 \$.	384,515 283,737 1,000 \$ 0.0915 \$ 0.1040 \$	382,592 282,318 1,000 \$ 0.0924 \$ 0.1061 \$.	380,679 280,907 1,000 S 0.0934 S 0.1082 S .	378,776 279,502 1,000 - - - - - - - - - - - - - - - - - -	376,882 278,105 1,000 \$ 0.0955 \$ 0.1126
On-site consumption areved by polaric (Whi) On-site parasitic facility flows: with no color generation (WMI) Discharge from storage exponent on the grid (WMI) Discharge from storage exponent on the grid (WMI) Discharge from storage consumed by building loade (WMI) Ang. Compensation for exports flows sold (2000/WMI) Ang. Compensation for exports flows sold (2000/WMI) flows rise as knief from loar traps and the SI Ang. Compensation for discretization of the SI Ang. Compensation for discretization of the SI Ang. Compensation for discretization flows storage (2005/WMI)	425,061 313,656 1,000 \$ 0.0760 \$ 0.0700	422,936 312,088 1,000 - - S 0.0768 S 0.0714 S - S (0.0714)	420,821 310,528 1,000 - - 5 0.0775 : \$ 0.0728 :	418,717 308,975 1,000 - - 5 0.0780 \$ 5 0.0743 \$ 1 - \$ 6 (0.0743) \$	416,623 307,430 1,000 - - - 0.0786 \$ 0.0758 \$ - \$	414,540 305,893 1,000 - - - - - - - - - - - - - - - - - -	412,468 304,364 1,000 - - 0.0800 \$ 0.0788 \$ - \$ (0.0788) \$	410,405 302,842 1,000 - - - - - - - - - - - - - - - - - -	408,353 301,327 1,000	406,311 299,821 1,000 	404,280 298,322 1,000 	402,258 296,830 1,000 - - 0.0838 0.0870 (0.0870)	400,247 295,346 1,000 - - 0.0846 0.0888	398,246 293,869 1,000 - - \$ 0.0855 \$ 0.0906 \$ - \$ (0.0906)	396,255 292,400 1,000 S 0.0862 S 0.0924 S . S (0.0924)	394,273 290,938 1,000 \$ 0.0870 \$ 0.0942	392,302 289,483 1,000 - - \$ 0.0879 \$ 0.0961 \$ - \$ (0.0961)	390,341 288,036 1,000 - - 5 0.0888 5 0.0980 S - 5 (0.0980)	388,389 286,596 1,000 - - \$ 0.0898 \$ 0.1000 \$ - \$ - \$ (0.1000)	386,447 285,163 1,000 - - \$ 0.0907 \$ 0.1020 \$ - \$ 0.0007	384,515 283,737 1,000	382,592 282,318 1,000 \$ 0.0924 \$ 0.1061 \$. \$ (0.1061)	380,679 280,907 1,000 - - S 0.0934 S 0.1082 S - S (0.1082)	378,776 279,502 1,000 - - - - - - - - - - - - - - - - - -	376,882 278,105 1,000 - \$ 0.0955 \$ 0.1126 \$ - \$ 0.1126

MATERIAL & LABOR COST ESTIMATE


Project : University of Rochester Project # : 402805


Measure : Rooftop Solar Eastman Campus Date : 04/01/21


Estimated by: SDM Checked by: Approved by: File: Cost Estimate


Item				Mate	rial		Labor		Total Cost
No.	Description	Qty.	Unit	Unit Price	Total	Unit Price	Total		Labor & Material
1	Solar Array	1	599	\$1,140.00	\$682,338	\$760.00	\$454,892		\$1,137,230.44
	NY Megawatt Block Rebate	1	599	(\$350.00)	(\$209,650)				(\$209,650.00)
		1			1				
		+							
					+				
		-	-						
			SUBTOTALS:	Materials:	\$472,688	Labor:	\$454,892		\$927,580.44
					, , , , , , , , , , , , , , , , , , , ,		os Abatement Cost:		\$0.00
							TOTAL:		\$927,580.44
								-	<u> </u>
							ONSTRUCTION COST:		\$927,580.44
				Engineerin	g, Commissioning,	, Project & Constr	uction Management:	15%	\$139,137.07
							SUBTOTAL:	L	\$1,066,717.51
							TOTAL .	ſ	\$4 000 747 F4
							TOTAL:		\$1,066,717.51

Technical Appendix 6

EMIS Savings and M&V Plan

Savings from using sub-meter data with EMIS

Project Name: Energy Management Information System (EMIS)

Measure: Reduce energy consumption with submetering and awareness

Calc By: TV

Reviewed By: Date: 8/2/2019

Project No.: RC-048

ECM No.:

Notes:

The University of Rochester intends to utilize EMIS software to collect, organize, analyze and increase stakeholder awareness of energy data obtained from sub-meter devices.

A FY19 Electric Use 161,929,445 kWh
B FY18 Natural Gas Use 2,568,059 mmBT0
C Projected Energy Savings 1.0%
D Projected Electric Energy Savings 1,619,294 kWh
E Projected Natural Gas Energy Savings 25,681 mmBT0
Potential Incentive:
F Maximum Incentive Rate allowed by NYSERDA Self Direct \$ 267.02 \$/MWI
G Estimated Cost of Software \$ 180,527
H Estimated Total Incentive from RG&E \$ 180,527
Requested Incentive Rate by NYSERDA Self Direct \$ 111.49 \$/MWI

A Total electrical energy used in Fiscal year 19 from Substation 33 and Substation 710.

US Department of Energy EMIS in 2019: Is Building Analytics Ready to go Mainstream - Page 5, 1 year (4%)

The 4% value of DOE study was used as it is within the range of the GSA study

 $D = A \times C$

 $E = B \times C$

F For reference only

G Obtained from quote from eSight Enterprise plus contingency

J = G

K = H/D

B FY19 data is not yet fully available, so FY18 data was obtained for the total gas use of the CU Plant.

 $[\]mathbb C$ GSA Document Submetering Business Case: How to calculate cost-effective solutions in the building context Table 2 - Bill allocation only 2-5%

Measurement & Verification Approach

OVERVIEW

This document outlines a standardized Measurement & Verification (M&V) plan using options from the International Performance Measurement and Verification Protocol (IPMVP) guidelines 2010. This M&V Approach calculates savings in common units of energy, kWh purchased by the utility. Improvements to system performance from better data visibility, tracking and analytics will result in savings achieved within campus buildings. However, due to the complexity of the campus distribution system, changing loads (new buildings) and other interactive effects, tracking of savings at the campus utility meter will not provide an accurate representation of the benefits of these improvements. As such, an M&V Approach based on IPMVP Option C (building submeter) & Option A¹ (Retrofit Isolation) will be followed to track the energy savings of the Project. The follow summarizes this approach.

Determining savings with measurements in accordance with the IPMVP guideline involves comparing postretrofit energy consumption against the normalized and adjusted baseline², in order to act as a proxy for the conditions that would have prevailed had the retrofit not been performed.

GENERAL APPROACH

It is anticipated that the EMIS system will direct building managers and system operators to operational improvements which will result in a reduction in energy usage. The University will track these efforts and provide a summary of before and after conditions. While the modifications are unknown, it is anticipated that they will fall into two categories:

- 1. Operational Adjustments
- 2. Energy Conservation Measures

It is anticipated that operational adjustments such as building scheduling, behavioral modifications, etc. will be measured and verified following the IPMVP Option C Whole Building procedure and will leverage building submeter data.

It is anticipated that ECMs will be identified (such as economizer modifications) and will be measured and verified following a IPMVP Option A Retrofit Isolation procedure and will leverage mutually agreed trend data and calculations.

The follow outlined both approaches.

¹Option A as described in the IPMVP dated September 2010 Chapter 4.7.

¹ Option C as described in the IPMVP dated September 2010 Chapter 4.9.

² Normalized and adjusted baseline as described in the IPMVP dated September 2010 Chapter 4.1 and Chapter 9.

Operational Adjustments M&V Approach

Part 1 | Pre Retrofit Baseline

The PRE RETROFIT BASELINE period will be established by the University for dates yet to be defined. Date will be defined by the University once the improvement opportunity is identified by the EMIS system and University staff. Energy usage will be summarized from building sub meters. Corresponding weather data will be utilized for the same period for comparison.

To account for impacts that weather will have on the building's energy usage, the loads which comprise the PRE RETROFIT BASELINE is broken into two categories, WEATHER DEPENDENT LOAD and BASE LOAD.

1.1 Weather Dependent Load

Weather Dependent Loads are loads which vary based on weather conditions, typically outdoor air-dry bulb temperature and relative humidity. The primary utilities in this building serve **WEATHER DEPENDENT LOAD**, and **BASE LOAD**. To isolate the weather dependent load the following procedure will be applied to the **DIRECT UTILITY SUBMETERS** values associated with the **PRE RETROFIT BASELINE PERIOD**.

1.1.1 Weather Dependent Load | Normalization

The weather dependent load is normalized utilizing the EMIS software. All inputs, formulas and outputs from the software relative to normalization calculations will be available for review by third parties. The following loads will be Normalized Electric Cooling Load, Normalized Electric Heating Load, Normalized Hot Water Load, and Normalized Chilled Water Load.

1.1.2 Chilled Water Conversion

Building Chilled Water usage, which is directly measured by building level chilled water meters and are supplied by chillers located at the Mid Campus Chiller Plant, will utilize a conversion rate of .85kW / Ton.

Part 2 | Post Retrofit Usage

The POST RETROFIT USAGE period will be established by the University for dates yet to be defined. Date will be defined by the University once the improvement opportunity has been implemented by the University staff. Energy usage will be summarized from building sub meters. Corresponding weather data will be utilized for the same period for comparison.

To account for impacts that weather will have on the building's energy usage, the loads which comprise the **POST RETROFIT USAGE** is broken into two categories, **WEATHER DEPENDENT LOAD** and **BASE LOAD**.

2.1 Weather Dependent Load

Weather Dependent Loads are loads which vary based on weather conditions, typically outdoor air-dry bulb temperature and relative humidity. The primary utilities in this building serve **WEATHER DEPENDENT LOAD**, and **BASE LOAD**. To isolate the weather dependent load the following procedure will be applied to the **DIRECT UTILITY SUBMETERS** values associated with the **POST RETROFIT USAGE PERIOD**.

2.1.1 Weather Dependent Load | Normalization

The weather dependent load is normalized utilizing the EMIS software. All inputs, formulas and outputs from the software relative to normalization calculations will be available for review by third parties. The

following loads will be Normalized Electric Cooling Load, Normalized Electric Heating Load, Normalized Hot Water Load, and Normalized Chilled Water Load.

2.1.2 Chilled Water Conversion

Building Chilled Water usage, which is directly measured by building level chilled water meters, and are supplied by chillers located at the Mid Campus Chiller Plant, will utilize a conversion rate of .85kW / Ton.

Part 3 | M&V Savings

The SAVINGS will be determined by comparing the PRE RETROFIT BASELINE as outlined in PART 1 to the POST RETROFIT USAGE as outlined in PART 2.

Energy Conservation Measures M&V Approach

Part 1 | Pre Retrofit Baseline

The PRE RETROFIT BASELINE period will be established by the University for dates yet to be defined. Date will be defined by the University once the improvement opportunity is identified by the EMIS system and University staff. Energy usage will be summarized from building sub meters as well as key trending points which are relevant to system performance. Corresponding weather data will be utilized for the same period for comparison.

To account for impacts that weather will have on the building's energy usage, the loads which comprise the PRE RETROFIT BASELINE is broken into two categories, WEATHER DEPENDENT LOAD and BASE LOAD.

1.1 Weather Dependent Load

Weather Dependent Loads are loads which vary based on weather conditions, typically outdoor air-dry bulb temperature and relative humidity. The primary utilities in this building serve **WEATHER DEPENDENT LOAD**, and **BASE LOAD**. To isolate the weather dependent load the following procedure will be applied to the **DIRECT UTILITY SUBMETERS** values associated with the **PRE RETROFIT BASELINE PERIOD**.

1.1.1 Weather Dependent Load | Normalization

The weather dependent load is normalized utilizing the EMIS software. All inputs, formulas and outputs from the software relative to normalization calculations will be available for review by third parties. The following loads will be Normalized Electric Cooling Load, Normalized Electric Heating Load, Normalized Hot Water Load, and Normalized Chilled Water Load.

1.1.2 Chilled Water Conversion

Building Chilled Water usage, which is directly measured by building level chilled water meters and are supplied by chillers located at the Mid Campus Chiller Plant, will utilize a conversion rate of .85kW / Ton.

1.2 Baseline | Directly Metered Loads & Measured Variables

The following are the key variables that will be impacted by this project which were critical to the development of the baseline energy usage.

[THE FOLLOWING ARE EXAMPLE VARIABLES WHICH MAY CHANGE DEPENDING ON THE ECM - THIS PLAN WILL BE PROVIDED BY RG&E and REVIEWED BY UR FOR EACH ECM

- AIRFLOW OPTIMIZATION, HVAC CONTROLS OPTIMIZATION | The amount of energy usage to condition the outdoor air is a direct function of the following key measured variables. These were trended or measured as outlined in the technical appendix to establish the baseline. With the abbreviation [DVR] meaning demand ventilation rate.
 - Outdoor Air CFM [DVR]*
 - Outdoor Air Temperature [OAT]
 - Supply Air Temperature [SAT]
 - Outdoor Air Enthalpy [OAH]
 - Supply Air Enthalpy [SAH]

^{*}If not directly measured with a calibrated flow station, the DVR can be calculated based on fan speed, OA Temperature, RA Temperature and MA Temperature. If the scope of work selected does not include upgrades to

trending capabilities, the ability for Wendel to perform this M&V procedure will be limited to the capabilities of the existing infrastructure. As such periodic trends may need to be utilized.

This calculation breakdown the operation of the primary air handling system into four basic parts. The following are the basic formulas used, each formula will result in energy usage in MMBtus.

BASELINE HEATING: VENTILATION OCCUPIED | BLHVOcc (mmBtu)

 $= [\Sigma \{DVR * 1.08 * (DAT_i - OAT_i) / 1,000,000 * OH_{prei}\}]$

Where:

DVR: Existing Ventilation Rate (CFM)

OATi: Temperature of Outdoor air at each heating temperature bin

DAT_i: Discharge Air Temperature Set point in Heating

OH_{prei}: Occupied hours by time of day bin

Note:

1.08 = Psychometric conversion factor for calculating the sensible energy in air

based on dry bulb temperatures

1,000,000 = Conversion Factor (Btu/h per mmBtu)

BASELINE HEATING: VENTILATION UNOCCUPIED | BLHVUNOcc (mmBtu)

 $= [\Sigma \{DVR * 1.08 * (DAT_i - OAT_i) / 1,000,000 * UOH_i\}$

Where:

DVR: Existing Ventilation Rate (CFM)

OAT_i: Temperature of Outdoor air at each heating temperature bin

DAT_i: Discharge Air Temperature Set point in Heating

UOHi: Unoccupied hours by time of day bin

Note:

1.08 = Psychometric conversion factor for calculating the sensible energy in air based on dry bulb temperatures

1,000,000 = Conversion Factor (Btu/h per mmBtu)

BASELINE COOLING: VENTILATION OCCUPIED | BLCLVOcc (mmBtu)

= $[\Sigma \{DVR * 4.5 * absolute value of (OAH_i - DAH_i) / 1,000,000 * OH_{prei} \}$

Where:

DVR: Existing Ventilation Rate (CFM)

OAHi: Enthalpy of Outdoor air at each cooling temperature bin

DAH_i: Discharge Air Enthalpy Set point in Cooling

OH_{prei}: Occupied hours by time of day bin

Note:

4.5 = Psychometric conversion factor for calculating the total energy in air based on enthalpy

1,000,000 = Conversion Factor (Btu/h per mmBtu)

BASELINE COOLING: VENTILATION UNOCCUPIED | BLCLVUNOcc (mmBtu)

= $[\Sigma \{DVR * 4.5 * absolute value of (OAH_i - DAH_i) / 1,000,000 * UOH_{prei}\}$

Where:

DVR: Existing Ventilation Rate (CFM)

OAHi: Enthalpy of Outdoor air at each cooling temperature bin

DAH_i: Discharge Air Enthalpy Set point in Cooling UOH_{prei}: Unoccupied hours by time of day bin

Note:

4.5 = Psychometric conversion factor for calculating the total energy in air based

on enthalpy

1,000,000 = Conversion Factor (Btu/h per mmBtu)

Part 2 | Post Retrofit Usage

The POST RETROFIT USAGE period will be established by the University for dates yet to be defined. Date will be defined by the University once the improvement opportunity is identified by the EMIS system and University staff. Energy usage will be summarized from building sub meters as well as key trending points which are relevant to system performance. Corresponding weather data will be utilized for the same period for comparison.

To account for impacts that weather will have on the building's energy usage, the loads which comprise the **POST RETROFIT USAGE** is broken into two categories, **WEATHER DEPENDENT LOAD** and **BASE LOAD**.

2.1 Weather Dependent Load

Weather Dependent Loads are loads which vary based on weather conditions, typically outdoor air-dry bulb temperature and relative humidity. The primary utilities in this building serve **WEATHER DEPENDENT LOAD**, **and BASE LOAD**. To isolate the weather dependent load the following procedure will be applied to the **DIRECT UTILITY SUBMETERS** values associated with the **POST RETROFIT USAGE PERIOD**.

2.1.1 Weather Dependent Load | Normalization

The weather dependent load is normalized utilizing the EMIS software. All inputs, formulas and outputs from the software relative to normalization calculations will be available for review by third parties. The following loads will be Normalized Electric Cooling Load, Normalized Electric Heating Load, Normalized Hot Water Load, and Normalized Chilled Water Load.

2.1.2 Chilled Water Conversion

Building Chilled Water usage, which is directly measured by building level chilled water meters, and are supplied by chillers located at the Mid Campus Chiller Plant, will utilize a conversion rate of .85kW / Ton.

[THE FOLLOWING ARE EXAMPLE VARIABLES WHICH MAY CHANGE DEPENDING ON THE ECM - THIS PLAN WILL BE PROVIDED BY RG&E and REVIEWED BY UR FOR EACH ECM

- AIRFLOW OPTIMIZATION, HVAC CONTROLS OPTIMIZATION | The amount of energy usage to condition the outdoor air is a direct function of the following key measured variables. These were trended or measured as outlined in the technical appendix to establish the baseline. With the abbreviation [DVR] meaning demand ventilation rate.
 - Outdoor Air CFM [DVR]*
 - Outdoor Air Temperature [OAT]
 - Supply Air Temperature [SAT]
 - Outdoor Air Enthalpy [OAH]

Supply Air Enthalpy [SAH]

*If not directly measured with a calibrated flow station, the DVR can be calculated based on fan speed, OA Temperature, RA Temperature and MA Temperature. If the scope of work selected does not include upgrades to trending capabilities, the ability for Wendel to perform this M&V procedure will be limited to the capabilities of the existing infrastructure. As such periodic trends may need to be utilized.

This calculation breakdown the operation of the primary air handling system into four basic parts. The following are the basic formulas used, each formula will result in energy usage in MMBtus.

BASELINE HEATING: VENTILATION OCCUPIED | BLHVOcc (mmBtu)

= [\(\sum_{\text{OVR}} * 1.08 * (DATi - OATi) / 1,000,000 * OH_{prei}\)}

Where:

DVR: Existing Ventilation Rate (CFM)

OAT_i: Temperature of Outdoor air at each heating temperature bin

DAT_i: Discharge Air Temperature Set point in Heating

OH_{prei}: Occupied hours by time of day bin

Note:

1.08 = Psychometric conversion factor for calculating the sensible energy in air

based on dry bulb temperatures

1,000,000 = Conversion Factor (Btu/h per mmBtu)

BASELINE HEATING: VENTILATION UNOCCUPIED | BLHVUNOcc (mmBtu)

 $= [\Sigma \{DVR * 1.08 * (DAT_i - OAT_i) / 1,000,000 * UOH_i\}$

Where:

DVR: Existing Ventilation Rate (CFM)

OAT: Temperature of Outdoor air at each heating temperature bin

DAT_i: Discharge Air Temperature Set point in Heating

UOH:: Unoccupied hours by time of day bin

Note:

1.08 = Psychometric conversion factor for calculating the sensible energy in air

based on dry bulb temperatures

1,000,000 = Conversion Factor (Btu/h per mmBtu)

BASELINE COOLING: VENTILATION OCCUPIED | BLCLVOcc (mmBtu)

= $[\Sigma \{DVR * 4.5 * absolute value of (OAH_i - DAH_i) / 1,000,000 * OH_{prei} \}$

Where:

DVR: Existing Ventilation Rate (CFM)

OAH: Enthalpy of Outdoor air at each cooling temperature bin

DAHi: Discharge Air Enthalpy Set point in Cooling

OH_{prei}: Occupied hours by time of day bin

Note:

4.5 = Psychometric conversion factor for calculating the total energy in air based

on enthalpy

1,000,000 = Conversion Factor (Btu/h per mmBtu)

BASELINE COOLING: VENTILATION UNOCCUPIED | BLCLVUNOcc (mmBtu)

= $[\Sigma \{DVR * 4.5 * absolute value of (OAH_i - DAH_i) / 1,000,000 * UOH_{prei} \}$

Where:

DVR: Existing Ventilation Rate (CFM)

OAH_i: Enthalpy of Outdoor air at each cooling temperature bin

DAHi: Discharge Air Enthalpy Set point in Cooling UOH_{prei}: Unoccupied hours by time of day bin

Note:

4.5 = Psychometric conversion factor for calculating the total energy in air based

on enthalpy

1,000,000 = Conversion Factor (Btu/h per mmBtu)

Part 3 | M&V Savings

The SAVINGS will be determined by comparing the PRE RETROFIT BASELINE as outlined in PART 1 to the POST RETROFIT USAGE as outlined in PART 2.

Technical Appendix 7

Extrapolated Results Summary by ECM

				SUI	RVEYED BUILD	DINGS LIGH	TING											
Tag#	Building Name	Building Abbreviation	Туре	Area	Current Electric (kWh)	Current Chilled Water (Tons)	Current Steam (MLBS)	Current Hot Water (mmBtu)	Current Natural Gas (mmBtu)	Current Utility Cost	Measure Cost	Cost/sqft	Kw Savings	kWh Savings	mmBtu Savings	O&M Savings	Projected Savings (mmBtu)	Projected Savings (\$)
1	Ambulatory Care Facility	Ambulatory Care Facility	Hospital	224,609	4,740,048	51,190	19,472	2,587	3	\$412,981	\$656,793	\$2.92		790,176	-533	\$5,628	2,163	
2	Delmonte Institute	Del Monte	Lab/Research	152,227	5,667,756	60,981	19,852	2,526	12	\$479,602		\$0.00						
3	Fauver Stadium	Fauver	Office/Sports	63,097	256,300	557	922	0	20	\$21,245	\$31,694	\$0.50		17,791	-10	\$71	51	
4	Goergen Hall for Biomedical Engineering and Optics	GCHaS	Classroom/Lab/Office	271,861	5,232,009	69,473	4	35,819	27	\$497,305		\$0.00						
5	Kornberg Medical Research Building	Kornberg/ KMRB	Lab/Research	235,914	9,501,958	107,634	40,778	2,526	39	\$824,895	\$850,838	\$3.61		612,702	-331	\$8,391	1,760	
6	Schlegel Hall (Includes Gleason Wing)	Schlegel Hall	Classroom/Office	115,832	887,929	4,489	0	1,885	0	\$69,098	\$214,466	\$1.85		134,945	-73	-\$176	388	
7	Wallis Hall	Wallis	Office	49,598	444,629	3,828	5,557	1,553	94	\$56,580	\$150,553	\$3.04		98,975	-53	\$1,251	284	
8	Wilder Hall	Wilder	Dorm	78,822	339,414	0	0	3,749	95	\$37,066	\$75,937	\$0.96		16,598	-10	-\$180	46	

					EXTRAPOLATION	N LIGHTIN	IG											
					Current	Current	Current	Current Hot	Current	Current Utility					mmBtu		Projected	Projected
Tag#	Building Name	Building Abbreviation	Туре	Area	Electric (kWh)	Chilled Water (Tons)	Steam (MLBS)	Water (mmBtu)	Natural Gas (mmBtu)	Cost	Measure Cost	Cost/sqft	Kw Savings	kWh Savings	Savings	0&M Savings	Savings (mmBtu)	Savings (\$)
8	Alpha Delta Phi	ADP Fraternity	Dorm	10,546	68,996	0	0	559	0	\$6,814	\$10,160	\$0.96	0.0	2,221	-1	-\$24	6.18	155.41
1	Ambulatory Care Facility	Ambulatory Care Facility	Hospital	224,609	4,740,048	51,190	19,472	2,587	1	\$412,981	\$656,793	\$2.92	0.0	790,176	-533	\$5,628	2162.71	68956.37
- 8 - 5	Anderson Hall Autoclave	Anderson Autoclave	Dorm Autoclave	74,853 5,618	344,265 332,848	0	0 4.263	3,069	2	\$34,992 \$38,435	\$72,113 \$20,262	\$0.96 \$3.61	0.0	15,762 14.591	-10 -8	-\$171 \$200	43.85 41.90	1103.07
4	Autociave Bausch and Lomb Hall	Autociave Bausch & Lomb	Autociave Classroom/Lab/Office	114,228	1,584,872	35,079	7,752	0	4	\$38,435	\$20,262	\$3.61	0.0	14,591	-8	\$200	0.00	0.00
8	Burton Hall	Burton	Dorm	33,449	160,602	0	0	1,996	5	\$18,328	\$32,225	\$0.96	0.0	7,043	-4	-\$76	19.59	492.92
8	Community Living Center, Quad Annex, Sigma Phi Epsilon	Grad Living Ctr	Dorm	12,650	0	0	0	0	6	\$0	\$12,187	\$0.96	0.0	2,664	-2	-\$29	7.41	186.42
4	Computer Studies Building, Carlson Library	Comp Studies/Lib	Library/Classroom/Office/Lab	108,965	1,506,571	12,810	0	5,350	7	\$125,170	\$0	\$0.00	0.0	0	0	\$0	0.00	0.00
8	Crosby Hall	Crosby Danforth Dining	Dorm Dining/Kitchen	32,247 35.128	132,184 882,673	7,162	0 411	1,862 5.470	9	\$15,863 \$83.068	\$31,067 \$33.842	\$0.96 \$0.96	0.0	6,790 7.397	-4 -5	-\$73 -\$80	18.89 20.58	475.21 517.66
8	Danforth Dining Center DeKiewiet	DeKiewiet	Office/Dorm	57.428	387.848	0	0	0	10	\$27,149	\$55,326	\$0.96	0.0	12.093	-8	-\$131	33.64	846.29
5	Del Monte Institute	Del Monte	Lab/Research	152,227	5,667,756	60,981	19,852	2,526	11	\$479,602	\$549,016	\$3.61	0.0	395,355	-213	\$5,414	1135.46	37879.35
8	Delta Kappa Epsilon	DKE Fraternity	Dorm	9,066	29,645	0	0	465	12	\$3,726	\$8,734	\$0.96	0.0	1,909	-1	-\$21	5.31	133.60
7	Dewey Hall	Dewey	Classroom/Office	122,890	953,165	9,457	4,901	0	13	\$84,648	\$373,027	\$3.04	0.0	245,232	-132	\$3,100	704.31	23237.17
8	Douglass Leadership House, Delta Upsilon, Medieval House Drama House	Douglass Leadership House Drama House	Dorm	8,389 10.221	35,476 30,607	0	0	359 483	14 15	\$3,758 \$3,856	\$8,082 \$9.847	\$0.96 \$0.96	0.0	1,766 2.152	-1	-\$19 -\$23	4.91 5.99	123.62
1	Drama House East River Road Medical Building	Drama House ERR MB	Dorm Medical	92.078	2.104.586	0	0	483	15 16	\$3,856 \$147,321	\$9,847 \$269,251	\$0.96	0.0	2,152 323,931	-1 -219	-\$23 \$2,307	5.99 886.60	150.62 28268.52
1	Eastman Dental Center	Eastman Dental	Medical	92,029	1,414,307	20,056	6,559	0	17	\$123,410	\$269,108	\$2.92	0.0	323,759	-219	\$2,306	886.13	28253.48
1	Emergency Department	Emergency Dept/PICU	Hospital	175,848	4,991,867	19,340	10,157	13,079	18	\$433,002	\$514,208	\$2.92	0.0	618,635	-418	\$4,406	1693.20	53986.43
1	Fauver Stadium	Fauver	Office/Sports	63,097	256,300	557	922	0	19	\$21,245	\$184,506	\$2.92	0.0	221,976	-150	\$1,581	607.55	19371.17
8	Fredric Douglass Dinning Center, FDC, FDB G&J Wing	FDB G&I Wing	Kitchen/Dining Hospital	89,151 245,211	1,604,478 4,058,737	14,450	0	10,174	20 21	\$149,240 \$284,112	\$85,888 \$717.037	\$0.96 \$2.92	0.0	18,773 862,655	-12 -582	-\$203 \$6,144	52.23 2361.09	1313.78 75281.36
1	Galisano Childrens Hospital at Strong	GCHaS	Hospital Hospital	245,211	5,232,009	69,473	4	35,819	22	\$284,112 \$497,305	\$794,965	\$2.92	0.0	956,409	-582	\$6,812	2617.69	75281.36 83463.02
4	Gavett Hall	Gavett	Engineering/Offices/Lab/Classroom/Office	79,685	1,266,970	20,812	9,574	0	23	\$123,841	\$0	\$0.00	0.0	0	0	\$0	0.00	0.00
8	Genesee Hall	Genesee Hall	Dorm	71,403	531,510	7,781	0	5,066	24	\$55,626	\$68,789	\$0.96	0.0	15,035	-9	-\$163	41.83	1052.23
1	GG Wing	GG Wing	Hospital	106,212	2,210,213	79,476	17,321	19,047	25	\$288,269	\$310,582	\$2.92	0.0	373,656	-252	\$2,661	1022.70	32607.85
8	GG Wing (MCSP) Gilbert Hall	GG Wing (MCSP)	Hospital Dorm	11,801 72,775	245,579 411.496	8,831	1,925	2,116 3,359	26 27	\$32,030 \$40,729	\$34,509 \$70.111	\$2.92 \$0.96	0.0	41,517 15.324	-28 -10	\$296 -\$166	113.63 42.63	3623.09 1072.45
3	Goergen Athletics Center (GAC), Zornow	Goergen Gym	Athletics/Gymnasium/Pool/Fieldhouse	244,044	3,213,807	9,513	2,148	6,373	28	\$255,747	\$122,586	\$0.50	0.0	68,810	-37	\$276	197.62	5926.23
4	Goergen Hall for Biomedical Engineering and Optics	BME	Classroom/Lab/Office	113,427	2,584,883	25,056	5	16,064	29	\$239,389	\$0	\$0.00	0.0	0	0	\$0	0.00	0.00
8	Goler House	Goler House	Apartments	359,144	0	0	0	11,739	30	\$41,675	\$345,997	\$0.96	0.0	75,625	-48	-\$818	210.39	5292.54
4	Harkness Hall	Harkness	Engineering/Classroom/Lab/Office	61,990 119.064	386,027 874,192	2,913 16.880	1,547	1,343 4.996	31 32	\$37,444	\$0 \$114.706	\$0.00 \$0.96	0.0	0	0	\$0 -\$271	0.00 69.75	0.00 1754.59
8	Helen Wood Hall	Helen Wood Hall	Office/Dorm				0			\$79,873				25,071	-16			
	Hill Court	Hill Court	Dorm	151.494	640.033	0	0	10.092	33	\$80,629		\$0.96	0.0	31.900	-20	-\$345	88.75	2232.50
8	Hill Court Hoeing Hall	Hill Court Hoeing	Dorm Dorm	151,494 43,377	640,033 163,912	0	0	10,092 3,035	33 34	\$80,629 \$22,248	\$145,948 \$41,789	\$0.96 \$0.96	0.0	31,900 9,134	-20 -6	-\$345 -\$99	88.75 25.41	2232.50 639.23
		Hoeing Hopeman	Dorm Engineering/Classroom/Lab/Office	43,377 72,252	163,912 750,957	0 7,858	0	3,035 3,321	34 35	****	\$41,789 \$0	\$0.96 \$0.00	0.0	9,134 0	-6 0	-\$99 \$0	25.41 0.00	639.23 0.00
8 4 7	Hoeing Hall Hopeman Engineering Building Hoyt Hall	Hoeing Hopeman Hoyt	Dorm Engineering/Classroom/Lab/Office Auditorium/Office	43,377 72,252 19,940	163,912 750,957 234,585	0 7,858 3,969	0 0 2,239	3,035 3,321 0	34 35 36	\$22,248	\$41,789 \$0 \$60,527	\$0.96 \$0.00 \$3.04	0.0 0.0 0.0	9,134 0 39,791	-6 0 -21	-\$99 \$0 \$503	25.41 0.00 114.28	639.23 0.00 3770.44
8 4 7 4	Hoeing Hall Hopeman Engineering Building Hoyt Hall Hutchison Hall	Hoeing Hopeman Hoyt Hutchison	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office	43,377 72,252 19,940 313,148	163,912 750,957 234,585 9,232,963	0 7,858 3,969 131,724	0 0 2,239 581	3,035 3,321 0 58,466	34 35 36 37	\$22,248 \$64,797 \$24,590 \$863,299	\$41,789 \$0 \$60,527 \$0	\$0.96 \$0.00 \$3.04 \$0.00	0.0 0.0 0.0 0.0	9,134 0 39,791 0	-6 0 -21	-\$99 \$0 \$503 \$0	25.41 0.00 114.28 0.00	0.00 3770.44 0.00
8 4 7 4 7	Hoeing Hall Hopeman Engineering Building Hoyt Hall Hutchison Hall Hylan Building	Hoeing Hopeman Hoyt Hutchison Hylan	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Classroom/Office	43,377 72,252 19,940	163,912 750,957 234,585 9,232,963 572,798	0 7,858 3,969 131,724 15,912	0 0 2,239	3,035 3,321 0 58,466 4,399	34 35 36 37 38	\$22,248 \$64,797	\$41,789 \$0 \$60,527 \$0 \$181,866	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04	0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561	-6 0 -21	-\$99 \$0 \$503 \$0 \$1,511	25.41 0.00 114.28 0.00 343.38	639.23 0.00 3770.44 0.00 11329.09
8 4 7 4	Hoeing Hall Hopeman Engineering Building Hoyt Hall Hutchison Hall	Hoeing Hopeman Hoyt Hutchison	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office	43,377 72,252 19,940 313,148 59,914	163,912 750,957 234,585 9,232,963	0 7,858 3,969 131,724	0 0 2,239 581 191	3,035 3,321 0 58,466	34 35 36 37	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281	\$41,789 \$0 \$60,527 \$0	\$0.96 \$0.00 \$3.04 \$0.00	0.0 0.0 0.0 0.0	9,134 0 39,791 0	-6 0 -21 0 -65	-\$99 \$0 \$503 \$0	25.41 0.00 114.28 0.00	0.00 3770.44 0.00
8 4 7 4 7 3 1 5	Hoeing Hall Hopeman Engineering Building Hot Hall Hutchison Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building	Hoeing Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMRB or Komberg	Dorm Enginening/Dasom/Lab/Office Auditorium/Office Lab/Classroom/Office Classroom/Office Assembly/Office Hospital Lab/Research	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634	0 0 2,239 581 191 0 10,657 40,778	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526	34 35 36 37 38 39 40 41	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895	\$41,789 \$0 \$60,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61	0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702	-6 0 -21 0 -65 -4 -654 -331	-\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58
8 4 7 4 7 3 1 5	Hoeing Hall Hopeman Engineering Building Hot Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing	Hoeing Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMRB or Kornberg L Wing	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Classroom/Office Classroom/Office Assembly/Office Hospital Lab/Research Hospital	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0	0 0 2,239 581 191 0 10,657 40,778	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526 0	34 35 36 37 38 39 40 41	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895 \$89,645	\$41,789 \$0 \$60,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702 219,186	-6 0 -21 0 -65 -4 -654 -331 -118	-\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$879	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26
8 4 7 4 7 3 1 5	Hoeing Hall Hopeman Engineering Building Hot/Hall Hutchison Hall Hutchison Hall Hylan Building Interfallt Chapel James P. Wilmot Canoc Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall	Hoeing Hopeman Hoyt Hutchison Hylan Interfailt Chapel Wilmot Cancer SMH KMRB or Kornberg L Wing Lattimore	Dorm Engineening/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Lab/Classroom/Office Classroom/Office Assembly/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0 18,239	0 0 2,239 581 191 0 10,657 40,778 0	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526 0 8,206	34 35 36 37 38 39 40 41 42 43	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895 \$89,645	\$41,789 \$0 \$60,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483 \$246,249	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50 \$3.04	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702 219,186 161,886	-6 0 -21 0 -65 -4 -654 -331 -118 -87	\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$879 \$2,046	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50 464.94	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67
8 4 7 4 7 3 1 5	Hoeing Hall Hopeman Engineering Building Hot Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing	Hoeing Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMRB or Kornberg L Wing	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Classroom/Office Classroom/Office Assembly/Office Hospital Lab/Research Hospital	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0	0 0 2,239 581 191 0 10,657 40,778	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526 0	34 35 36 37 38 39 40 41	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895 \$89,645	\$41,789 \$0 \$60,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702 219,186	-6 0 -21 0 -65 -4 -654 -331 -118	-\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$879	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26
8 4 7 4 7 3 1 5 3 7 7 7 3 8	Hoeing Hall Hopeman Engineering Building Hot/Hall Hutchison Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapet James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall LeChase Hall Levine Pavilion Lovejoy Hall	Hoeing Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMRB or Komberg L Wing Lattimore LeChase Levine Lovejoy	Dorm Enginening/Dasom/Lab/Office Auditorium/Office Lab/Classroom/Office Lab/Classroom/Office Classroom/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Classroom/Office Olassroom/Office Dorm	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 66,517 42,622	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930 1,117,178 291,236	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0 18,239 2,786 16,444 0	0 0 2,239 581 191 0 10,657 40,778 0 66 0 569	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526 0 8,206 2,526 2,526 2,526	34 35 36 37 38 39 40 41 42 43 44 45	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895 \$89,645 \$99,402 \$49,641 \$90,113 \$29,355	\$41,789 \$0 \$60,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,062	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50 \$3.04 \$0.50 \$3.04 \$0.50	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702 219,186 161,886 158,779 18,755 8,975	-6 0 -21 0 -65 -4 -654 -331 -118 -87 -86 -10 -6	\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$879 \$2,046 \$2,007 \$75 \$97	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50 464.94 456.01 53.86 24.97	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 1539.67 15045.26 628.10
8 4 7 4 7 3 1 5 3 7 7 7	Hoeman Engineering Building Hopeman Engineering Building Hoty Hall Hutchison Hall Hylan Building Interfails Chapel James P. Wilmort Cancer Center, JWCC Komberg Medical Research Building Lattimore Hall LaChase Hall Luchase Hall Luchase Hall Lovine Pavillon Lovine (by Hall Medical Center Annex	Hoeing Hopeman Hoyt Hutchison Hytan Interfaith Chapel Wilmot Ganeer SMH KMRB or Kornberg L. Wing Lattimore LeChase Levine Lovejoy Med Or Annex	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Lab/Classroom/Office Assembly/Office Assembly/Office Assembly/Office Lab/Research Hospital Lab/Research Glassroom/Office Classroom/Office Assembly/Conference Dorm Office/Lab	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 7777,371 81,124 79,567 66,517 42,622 79,099	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930 578,810 1,117,178 291,236	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0 18,239 2,786 16,444 0 7,864	0 0 2,239 581 191 0 10,657 40,778 0 66 0 569 0	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526 0 8,206 2,526 2,526 2,526 2,526 2,526	34 35 36 37 38 39 40 41 42 43 44 45 46	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895 \$99,402 \$49,641	\$41,789 \$0 \$60,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,062 \$146,454	\$0.96 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04 \$3.04 \$1.85	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702 219,186 161,886 158,779 18,755 8,975 92,151	-6 0 -21 0 -65 -4 -654 -331 -118 -87 -86 -10 -6	-\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$879 \$2,046 \$2,007 \$75 -\$97 -\$120	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50 464.94 456.01 53.86 24.97 264.66	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15045.26 1615.26 628.10 7446.60
8 4 7 4 7 3 1 5 3 7 7 7	Hoeing Hall Hopeman Engineering Building Hot Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall LeChase Hall Levine Pavilion Lovejoy Hall Medical Center Annex Medical Center Annex Medical Hall	Hoeing Hopeman Hoyt Hutchison Hylan Interfailt Chapel Wilmot Cancer SMH KMRB or Kornberg L Wing Lattimore LeChase Levine Lovejoy Med Cir Annex Meliora	Dorm Engineening/Classroom/Lab/Office Auditorium/Office Lab/Clessroom/Office Lab/Clessroom/Office Classroom/Office Assembly/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Classroom/Office Classroom/Office Dorm Office/Lab Classroom/Office	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 66,517 42,622 79,099 130,970	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930 578,810 1,117,178 291,236 1,619,642 1,932,773	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0 18,239 2,786 16,444 0 7,864	0 0 2,239 581 191 0 10,657 40,778 0 66 0 569 0 4,924 6,475	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526 0 8,206 2,526 2,526 2,526 2,526 2,526 2,526	34 35 36 37 38 39 40 41 42 43 44 45 46 47	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895 \$89,645 \$99,402 \$49,641 \$90,113 \$29,355	\$41,789 \$0 \$60,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,062 \$146,654 \$397,554	\$0.96 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50 \$3.04 \$3.04 \$3.04 \$3.04 \$5.50	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702 219,186 161,886 158,779 18,755 8,975 92,151 261,356	-6 0 0 -21 0 0 -65 -4 -654 -331 -118 -87 -86 -10 -6 -50 -141	-\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$879 \$2,046 \$2,007 \$75 -\$97 -\$120 \$3,304	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50 464.94 456.01 53.86 24.97 264.66 750.61	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15045.26 628.10 7446.60 24765.01
8 4 7 4 7 3 1 5 3 7 7 7	Hoeman Engineering Building Hopeman Engineering Building Hoty Hall Hutchison Hall Hylan Building Interfails Chapel James P. Wilmort Cancer Center, JWCC Komberg Medical Research Building Lattimore Hall LaChase Hall Luchase Hall Luchase Hall Lovine Pavillon Lovine (by Hall Medical Center Annex	Hoeing Hopeman Hoyt Hutchison Hytan Interfaith Chapel Wilmot Ganeer SMH KMRB or Kornberg L. Wing Lattimore LeChase Levine Lovejoy Med Or Annex	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Lab/Classroom/Office Assembly/Office Assembly/Office Assembly/Office Lab/Research Hospital Lab/Research Glassroom/Office Classroom/Office Assembly/Conference Dorm Office/Lab	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 7777,371 81,124 79,567 66,517 42,622 79,099	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930 578,810 1,117,178 291,236	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0 18,239 2,786 16,444 0 7,864	0 0 2,239 581 191 0 10,657 40,778 0 66 0 569 0	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526 0 8,206 2,526 2,526 2,526 2,526 2,526	34 35 36 37 38 39 40 41 42 43 44 45 46	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895 \$89,645 \$99,402 \$49,641 \$90,113 \$29,355	\$41,789 \$0 \$60,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,062 \$146,454	\$0.96 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04 \$3.04 \$3.04 \$0.50 \$3.04 \$3.04	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702 219,186 161,886 158,779 18,755 8,975 92,151	-6 0 -21 0 -65 -4 -654 -331 -118 -87 -86 -10 -6	-\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$879 \$2,046 \$2,007 \$75 -\$97 -\$120	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50 464.94 456.01 53.86 24.97 264.66	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15045.26 1615.26 628.10 7446.60
8 4 7 4 7 3 1 5 3 7 7 3 8 6 7	Hoeing Hall Hopeman Engineering Building Hotyl Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall LeChaes Hall Levine Parillion Lovejoy Hall Medical Center Annex Meliora Hall Morey Hall	Hoeing Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMRB or Kornberg L Wing Lattimore Lechase Levine Levine Levine Levine Mellora Mellora Mellora Morey	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab//Classroom/Office Lab//Classroom/Office Assembly/Office Assembly/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Glassroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Classroom/Office Classroom/Office	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 66,517 42,622 79,099 130,970 59,681	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930 578,810 1,117,178 291,236 1,619,642 1,932,773 237,434	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0 18,239 2,786 16,444 0 7,864 17,626 11,621	0 0 2,239 581 191 0 10,657 40,778 0 66 0 569 0 4,924 6,475 14,026	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526 0 8,206 2,526 2,526 2,526 2,526 2,526 2,526 2,526 2,526 2,526	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895 \$89,645 \$99,402 \$49,641 \$90,113 \$29,355 \$140,262 \$168,236 \$76,033	\$41,789 \$0 \$60,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,062 \$146,454 \$397,554 \$397,554	\$0.96 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50 \$3.04 \$0.50 \$3.04 \$0.50 \$0.96 \$1.85 \$3.04 \$3.04 \$3.04	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702 219,186 161,886 158,779 18,755 8,975 92,151 261,356 119,096	-6 0 -21 0 -65 -4 -654 -331 -118 -87 -86 -10 -6 -50 -141 -64	-\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$879 \$2,046 \$2,007 \$75 -\$97 -\$120 \$3,304 \$1,505	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50 464.94 456.01 53.86 24.97 264.66 750.61 342.04	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15045.26 1615.26 628.10 7446.60 24765.01 11285.03
8 4 7 7 4 7 3 1 5 3 7 7 7 3 8 6 6 7 7	Hoeing Hall Hopeman Engineering Building Hoty Hall Hutchison Hall Hutchison Hall Hylan Building Interfailt Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall LeChase Hall Lechase Hall Levine Pavilion Loving Oy Hall Medical Center Annex Meliora Hall Morey Hall New York State Optics O Wing O'Brien Hall	Hoeing Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMRB or Komberg L Wing Lattimore LeChase Levine Lovejoy Med Otr Annex Mellora Morey NYS Optics O Wing O'Brien	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab//Classroom/Office Lab//Classroom/Office Assembly/Office Assembly/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Glassroom/Office Glassroom/Office Classroom/Office Classroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Classroom/Office Office/Lab Hospital Dorm	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 66,517 42,622 79,5681 4,383 183,231 54,381	163,912 750,957 224,585 9,232,963 572,798 239,239 4,568,850 9,501,958 1,280,639 985,930 578,810 1,129,043 291,236 1,619,642 1,932,773 108,481 1,032,834 373,480	0 7.858 3.969 3.969 131,724 15,912 2.243 64,781 107,634 0 18,239 2.786 16,444 0 7.864 17,626 11,621 1.890 0 2.398	0 0 2,239 581 191 0 10,657 40,778 0 66 0 0 4,924 6,475 14,026 0 0	3,035 3,321 0 58,466 4,399 2,376 0 8,206 2,526 2	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$27,2	\$41,789 \$0 \$60,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,062 \$146,454 \$397,554 \$111,159 \$81,115 \$83,755	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50 \$3.04 \$0.50 \$0.50 \$0.96 \$1.85 \$3.04 \$1.85 \$3.04 \$0.96 \$1.85 \$3.04 \$0.96	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39,791 0 119,561 8,257 969,338 612,702 219,186 161,886 158,779 18,755 8,975 92,151 261,356 119,098 5,106 644,607 11,461	-6 0 -21 0 -65 -4 -654 -331 -118 -87 -6 -50 -141 -64 -3 3 -35 -7	\$99 \$0 \$503 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$879 \$2,046 \$2,007 \$120 \$3,305 \$1,505 \$7 \$4,591 \$4,591 \$1,246 \$1,546	25.41 0.00 114.28 0.00 343.38 23.38 2553.08 1759.68 629.50 464.94 456.01 53.86 24.97 264.66 754.66 342.04 14.67 1764.29 31.86	699.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.28 15339.67 15045.26 628.10 7446.60 24765.01 11285.03 412.63 56252.94 801.39
8 4 7 4 7 3 1 1 5 5 3 7 7 7 7 7 7 7 7 7 6 6	Hoeing Hall Hopeman Engineering Building Hot Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall Lechase Hall Levine Pavillon Lovejoy Hall Medical Center Annex Medicar Hall Morey Hall New York State Optics O Wing O'Brein Hall Old Cancer Center	Hoeing Hopeman Hoyt Hutchison Hylan Interfailt Chapel Wilmot Cancer SMH KMRB or Normberg L Wing Lattimore LeChase Levine Lovejcy Med Ctr Annex Meliora Morey NYS Optics O Wing O'Brien Old Cancer Center	Dorm Engineening/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Lab/Classroom/Office Classroom/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Dorm Office/Lab Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office	43,377 72,282 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 66,517 42,622 79,099 130,970 59,681 4,383 183,231 54,381	163,912 750,952 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930 578,810 1,117,178 291,236 1,932,773 237,434 108,481 1,932,773 237,434 108,481 3,332,834 3,733,830 2,695,367	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0 18,239 2,786 16,444 0 7,864 17,626 11,621 1,890 0 2,398 444,297	0 0 2,239 581 191 0 0 10,657 40,778 0 66 0 0 4,924 6,475 14,026 0 0	3,035 3,321 0 58,466 4,399 2,376 0 14,825 2,526	34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 51 51 52 53	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895 \$89,645 \$99,402 \$49,641 \$90,113 \$29,355 \$140,262 \$168,236 \$76,033	\$41,789 \$0,527 \$0 \$181,866 \$14,709 \$850,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,062 \$146,454 \$397,554 \$181,159 \$81,15 \$81,1	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$2.92 \$0.50 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.05 \$3.04 \$3.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 996,338 612,702 219,186 161,886 158,779 18,755 8,975 92,151 261,356 119,006 644,607 11,451 572,881	-6 0 0 -21 0 65 4 -4 654 -331 -118 -86 -10 -6 50 -141 -64 -3 -435 -7 -387	\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$2,007 \$75 \$97 \$120 \$3,304 \$1,505 \$4,591 \$4,691 \$4,690	25.41 0.00 343.38 23.71 2653.08 1759.68 629.50 464.94 456.01 53.86 750.61 342.07 1764.29 31.86 1567.97	639.23 .000 3770.44 .000 11329.09 711.09 84591.27 88703.88 18877.26 15045.26 15045.26 628.10 7446.60 24765.01 11285.03 412.63 56252.94 801.39
8 4 4 7 7 4 4 7 7 3 3 1 1 5 5 3 3 7 7 7 3 3 8 6 6 7 7 7 6 6 8 1 1 1 1 1 1 1	Hoeing Hall Hopeman Engineering Building Hoth Hall Hutchison Hall Hutchison Hall Hylan Building Interfails Chapel James P. Wilmord Cancer Center, JWCC Komberg Medical Research Building Lattimore Hall LeChase Hall Luchase Hall Luchase Hall Lowine Pavilion Lovejoy Hall Medical Center Annex Meliora Hall New York State Optics O Wing O'Brien Hall Old Cancer Center O Wing	Hoeing Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Clancer SMH KMRB or Kornberg L Wing Lattimore LeChase Levine Lovejoy Med Or Annex Mellora Morey NYS Optics O Wing O'Brien O'G dancer Center O'G Wing	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Lab/Classroom/Office Assembly/Office Assembly/Office Assembly/Office Lab/Research Hospital Lab/Research Hospital Classroom/Office Classroom/Office Classroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Classroom/Office Dorm Office/Lab Classroom/Office Classroom/Office Dorm Hospital Dorm Hospital Hospital	43,377 72,25 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 42,622 79,099 130,970 59,681 4,383 154,381 162,842 148,368	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930 578,810 1,117,178 291,236 1,619,642 1,932,773 237,434 108,481 3,032,834 373,480 2,695,367 2,465,793	0 7.858 3.969 131.724 15.912 2.243 64.781 107.634 0 18.239 2.786 16.444 0 7.864 17.626 11.621 1.890 0 2.398 44.297	0 0 2,239 581 191 0 10,657 40,778 0 66 0 0 4,924 6,475 14,026 0 0	3,035 3,321 0 58,466 4,399 2,376 0 8,206 2,526 0 2,526 2,526 2,526 2,526 2,526 2,526 2,526 4,639 4,681	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 52 53 54	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$27,281 \$24,590 \$413,908 \$24,895 \$88,645 \$99,402 \$49,641 \$90,113 \$23,355 \$140,256 \$140,2	\$41,789 \$0 \$0,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,062 \$146,454 \$397,554 \$181,159 \$8,115 \$8,115 \$8,115 \$4,617 \$1	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702 219,186 161,886 108,779 18,755 8,975 92,151 261,356 119,096 5,106 644,607 11,451 572,881 521,961	-6 0 0 -21 0 -65 -4 654 -331 -118 -86 -10 -6 50 -141 -64 3 -435 -7 387 -352	\$99 \$0 \$503 \$0 \$1,511 \$1,33 \$6,904 \$8,391 \$8,79 \$2,046 \$2,007 \$75 \$97 \$120 \$3,304 \$1,505 \$4,705 \$1,505 \$4,7	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.69 629.50 464.94 456.01 53.86 24.97 264.66 342.04 14.67 1764.29 31.86 1567.97	693.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15045.26 628.10 7446.60 24765.01 11285.03 412.63 801.39 49993.61 4052.24 801.39 49993.61
8 4 7 4 7 3 1 1 5 5 3 7 7 7 7 7 7 7 7 7 6 6	Hoeing Hall Hopeman Engineering Building Hot Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall Lechase Hall Levine Pavillon Lovejoy Hall Medical Center Annex Medicar Hall Morey Hall New York State Optics O Wing O'Brein Hall Old Cancer Center	Hoeing Hopeman Hoyt Hutchison Hylan Interfailt Chapel Wilmot Cancer SMH KMRB or Normberg L Wing Lattimore LeChase Levine Lovejcy Med Ctr Annex Meliora Morey NYS Optics O Wing O'Brien Old Cancer Center	Dorm Engineening/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Lab/Classroom/Office Classroom/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Dorm Office/Lab Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office	43,377 72,252 19,940 313,148 59,128 275,536 225,514 777,371 81,124 79,567 66,517 42,622 79,099 130,970 59,681 4,383 183,231 54,381 162,842 148,368	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 95,501,958 1,280,639 965,930 578,810 1,117,178 291,236 1,619,642 1,932,773 227,434 108,481 3,032,834 373,480 2,695,367 2,455,792	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0 18,239 2,786 16,444 0 7,864 17,626 11,621 1,890 0 2,398 444,297	0 0 2,239 581 191 0 0 10,657 40,778 0 66 0 0 4,924 6,475 14,026 0 0	3,035 3,321 0 58,466 4,399 2,376 0 14,825 2,526	34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 51 51 52 53	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$27,2	\$41,789 \$0 \$0,527 \$0 \$181,866 \$147,00 \$905,712 \$850,838 \$390,633 \$294,839 \$241,522 \$41,662 \$146,62 \$146,62 \$146,63 \$151,159 \$151,	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39.791 0 119.561 8.257 969.338 612.702 219.186 158.779 18.755 8.975 92.151 92.151 92.151 15.906 644.607 11.451 572.881 552.1961 2.2878	-6 0 0 -21 0 -65 -4 -654 -331 -118 87 -86 -100 -6 -50 -141 3 -3 -435 -7 -387 -352 -2	\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$8,391 \$2,007 \$75 \$2,007 \$75 \$2,007 \$120 \$3,304 \$1,505 \$4,591 \$4,080 \$3,717 \$3,177	25.41 0.00 114.28 0.00 343.38 343.38 629.50 464.94 456.01 53.86 24.97 264.66 750.61 342.04 14.67 1764.29 31.86 1567.97 142.861 8.01	639.23 .000 3770.44 .000 11329.09 711.09 84591.27 88703.88 18877.26 15045.26 15045.26 628.10 7446.60 24765.01 11285.03 412.63 56252.94 801.39
8 4 7 7 4 7 3 1 5 5 3 7 7 7 7 7 7 7 7 6 6 1 1 8 8 8 1 8 1 8 8 1 8 1 8 1 8 1 8	Hoeing Hall Hopeman Engineering Building Hoty Hall Hutchison Hall Hutchison Hall Hylan Building Intefraith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall LeChase Hall Lechase Hall Levine Pavilion Loving Pavilion Loving Hall Medical Center Annex Meliora Hall Morey Hall New York State Optics O Wing O'Brien Hall Old Cancer Center OO Wing Pail Upsilon	Hoeing Hopeman Hoyt Hotchison Hylan Interfailth Chapel Wilmot Cancer SMH KMRB or Kornberg L Wing Lattimore Lechase Letwine Lovejoy Med Ctr Annex Meliora Morey NYS Optics O Wing O'Brien Old Cancer Center OO Wing Pail U Fraternity	Dorm Engineening/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Lab/Classroom/Office Classroom/Office Assembly/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Dorm Office/Lab Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Dorm Hospital Hospital Hospital Dorm	43,377 72,25 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 42,622 79,099 130,970 59,681 4,383 154,381 162,842 148,368	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930 578,810 1,117,178 291,236 1,619,642 1,932,773 237,434 108,481 3,032,834 373,480 2,695,367 2,465,793	0 7,858 3,969 131,724 15,912 2,243 64,781 107,634 0 18,239 2,786 16,444 0 7,864 11,621 1,890 0 2,398 44,297 19,466 0	0 0 2,239 581 191 0 40,778 40,778 0 66 0 0 4,924 6,475 14,026 0 0 0 0 0 6,840	3,035 3,221 0 58,466 4,399 2,376 14,825 2,526 2,526 2,526 2,526 2,526 2,526 2,526 2,526 2,526 2,526 4,639 4,081 502	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 53	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$27,281 \$24,590 \$413,908 \$24,895 \$88,645 \$99,402 \$49,641 \$90,113 \$23,355 \$140,256 \$140,2	\$41,789 \$0 \$0,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,062 \$146,454 \$397,554 \$181,159 \$8,115 \$8,115 \$8,115 \$4,617 \$1	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$2.92 \$3.61 \$0.50 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9,134 0 39,791 0 119,561 8,257 969,338 612,702 219,186 161,886 108,779 18,755 8,975 92,151 261,356 119,096 5,106 644,607 11,451 572,881 521,961	-6 0 0 -21 0 -65 -4 654 -331 -118 -86 -10 -6 50 -141 -64 3 -435 -7 387 -352	\$99 \$0 \$503 \$0 \$1,511 \$1,33 \$6,904 \$8,391 \$8,79 \$2,046 \$2,007 \$75 \$97 \$120 \$3,305 \$1,5	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.69 629.50 464.94 456.01 53.86 24.97 264.66 342.04 14.67 1764.29 31.86 1567.97	639.23 .000 3770.44 .000 11329.09 711.09 84591.27 58703.58 18877.26 15045.26 628.10 7446.60 7446.60 11285.03 412.63 801.39 49993.61 45549.97 201.45
8 4 4 7 7 4 7 7 3 3 1 1 5 5 3 8 6 6 7 7 7 6 6 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hoeing Hall Hopeman Engineering Building Hothson Hall Hutchison Hall Hutchison Hall Hylan Building Interfailth Chapel James P. Wilmord Cancer Center, JWCC Komberg Medical Research Building Lattimore Hall Lechaes Hall Lechaes Hall Lechaes Hall Levine Pavilion Loegioj Hall Medical Center Annex Meliora Hall New York State Optics O'Wing O'Brien Hall Old Cancer Center OO Wing Pail bysilon Q Wing Q Wing Q Wing Q Wing Q Wing	Hoeing Hopeman Hoyt Hutchison Hydr Hutchison Hydran Interfaith Chapel Wilmot Cancer SMH KMRB or Kornberg L Wing Lattimore Lechase Levine Lovejoy Med Cir Annex Meliora Morey NYS Optics O Wing O'Brien Old Cancer Center CO Wing Pall Praternity Q Wing R North	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Lab/Classroom/Office Classroom/Office Assembly/Office Assembly/Office Assembly/Office Lab/Research Hospital Lab/Research Classroom/Office Classroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Classroom/Office Office/Lab Lopyrad	43,377 72,254 139,148 139,148 139,148 139,148 139,148 139,148 139,148 177,371 181,124 179,567 162,622 179,099 130,997 159,681 14,381 163,231 163,231 163,436 162,642 148,368 163,660 162,640 162,640 162,640 162,640 163,660	163,912 750,952 9,232,963 572,798 239,236 4,568,859 9,501,958 1,280,639 985,930 578,810 1,619,642 1,932,773 237,434 108,481 1,032,834 373,480 2,695,367 2,695,367 2,695,567 2,695,567 1,258,611 1,258,611	0 7.858 7.85	0 0 2,239 581 191 0 1.0657 66 6.078 14,026 0 0 0 0 6,840 3,255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,035 3,321 0 58,469 2,376 14,825 2,526 0 2,526	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 89	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$41,908 \$824,899 \$89,645 \$90,413 \$29,355 \$140,262 \$166,688 \$21,299 \$31,268 \$31,209 \$3	\$41,789 \$0 \$60,527 \$0 \$181,866 \$141,709 \$805,712 \$850,838 \$340,438 \$244,522 \$33,412 \$41,624 \$41,624 \$390,754 \$41,522 \$33,412 \$41,624 \$41,62	\$0.96 \$0.00 \$3.04 \$0.50 \$0.50 \$2.92 \$3.61 \$0.50	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39.791 0 119.561 8.257 969,338 612,702 219.186 161.886 158.779 18.755 8.975 92.151 261.356 119.066 5.106 644.607 11.451 572.881 521.961 2.878 267.509 267.509 267.509 267.509 267.509 267.509 267.509	6 0 0 -21 0 0 -65 4 -654 -331 -118 -87 -86 -10 -6 -50 -141 -64 -3 -387 -387 -387 -381 -181 -181 -181 -181	\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$1,511 \$33 \$6,904 \$2,007 \$2,004 \$2,007 \$4,00 \$3,304 \$1,505 \$4,591 \$4,080 \$3,317 \$4,080 \$3,317 \$4,080 \$3,717 \$4,080 \$3,717 \$4,095 \$1,905 \$	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 629.50 629	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15545.26 628.10 7446.00 24765.01 11285.03 412.63 56252.94 801.39 445549.97 20344.69 23344.69 23344.69
8 4 4 7 7 4 4 7 7 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hoeing Hall Hopeman Engineering Building Hoty Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall LcChase Hall Lechase Hall Levine Pavilion Loving y Hall Medical Center Annex Meliora Hall Morey Hall New York State Optics O Wing O'Brien Hall Oid Cancer Center OO Wing Pal Upsilon Q Wing Pal Upsilon Q Wing Q Wing Q Wing Q Wing Q Wing Q Wing Q Wing Q Wing R North R North	Hoeing Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMR Bor Komberg L Wing Lattimore LeChase Levine Lovejoy Med Cir Annex Mellora Morey NYS Optics O Wing O'Brien Old Cancer Center O'Wing Pail Tatternity Q Wing Pail Tatternity Q Wing Q Wing R North R North	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab//Classroom/Office Lab//Classroom/Office Assembly/Office Assembly/Office Assembly/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Dorm Office/Lab Classroom/Office Office/Lab Hospital Dorm Hospital Dorm Hospital Hospital Hospital Dorm	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 66,517 42,622 79,099 130,970 59,681 4,383 135,4381 154,381 154,381 164,868 13,670 76,040 67,853	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930 578,810 1,117,178 291,236 1,117,178 291,236 1,032,73 21,032,834 3,73,480 2,695,367 2,455,792 41,417 1,286,611 1,286,611 1,286,611 1,286,611 1,286,611 1,286,611 1,286,611 1,286,611 1,286,611 1,286,611 1,286,611 1,286,611 1,286,611 1,286,611	0 7.858 7.858 9.131,724 15.912 2.243 64.781 107.634 0 18.239 7.786 15.444 0 0 18.239 16.444 17.626 18.239 44.297 19.466 0 0 0 0 0 0 0 0 0	0 0 2,239 581 191 0 0 100 100 100 100 100 100 100 10	3,035 3,321 0 58,466 4,399 2,376 14,825 0 8,206 2,526 2,526 2,526 2,526 2,526 2,526 4,639 4,081 502 0 0 0	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 59 59 59 59 59 59 59 59 59 59	\$22,248 \$94,79 \$24,590 \$883,299 \$57,281 \$25,307 \$413,908 \$824,895 \$99,402 \$49,641 \$99,402 \$140,262 \$14	\$41,789 \$0 \$0,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,838 \$246,249 \$241,522 \$33,412 \$41,062 \$146,454 \$397,554 \$115,553 \$62,90 \$76,177 \$43,883 \$13,170 \$222,353 \$122,253	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04 \$3.04 \$0.50 \$0.50 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.05 \$3.06	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39.791 0 119.561 8.257 969.338 612.702 219.186 158.779 18.755 8.975 92.151 261.336 119.096 5.106 644.607 11.451 521.981	6 0 0 -21 0 0 -65 -44 -654 -43 -118 -66 -50 -141 -64 -35 -7 -352 -2 181 -181 -161 -161 -161 -161 -161 -161	\$99 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$8,391 \$2,046 \$2,007 \$75 \$97 \$4120 \$3,304 \$1,505 \$1,505 \$3,717 \$315 \$3,917	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50 456.01 53.86 750.61 342.04 146.7 1764.29 147.8 142.861 8.01 732.17 663.34 663.34	639.23 0.00 3770.44 0.00 11329.99 711.09 84591.27 58703.58 18877.26 15339.67 15045.26 628.10 7446.60 24765.01 11285.03 412.63 56252.94 801.39 49993.61 45549.97 201.45 23344.69 23344.69 20381.36
8 4 4 7 7 4 4 7 7 3 3 1 1 5 5 3 3 8 6 6 7 7 6 6 1 1 8 8 1 1 1 1 1 1 1 3 3 3	Hoeing Hall Hopeman Engineering Building Hoft Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall Lechase Hall Lechase Hall Lechase Hall Levine Pavilion Lovejoy Hall Medical Center Annex Meliora Hall New York State Optics O Wing O Brien Hall Old Cancer Center O Wing Pal Upstion Q Wing Q Wing Q Wing R North R Korth	Hoeing Hopeman Hoyt Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMRB or Kornberg L Wing Lattimore Lochase Levine Lovejoy Med Cir Annex Meliora Morey NYS Optics O Wing O'Brien Old Cancer Center OO Wing Pail U Fraterrity Q Wing Q Wing Q Wing Q Wing Q Wing R North R North R C Grounds	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Lab/Classroom/Office Assembly/Office Assembly/Office Assembly/Office Assembly/Office Assembly/Office Lab/Research Hospital Classroom/Office Classroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Classroom/Office Office/Lab Hospital Dorm Hospital	43,377 72,954 313,148 59,149 29,283 275,536 255,914 777,371 81,124 79,567 66,567 42,622 79,099 130,970 59,681 43,371 42,622 42,622 79,099 14,681 43,681 14,681 14,681 14,686 14,686 16,640 76,040 76,040 67,853 0	163,912 750,957 234,585 9,229,663 572,798 239,226 4,568,850 9,501,958 1,280,639 986,930 978,930 978,930 1,117,178 291,236 1,032,773 237,434 108,481 3,032,834 373,480 2,695,367 2,695,367 2,455,792 41	0 7.858 7.85	0 0 2.239 581 191 0 1.0657 66 6 6 0 0 6 6.840 3.255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,035 3,321 0 58,466 4,369 2,376 14,825 4,526 0 8,206 2,526 2,526 2,526 2,526 2,526 2,526 0 0 2,526 0 0 0 0 0 0	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 89 90 91	\$22,248 \$64,797 \$24,590 \$683,299 \$57,281 \$25,307 \$413,968 \$824,595 \$89,645 \$99,641 \$99,013 \$16,623 \$140,623 \$16,623 \$1	\$41,789 \$0 \$60,527 \$0 \$181,866 \$141,709 \$805,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,662 \$33,412 \$41,652 \$41,652 \$41,652 \$41,55	\$0.96 \$0.00 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39.791 0 119.561 8.257 969,338 612,702 219.186 161.886 158.779 18.755 8.975 261.356 119.066 5.106 644.607 11,451 572.881 572.891 267.509 275.509 275.509 275.709	6 0 0 21 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$99 \$0 \$50 \$1.511 \$33 \$6.904 \$8.391 \$8.79 \$2.007 \$75 \$2.007 \$75 \$4.20 \$1.505 \$1.505 \$3.304 \$1.505 \$4.20 \$1.505 \$1.	25.41 0.00 114.28 0.00 114.28 0.00 1343.38 23.71 2653.08 629.50 464.94 464.94 464.94 464.95 24.97 264.66 750.61 342.04 14.67 1764.29 31.86 1567.97 1428.61 732.17 732.17 732.17 732.17 732.17	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15339.67 1504.26 1515.26 628.10 7446.60 24765.01 11285.03 412.63 56252.94 801.39 49993.61 4554.97 201.45 23344.69 23344.69 20341.36 20831.36
8 4 4 7 7 4 4 7 7 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hoeing Hall Hopeman Engineering Building Hoty Hall Hutchison Hall Hutchison Hall Hylan Building Interfaith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall LcChase Hall Lechase Hall Levine Pavilion Loving y Hall Medical Center Annex Meliora Hall Morey Hall New York State Optics O Wing O'Brien Hall Oid Cancer Center OO Wing Pal Upsilon Q Wing Pal Upsilon Q Wing Q Wing Q Wing Q Wing Q Wing Q Wing Q Wing Q Wing R North R North	Hoeing Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMR Bor Komberg L Wing Lattimore LeChase Levine Lovejoy Med Cir Annex Mellora Morey NYS Optics O Wing O'Brien Old Cancer Center O'Wing Pail Tatternity Q Wing Pail Tatternity Q Wing Q Wing R North R North	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab//Classroom/Office Lab//Classroom/Office Assembly/Office Assembly/Office Assembly/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Dorm Office/Lab Classroom/Office Office/Lab Hospital Dorm Hospital Dorm Hospital Hospital Hospital Dorm	43,377 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 66,517 42,622 79,099 130,970 59,981 4,383 183,231 152,842 148,368 13,670 76,040 67,853 0	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,290,633 985,930 578,810 1,117,178 291,236 1,619,642 1,332,773 237,434 1,68,481 3,032,834 373,480 2,695,367 2,455,792 41,417 1,258,611	0 7.858 3.969 131.724 15.912 2.243 64.781 107.634 0 18.239 2.786 15.447 0 0 2.786 15.447 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2,239 581 191 0 0 100 100 100 100 100 100 100 10	3,035 3,321 0 58,4369 2,376 14,825 2,526 0 8,206 2,526 2,526 2,526 2,526 2,526 2,526 2,526 0 0 0 0 0 0 0 0	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 69 89 89 99 90 90 90 90 90 90 90 90 9	\$22,248 \$94,79 \$24,590 \$883,299 \$57,281 \$25,307 \$413,908 \$824,895 \$99,402 \$49,641 \$99,402 \$140,262 \$14	\$41,789 \$0 \$0,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$30,443 \$390,483 \$246,249 \$241,525 \$33,412 \$41,654 \$397,554 \$115 \$52,390 \$476,117 \$43,853 \$121,705 \$223,535 \$122,353 \$	\$0.96 \$0.09 \$3.04 \$0.00 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39.791 0 119.561 8.257 969,338 612.702 219.186 158.779 15.758 8.975 92.151 261.356 119.096 5.106 644.607 11.451 572.881 572.881 572.881 572.881 572.897 267.509 267.509 238.708 0 0	6 0 0 21 0 0 64 654 331 118 87 435 77 387 382 2 2 181 161 0 0 0	\$99 \$0 \$503 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$2,046 \$2,007 \$2,007 \$4,597 \$4,597 \$4,597 \$4,597 \$4,597 \$4,597 \$4,597 \$5,100 \$5,100 \$5,100 \$5,100 \$5,1700 \$0 \$5,1700	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50 464.94 456.01 53.86 750.61 342.04 14.67 1764.29 14.67 1767.97 142.86 8.01 732.17 732.17 732.17 753.34 0.00 0.00	699.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 15877.26 15339.67 15045.26 628.10 7446.60 24765.01 11285.03 412.63 6805.294 8801.39 49993.61 45549.97 201.45 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69 23344.69
8 4 4 7 7 4 7 7 3 3 1 1 5 5 3 3 8 6 6 7 7 7 6 6 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3	Hoeman Engineering Building Hopeman Engineering Building Hoty Hall Hutchison Hall Hylan Building Interfails Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building Lattimore Hall Lachase Hall Lachase Hall Levine Pavilion Lovejoy Hall Medical Center Annex Meliora Hall New York State Optics O Wing O'Brien Hall Old Cancer Center O'Wing Pal Jupision O'Wing Pal Jupision Q Wing Q Wing Q Wing Q Wing Q Wing Q Wing R North R North R CGrounds RC Sports	Hoeing Hopeman Hoyt Hutchison Hylan Interfaith Chapel Wilmot Clancer SMH KMB or Kornberg L Wing Lattimore LeChase Levine Lovejoy Med O't Annex Meliora Morey NYS Optics O Wing O'Brien O'd Cancer Center O'Wing Pail Fraternity Q Wing Q Wing Q Wing Q Wing Q Wing R North R North R Gorounds RC Sports	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab//Classroom/Office Lab//Classroom/Office Assembly/Office Assembly/Office Assembly/Office Assembly/Office Lab/Research Hospital Classroom/Office Classroom/Office Classroom/Office Classroom/Office Classroom/Office Dorm Office/Lab Classroom/Office Classroom/Office Dorm Office/Lab Classroom/Office Classroom/Office Dorm Hospital Hosp	43,377 72,954 313,148 59,149 29,283 275,536 255,914 777,371 81,124 79,567 66,567 42,622 79,099 130,970 59,681 43,371 42,622 42,622 79,099 14,681 43,681 14,681 14,681 14,686 14,686 16,640 76,040 76,040 67,853 0	163,912 750,957 234,585 9,229,663 572,798 239,226 4,568,850 9,501,958 1,280,639 986,930 978,930 978,930 1,117,178 291,236 1,032,773 237,434 108,481 3,032,834 373,480 2,695,367 2,695,367 2,455,792 41	0 7.858 7.85	0 0 2,239 581 191 0 0 10,657 40,778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,035 3,321 0 58,466 4,369 2,376 14,825 4,526 0 8,206 2,526 2,526 2,526 2,526 2,526 2,526 0 0 2,526 0 0 0 0 0 0	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 89 90 91	\$22,248 \$94,79 \$24,590 \$863,299 \$57,281 \$25,307 \$42,590 \$24,895 \$24,895 \$24,895 \$49,402 \$49,641 \$29,355 \$140,262 \$166,236 \$140,262 \$16,688 \$212,296 \$35,246 \$231,906	\$41,789 \$0 \$60,527 \$0 \$181,866 \$141,709 \$805,712 \$850,838 \$390,483 \$246,249 \$241,522 \$33,412 \$41,662 \$33,412 \$41,652 \$41,652 \$41,652 \$41,55	\$0.96 \$0.00 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39.791 0 119.561 8.257 969,338 612,702 219.186 161.886 158.779 18.755 8.975 261.356 119.066 5.106 644.607 11,451 572.881 572.891 267.509 275.509 275.509 275.709	6 0 0 21 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$99 \$0 \$50 \$1.511 \$33 \$6.904 \$8.391 \$8.79 \$2.007 \$75 \$2.007 \$75 \$4.20 \$1.505 \$1.505 \$3.304 \$1.505 \$4.20 \$1.505 \$1.	25.41 0.00 114.28 0.00 114.28 0.00 1343.38 23.71 2653.08 629.50 464.94 464.94 464.94 464.95 24.97 264.66 750.61 342.04 14.67 1764.29 31.86 1567.97 1428.61 732.17 732.17 732.17 732.17 732.17	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15339.67 1504.26 1515.26 628.10 7446.60 24765.01 11285.03 412.63 56252.94 801.39 49993.61 4554.97 201.45 23344.69 23344.69 20341.36 20831.36
8 4 4 7 7 4 4 7 7 3 3 8 8 6 7 7 7 3 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 7 7 4 4	Hoeing Hall Hopeman Engineering Building Hoty Hall Hutchison Hall Hutchison Hall Hylan Building Intefraith Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lattimore Hall LeChase Hall Lechase Hall Levine Pavilion Lovejoy Hall Medical Center Annex Meliora Hall Morey Hall Morey Hall New York Stabo Optics O Wing O'Brien Hall Old Cancer Center O'O Wing Pai Upsilon Q Wing R North R R Oroth R R Oroth R C Grounds R Soports Rettner Hall Rush Rheese Library R W Comp Paviling R R North R C Grounds R Sports Rettner Hall Rush Rheese Library R W Comp Paviling	Hoeing Hopeman Hoyd Hopeman Hoyd Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMRB or Komberg L Wing Lattimore LeChase Levine Lovejoy Med Ot Annex Meliora Morey NYS Optics O Wing O'Brien Old Cancer Center O'Wing Pail U Fraternity Q Wing Q Wing R North R North R Grounds R GSports Rettner Hall Rush Rnees Libr Rvx Cmp Parking	Dorm Engineering/Classroomy/Lab/Office Auditorium/Office Lab/Classroomy/Office Lab/Classroomy/Office Lab/Classroomy/Office Assembly/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Lisprightal Hospital Hospital Hospital Hospital Athelicics/Fieldhouse Classroom/Office Library/Office/Classroom Parking	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371 48,127 42,622 79,059 130,970 59,681 4,383 183,231 54,381 162,842 148,368 13,670 76,040 67,853 0 0 0 20,605 349,284 0	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,280,639 985,930 1,117,178 291,236 1,117,178 291,236 1,117,178 291,236 1,117,178 201,236 1,117,178 201,236 1,117,178 201,236 1,117,178 201,236 1,117,178 201,236 1,117,178 201,236 1,117,178 201,236 1,117,178 201,236 1,117,178	0 7.858 3.969 131,724 15,912 2.243 64,781 107,634 0 18.239 2.786 16,444 0 0 7.864 17,626 11,621 1.890 0 0 2.398 44,297 19,466 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2,239 581 191 0 10,657 40,778 0 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526 0 8,206 2,526 2,526 2,526 2,526 2,526 2,526 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 69 97 99 91 92 93 93 93 94 95 96 97 97 97 97 97 97 97 97 97 97	\$22,248 \$64,797 \$24,590 \$863,299 \$57,281 \$25,307 \$413,908 \$824,895 \$99,402 \$49,641 \$90,113 \$29,335 \$140,262 \$140,262 \$140,262 \$168,236 \$11,298 \$31,298	\$41,789 \$0 \$60,527 \$0 \$131,866 \$147,709 \$805,712 \$850,838 \$390,483 \$246,243 \$246,243 \$33,412 \$41,062 \$146,645 \$33,412 \$41,062 \$146,645 \$131,159 \$131,170 \$223,333 \$193,444 \$131,170 \$222,333 \$199,414 \$100,416 \$10	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.05 \$3.06	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39.791 0 119.561 8.257 969.338 612.702 219.186 158.779 157.755 8.975 8.975 8.975 92.151 261.356 119.096 53.750 644.607 11.451 521.961 2.878 207.509 238.708 238.708 238.708 238.708 0 0 0 41.118	-6 0 0 -21 0 0 -65 -4 4 -654 -331 -118 -6 0 -50 -141 -64 -3 -3 -387 -387 -387 -181 -161 -161 -161 -161 -161 -0 0 0 -22 0	\$99 \$00 \$5003 \$0 \$1,511 \$33 \$6,904 \$8,391 \$8,391 \$8,391 \$2,046 \$2,007 \$75 \$97 \$120 \$3,304 \$1,501 \$3,304 \$1,501 \$3,317 \$31 \$1,700 \$0,100 \$0,100 \$0,000	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50 456.01 53.86 750.61 342.04 1467 1764.29 314.26 157.97 142.861 8.01 732.17 653.34 653.34 0.00 0.00 0.00	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15045.26 628.10 7446.60 24765.01 11285.03 449.93.61 45549.97 201.45 23344.69 20381.36 0.00 0.00 3896.18 0.00
8 4 4 7 7 4 7 7 3 1 1 5 5 3 3 8 6 6 7 7 7 7 6 6 1 1 1 8 8 1 1 1 1 1 3 3 3 7 7 4 4 1 1 1	Hoeing Hall Hopeman Engineering Building Hot Hall Hutchison Hall Hutchison Hall Hylan Building Interfailt Chapel James Pe Milled Hall Interfailt Chapel James Pe Milled Hall Levine Pavilion Leving Lattimore Hall Lechase Hall Lechase Hall Levine Pavilion Lovejoy Hall Medical Center Annex Meliora Hall New York State Optics O'Wing O'Brien Hall Old Cancer Center O'Wing Pail Upsilon Q Wing Q Wing Q Wing Q Wing R North R North R C Grounds RC Sports Rettrer Hall Rush Rheeses Library Rv Crup Parking R Wing R Wing R R North RC Sports Rettrer Hall Rush Rheeses Library Rv Crup Parking R Wing R Wing R Wing R Wing R R North	Hoeing Hopeman Hoyt Hutchison Hydr Hutchison Hydran Interfaith Chapel Wilmot Cancer SMH KMRB or Kornberg L. Wing Lattimore LeChase Letwice Lovejoy Med Oir Annex Meliora Morey NYS Optics O Wing O'Brien Old Cancer Center OO Wing Pu U Fraternity Q Wing Q Wing R North R North R C Grounds RC Sports Rettner Hall Rush Rhese Libr RV Crip Parking R Wing R Wing R Worder R Worder R Vorder Rettner Hall Rush Rhese Libr RV Crip Parking R Wing	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Classroom/Office Assembly/Office Assembly/Office Assembly/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Classroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Classroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Office/Lab Hospital	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 42,622 42,622 42,622 43,833 43,831 54,381 162,842 43,836 13,670 76,040 76,040 76,040 76,040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163,912 750,967 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,290,639 985,930 578,810 1,117,178 291,236 1,117,178 291,236 1,117,178 291,236 1,117,178 291,236 1,117,178 291,236 1,117,178	0 7.858 3.969 131.724 15.912 2.243 64.781 107.634 0 18.239 2.786 17.864 77.864 17.626 11.621 1.890 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2,239 581 191 10,657 40,778 0 66 0 0 6,840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,035 3,321 0 58,466 4,469 2,376 14,825 2,526 2,526 2,526 2,526 2,526 2,526 2,526 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 11,863	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 89 89 90 90 90 90 90 90 90 90 90 9	\$22,248 \$64,795 \$24,590 \$63,299 \$7,281 \$25,307 \$45,307 \$42,590 \$24,895 \$24,895 \$99,402 \$99,402 \$49,641 \$90,113 \$29,355 \$140,262 \$168,236 \$140,262 \$168,236 \$140,262 \$15,246 \$23,296 \$35,246 \$33,246 \$34,246 \$3	\$41,789 \$0 \$00,527 \$0 \$60,527 \$0 \$181,866 \$141,709 \$805,712 \$850,838 \$390,483 \$244,522 \$33,412 \$41,662 \$146,642	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04 \$0.50 \$0.50 \$0.96	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39.791 0 119.561 8.257 969,338 612,702 219.186 161.886 158.779 92.151 261.356 119.096 5.106 644.607 11.451 572.881 572.881 572.881 572.881 644.607 12.878 644.607 12.878 644.607 13.878 644.607 14.151 644.607 14.151 644.607 14.151 644.607 14.151 644.607 16.759 644.607 16.759 645.607 647.609 647.609 647.639	-6 0 0 -21 0 65 -4 4 65 4 65 4 65 4 65 4 65 4 65 6 6 6 6	\$99 \$00 \$503 \$0 \$503 \$0 \$1.511 \$33 \$6.904 \$8.391 \$879 \$2.046 \$2.007 \$75 \$120 \$3.304 \$1.505 \$7 \$4.120 \$3.304 \$1.505 \$3.717 \$4.124 \$4.080 \$3.717 \$4.105 \$3.717 \$3.1 \$3.105 \$3.717 \$3.1 \$3.105 \$3.717 \$3.717 \$3.	25.41 0.00 114.28 0.00 114.28 0.00 1343.38 23.71 2653.08 1759.68 629.50 464.94 456.01 53.86 24.97 264.66 750.61 342.04 14.67 1764.29 31.86 1567.97 1764.29 1428.61 8.01 732.17 653.34 0.00 0.00 118.09 0.00	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15339.67 1615.26 628.10 7446.50 24765.01 11285.03 412.63 602.19 801.39 4093.61 45549.97 201.45 23344.69 23344.69 23344.69 23344.69 23344.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53899.55
8 4 4 7 7 4 4 7 7 3 3 8 6 6 7 7 7 7 3 8 8 1 1 1 1 1 3 3 3 7 7 4 4 1 1 1 1	Hoeing Hall Hopeman Engineering Building Hoty Hall Hutchison Hall Hutchison Hall Hylan Building Interfailt Chapel James P. Wilmot Cancer Center, JWCC Komberg Medical Research Building L Wing Lutimore Hall LcChase Hall LcChase Hall Levine Pavilion Lovigo Hall Medical Center Annex Meliora Hall Morey Hall New York State Optics O Wing O'Bran Hall Oid Cancer Center O'Wing Psi Upsilon Q Wing R North R North R Corounds R CSports Retter Hall Rush Rheses Library R Y Cmp Parking R Wing R North R R Sports Retter Hall Rush Rheses Library R Y Cmp Parking R Wing R Wing R Wing R Wing R Wing R R Rorth R R Porth R R R Porth R R R R R R R R R R R R R R R R R R R	Hoeing Hopeman Hoyd Hopeman Hoyd Hutchison Hylan Interfaith Chapel Wilmot Cancer SMH KMRB or Kornberg L Wing Lattimore LeChase Levine Lovejoy Med Cir Annex Mellora Morey NYS Optics O Wing O'Brien Old Cancer Center O'Wing Pail Traternity Q Wing R North R North R C Grounds R C Sports Retter Hall Rush Resea Libr Rev Cmp Parking R Wing R Wing R Wing R Wing R Wing R Ry Corn Parking R Wing R Wing R Wing R Wing R Wing R Wing R Ry Corn Parking R Wing R R North R C Grounds R C Sports Retter Hall Rush Rhees Libr Rev Cmp Parking R Wing R Wing S Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing R Wing	Dorm Engineering/Classroomy/Lab/Office Auditorium/Office Lab//Classroomy/Office Lab//Classroomy/Office Assembly/Office Assembly/Office Assembly/Office Assembly/Office Lab/Research Hospital Classroomy/Office Classroomy/Office Classroomy/Office Classroomy/Office Classroomy/Office Classroomy/Office Dorm Office/Lab Classroomy/Office Classroomy/Office Office/Lab Hospital Hospital Dorm Hospital Athletics/Fieldhouse Classroomy/Office/Classroom Parking Hospital	43,377 72,252 19,940 313,148 59,914 29,283 275,386 235,914 777,371 41,124 79,567 66,517 42,622 79,567 42,622 130,970 59,681 136,231 14,883 183,231 54,381 162,842 148,368 13,670 76,040 67,853 0 0 0 20,605 349,284 0 175,565	163,912 750,957 234,585 9,232,963 572,798 239,236 4,568,830 9,501,958 1,280,639 985,930 578,810 1,117,178 291,236 1,117,178 291,236 1,117,178 291,236 1,117,178 291,236 1,117,178 291,236 1,117,178 2,117,178 1,117,178	0 7.858 3.969 131,724 15,912 2.243 64,781 107,634 0 0 7.864 17,626 11,627 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2.239 581 191 0 10.657 40,778 0 66 0 0 0 4 4924 6,475 14,026 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,035 3,321 0 58,466 4,399 2,376 14,825 2,526 2,526 2,526 2,526 2,526 2,526 2,526 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11,863	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 59 59 99 91 92 93 96 96 97 97 97 97 97 97 97 97 97 97	\$22,248 \$94,79 \$24,590 \$883,299 \$57,281 \$25,307 \$413,908 \$824,895 \$99,402 \$49,641 \$99,402 \$140,262 \$14	\$41,789 \$0 \$0,527 \$0 \$181,866 \$14,709 \$805,712 \$850,838 \$390,432 \$246,249 \$244,522 \$33,412 \$41,662 \$146,654 \$397,554 \$181,152 \$33,412 \$41,62	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.04 \$3.05 \$3.06 \$3.06 \$3.06 \$3.06 \$3.07	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39.791 0 119.561 8.257 969.338 612.702 219.186 158.779 15.755 8.975 9.2.151 261.356 119.096 5.106 644.607 11.451 521.961 2878 267.509 238.708 0 0 41.1118 0 0 41.1118 0 0 41.1118	-6 0 21 0 6-65 -4 4-65 4-65 4-65 4-65 4-65 4-65 4	\$99 \$0 \$503 \$0 \$503 \$0 \$1,511 \$33 \$6,904 \$8,391 \$8,391 \$2,046 \$2,007 \$75 \$97 \$4,501 \$3,304 \$1,505 \$3,717 \$31 \$1,005 \$3,717 \$31 \$1,005 \$1,700 \$0 \$0 \$0 \$5,200 \$3,4399 \$7,984	25.41 0.00 114.28 0.00 343.38 23.71 2653.08 1759.68 629.50 456.01 53.86 750.61 342.04 1467 1764.29 136.01 1764.29 142.861 8.01 732.17 653.34 653.34 0.00 0.00 0.00 118.09 0.00 1.690.48 3068.33	699.23 0.00 3770.44 0.00 11329.99 711.09 84591.27 58703.58 18877.28 15045.26 628.10 7446.60 24765.01 11285.03 412.63 56252.94 801.39 49993.61 45549.97 201.45 23344.69 20831.36 0.00 0.00 0.00 0.00 0.00 53889.55 97831.33
8 4 4 7 7 4 4 7 7 3 3 1 1 5 5 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Hoeing Hall Hopeman Engineering Building Hot Hall Hutchison Hall Hutchison Hall Hylan Building Interfailt Chapel James Pe Milled Hall Interfailt Chapel James Pe Milled Hall Levine Pavilion Leving Lattimore Hall Lechase Hall Lechase Hall Levine Pavilion Lovejoy Hall Medical Center Annex Meliora Hall New York State Optics O'Wing O'Brien Hall Old Cancer Center O'Wing Pail Upsilon Q Wing Q Wing Q Wing Q Wing R North R North R C Grounds RC Sports Rettrer Hall Rush Rheeses Library Rv Crup Parking R Wing R Wing R R North RC Sports Rettrer Hall Rush Rheeses Library Rv Crup Parking R Wing R Wing R Wing R Wing R R North	Hoeing Hopeman Hoyt Hutchison Hydr Hutchison Hydran Interfaith Chapel Wilmot Cancer SMH KMRB or Kornberg L. Wing Lattimore LeChase Letwice Lovejoy Med Oir Annex Meliora Morey NYS Optics O Wing O'Brien Old Cancer Center OO Wing Pu U Fraternity Q Wing Q Wing R North R North R C Grounds RC Sports Rettner Hall Rush Rhese Libr RV Crip Parking R Wing R Wing R Worder R Worder R Vorder Rettner Hall Rush Rhese Libr RV Crip Parking R Wing	Dorm Engineering/Classroom/Lab/Office Auditorium/Office Lab/Classroom/Office Classroom/Office Assembly/Office Assembly/Office Assembly/Office Assembly/Office Hospital Lab/Research Hospital Classroom/Office Classroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Classroom/Office Assembly/Conference Dorm Office/Lab Classroom/Office Office/Lab Hospital	43,377 72,252 19,940 313,148 59,914 29,283 275,536 235,914 777,371 81,124 79,567 42,622 42,622 42,622 43,833 43,831 54,381 162,842 43,836 13,670 76,040 76,040 76,040 76,040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163,912 750,967 234,585 9,232,963 572,798 239,236 4,568,850 9,501,958 1,290,639 985,930 578,810 1,117,178 291,236 1,117,178 291,236 1,117,178 291,236 1,117,178 291,236 1,117,178 291,236 1,117,178	0 7.858 3.969 131.724 15.912 2.243 64.781 107.634 0 18.239 2.786 17.864 77.864 17.626 11.621 1.890 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2,239 581 191 10,657 40,778 0 66 0 0 6,840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,035 3,321 0 58,466 4,469 2,376 14,825 2,526 2,526 2,526 2,526 2,526 2,526 2,526 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 11,863	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 89 89 90 90 90 90 90 90 90 90 90 9	\$22,248 \$64,795 \$24,590 \$63,299 \$7,281 \$25,307 \$45,307 \$45,307 \$24,595 \$99,402 \$99,402 \$99,402 \$140,262 \$168,236 \$140,262 \$168,236 \$140,262 \$168,236 \$140,262 \$168,236 \$10,206	\$41,789 \$0 \$00,527 \$0 \$60,527 \$0 \$181,866 \$141,709 \$805,712 \$850,838 \$390,483 \$244,522 \$33,412 \$41,662 \$146,642	\$0.96 \$0.00 \$3.04 \$0.00 \$3.04 \$0.00 \$3.04 \$0.50 \$3.04 \$0.50 \$3.04 \$0.50 \$0.50 \$0.96	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.134 0 39.791 0 119.561 8.257 969,338 612,702 219.186 161.886 158.779 92.151 261.356 119.096 5.106 644.607 11.451 572.881 572.881 572.881 572.881 644.607 12.878 644.607 12.878 644.607 13.878 644.607 14.151 644.607 14.151 644.607 14.151 644.607 14.151 644.607 16.759 644.607 16.759 645.607 647.609 647.609 647.639	-6 0 0 -21 0 65 -4 4 65 4 65 4 65 4 65 4 65 4 65 6 6 6 6	\$99 \$00 \$503 \$0 \$503 \$0 \$1.511 \$33 \$6.904 \$8.391 \$879 \$2.046 \$2.007 \$75 \$120 \$3.304 \$1.505 \$7 \$4.120 \$3.304 \$1.505 \$3.717 \$4.124 \$4.080 \$3.717 \$4.105 \$3.717 \$3.1 \$3.105 \$3.717 \$3.1 \$3.105 \$3.717 \$3.717 \$3.	25.41 0.00 114.28 0.00 114.28 0.00 1343.38 23.71 2653.08 1759.68 629.50 464.94 456.01 53.86 24.97 264.66 750.61 342.04 14.67 1764.29 31.86 1567.97 1764.29 1428.61 8.01 732.17 653.34 0.00 0.00 118.09 0.00	639.23 0.00 3770.44 0.00 11329.09 711.09 84591.27 58703.58 18877.26 15339.67 15339.67 1615.26 628.10 7446.50 24765.01 11285.03 412.63 602.19 801.39 4093.61 45549.97 201.45 23344.69 23344.69 23344.69 23344.69 23344.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53899.55

				SURV	EYED BUILDINGS	LIGHTING											
Tag #	Building Name				Current Electric (kWh)	Current Chilled Water (Tons)	Current Steam (MLBS)	Current Hot Water (mmBtu)	Current Natural Gas (mmBtu)		Measure Cost			mmBtu Savings		Projected Savings (mmBtu)	Projected Savings (\$)
1	S Wing (MCSP)	S Wing (MCSP)	Hospital	35,407	736,796	9,866	2,597	2,539	95	\$70,362	\$103,536	\$2.92	124,562	-84	\$887	340.93	10870.15
3	Sage Art Gallery	Sage Arts Center	Gallery/Office	29,821	307,198	0	0	2,868	63	\$31,685	\$14,979	\$0.50	8,408	-5	\$34	24.15	724.16
5	Saunders Research Builldng	Saunders	Lab/Research	194,523	1,356,944	15,867	0	10,106	64	\$131,752	\$701,559	\$3.61	505,203	-273	\$6,919	1450.94	48404.06
7	Schlegel Hall (Includes Gleason Wing)	Schlegel Hall	Classroom/Office	115,832	887,929	4,489	0	1,885	65	\$69,098	\$351,603	\$3.04	231,147	-125	\$2,922	663.85	21902.58
8	Sig Ep	Sig Ep	Dorm	12,650	107,679	0	0	570	66	\$9,561	\$12,187	\$0.96	2,664	-2	-\$29	7.41	186.42
8	Sig Ep	Sig Ep	Dorm	12,650	107,679	0	0	570	96	\$9,561	\$12,187	\$0.96	2,664	-2	-\$29	7.41	186.42
8	Sigma Alpha MU	SAM Fraternity	Dorm	11,532	51,417	0	0	405	67	\$5,037	\$11,110	\$0.96	2,428	-2	-\$26	6.76	169.94
8	Sigma Chi	SC Fraternity	Dorm	8,909	61,171	0	0	541	68	\$6,203	\$8,583	\$0.96	1,876	-1	-\$20	5.22	131.29
6	Spurrier Gymnasium	Spurrier	Gymnasium/Classroom/Office	56,012	144,252	0	0	1,785	69	\$16,433	\$103,708	\$1.85	65,254	-35	-\$85	187.41	5273.13
	SRB parking lot	SRB parking lot	Parking	0	10,367	0	0	0	97	\$726							0.00
3	Strong Auditorium	Strong Auditorium	Assembly	43,131	31,867	0	14,594	0	70	\$54,039	\$21,665	\$0.50	12,161	-7	\$49	34.93	1047.37
1	Strong Memorial Hospital	SMH	Hospital	1,030,971	23,723,418	297,981	63,177	37,327	71	\$2,034,116	\$3,014,725	\$2.92	3,626,965	-2,448	\$25,831	9927.00	316514.54
8	Susan B. Anthony Hall	SBA	Dorm	179,432	1,321,447	5,307	0	9,055	72	\$124,945	\$172,864	\$0.96	37,783	-24	-\$409	105.11	2644.21
7	Taylor Hall	Taylor	Office/Machine Shop	11,739	235,690	714	1,743	0	73	\$22,727	\$35,633	\$3.04	23,426	-13	\$296	67.28	2219.72
1	Telecom - Anx	Telecom - Anx	Hospital	0	764,918	0	0	0	98	\$53,544	\$0	\$2.92	0	0	\$0	0.00	0.00
1	Telecom - G/T	Telecom - G/T	Hospital	0	185.324	0	0	0	99	\$12,973	\$O	\$2.92	0	0	\$0	0.00	0.00
1	Telecom - HCrt	Telecom - HCrt	Hospital	0	138,450	0	0	0	100	\$9,692	\$0	\$2.92	0	0	\$0	0.00	0.00
1	Telecom - SMH	Telecom - SMH	Hospital	0	169,490	0	0	0	101	\$11,864	\$0	\$2.92	0	0	\$0	0.00	0.00
8	Theta Chi	TC Fraternity	Dorm	7,611	44,549	0	0	492	74	\$4,867	\$7,332	\$0.96	1,603	-1	-\$17	4.46	112.16
8	Tiernan Hall	Tiernan	Dorm	40,950	213,665	0	0	2,483	75	\$23,771	\$39,451	\$0.96	8,623	-5	-\$93	23.99	603.46
7	Todd Union	Todd Union	Office/Post Office	54.307	201.727	1.472	1.845	0	76	\$20,753	\$164.847	\$3.04	108.372	-59	\$1.370	311.24	10268.87
1	U Wing	U Wing	Hospital	214,258	3,546,406	0	0	0	77	\$248,248	\$626,526	\$2.92	753,763	-509	\$5,368	2063.05	65778.66
1	U Wing	U Wing	Hospital	214,258	3,546,406	0	0	0	102	\$248,248	\$626,526	\$2.92	753,763	-509	\$5,368	2063.05	65778.66
8	University Facilities Center	UFC	Offices/Utility	214.258	324.454	0	0	0	78	\$22,712	\$206.415	\$0.96	45.116	-28	-\$488	125.51	3157.42
7	University Health Services	UHS	Office/Medical	27,790	261,097	1,483	0	3,178	79	\$29,641	\$84,355	\$3.04	55,456	-30	\$701	159.27	5254.79
8	Valentine	Valentine	Dorm	57,428	467,753	0	0	0	80	\$32,743	\$55,326	\$0.96	12,093	-8	-\$131	33.64	846.29
8	Valentine	Valentine	Dorm	57.428	467.753	0	0	0	103	\$32,743	\$55.326	\$0.96	12.093	-8	-\$131	33.64	846.29
8	Valentine Verizon Cell tower	Valentine Verizon Cell tower	Dorm	0	3,106	0	0	0	104	\$217	\$0	\$0.96	0	0	\$0	0.00	0.00
7	Wallis Hall	Wallis	Office	49,598	444,629	3,828	5,557	1,553	81	\$56,580	\$150,553	\$3.04	98,975	-53	\$1,251	284.26	9378.45
7	Wegmans Hall	Wegmans Hall	Classroom/Office	60.976	833.752	7.518	0	1.198	82	\$63.037	\$185.090	\$3.04	121.680	-66	\$1.538	349.46	11529.90
8	Wilder Hall	Wilder	Dorm	78,822	339,414	0	0	3,749	83	\$37,066	\$75,937	\$0.96	16,598	-10	-\$180	46.17	1161.56
1	Wilmot Cancer SMD	Wilmot Cancer SMD	Hospital	0	1.411.320	20.011	3.225	4.579	105	\$127.619	\$0	\$2.92	0	0	\$0	0.00	0.00
4	Wilmot Cancer SMD	Wilmot	Office/Classroom/Lab	275.536	1.001.642	11.676	0	4.608	84	\$87.127	\$0	\$0.00	0	0	\$0	0.00	0.00
8	Wilson Commons	Wilson Commons	Dining/Commons/Office	104.338	2.240.639	12.699	6.117	0	85	\$179.271	\$100.519	\$0.96	21.970	-14	-\$238	61.12	1537.58
1	X Wing	X Wing	Hospital	62.002	1.026.256	0	0	0	86	\$71.838	\$181.304	\$2.92	218.123	-147	\$1.553	597.00	19034.97
	rg	my	EXTRAPOLATION TOTAL	10.351.862	143 429 796	1 485 451	344.026	411.955	3 661	\$12,774,262	\$20,221,963	\$1.95	25.232.121	-8.000	158.781	45.142	\$1.391.084

See Pages 115 and 116 for Aggregated Results from all selected extrapolated measures.

				SURVI	EYED BUILDINGS La	b Airflow Optimi:	zatlon										
Tag #					Current Electric (kWh)	Current Chilled Water (Tons)	Current Steam (MLBS)	Current Hot Water (mmBtu)	Current Natural Gas (mmBtu)	Current Utility Cost	Measure Cost	Cost/sqft		CHW mmBtu Savings	HW mmBtu Savings	Projected Savings (mmBtu)	Projected Savings (\$)
1	Ambulatory Care Facility	Ambulatory Care Facility	Hospital	224,609	4,740,048	51,190	19,472	2,587	3	\$412,981		\$0.00				0	
2	Delmonte Institute	Del Monte	Lab/Research	152,227	5,667,756	60,981	19,852	2,526	12	\$479,602	\$234,246	\$1.54	124,439	2,813	3,619	6,856	
3	Fauver Stadium	Fauver	Office/Sports	63,097	256,300	557	922	0	20	\$21,245		\$0.00				0	
4	Goergen Hall for Biomedical Engineering and Optics	GCHaS	Classroom/Lab/Office	271,861	5,232,009	69,473	4	35,819	27	\$497,305	\$183,200	\$0.67	88,370	626	884	1,811	
5	Kornberg Medical Research Building	KMRB or Kornberg	Lab/Research	235,914	9,501,958	107,634	40,778	2,526	39	\$824,895	\$396,668	\$1.68	48,514	1,233	1,703	3,102	
6	Schlegel Hall (Includes Gleason Wing)	Schlegel Hall	Classroom/Office	115,832	887,929	4,489	0	1,885	87	\$69,098		\$0.00				0	
7	Wallis Hall	Wallis	Office	49,598	444,629	3,828	5,557	1,553	94	\$56,580		\$0.00				0	
8	Wilder Hall	Wilder	Dorm	78,822	339,414	0	0	3,749	95	\$37,066		\$0.00				0	

Tag #				EX	TRAPOLATION Lab Al	rflow Optimizat	lon										
Tag #																	
Tag #						Current Chilled	Current Steam	Current Hot	Current Natural					CHW mmBtu	LINE and Dr.	Projected	Projected
					(kWh)		(MLBS)				Measure Cost			Savings	Savings	Savings	Savings
	Alpha Delta Phi	ADP Fraternity	Dorm	10.546		(Tons)	(VILDS)	(mmBtu)	(mmBtu)	\$6.814	\$0	\$0.00	0.0	0.0	0.0	(mmBtu)	(S) 0.0
4	Ambulatory Care Facility	Ambulatory Care Facility	Hospital	224.609	68,996 4,740,048	51,190	19,472	2,587	1	\$412,981	\$151,358	\$0.00	73.010.1	517.1	730.3	1,496.5	28,509.4
"	Anderson Hall	Anderson	Dorm	74,853	344,265	0	0	3,069	2	\$34,992	\$151,356	\$0.00	0.0	0.0	0.0	0.0	0.0
	Autoclave	Autoclave	Autoclave	5,618	332 848	0	4,263	0,007	2	\$38,435	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	Bausch and Lomb Hall	Bausch & Lomb	Classroom/Lab/Office	114,228	1,584,872	35,079	7,752	0	4	\$140,425	\$76,975	\$0.67	37,130.3	263.0	371.4	761.1	14,498.9
	Burton Hall	Burton	Dorm	33.449	160,602	0	0	1.996	5	\$18,328	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
Con	mmunity Living Center, Quad Annex, Sigma Phi Epsilon	Grad Living Ctr	Dorm	12 650	0	0	0	0	6	\$0	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	Computer Studies Building, Carlson Library	Comp Studies/Lib	Library/Classroom/Office/Lab	108,965	1,506,571	12,810	0	5,350	7	\$125.170	\$73,428	\$0.67	35,419.5	250.9	354.3	726.0	13,830.8
	Crosby Hall	Crosby	Dorm	32,247	132,184	0	0	1,862	8	\$15,863	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Danforth Dining Center	Danforth Dining	Dining/Kitchen	35,128	882,673	7,162	411	5,470	9	\$83,068	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	DeKiewiet	DeKiewiet	Office/Dorm	57,428	387,848	0	0	0	10	\$27,149	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
2	Delmonte Institute	Del Monte	Lab/Research	152,227	5,667,756	60,981	19,852	2,526	11	\$479,602	\$234,246	\$1.54	124,439.3	2,812.7	3,619.0	6,856.4	125,370.9
	Delta Kappa Epsilon	DKE Fraternity	Dorm	9,066	29,645	0	0	465	12	\$3,726	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Dewey Hall	Dewey	Classroom/Office	122,890	953,165	9,457	4,901	0	13	\$84,648	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
Doug	glass Leadership House, Delta Upsilon, Medieval Hous	Douglass Leadership House	Dorm	8,389	35,476	0	0	359	14	\$3,758	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Drama House	Drama House	Dorm	10,221	30,607	0	0	483	15	\$3,856	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	East River Road Medical Building	ERR_MB	Medical	92,078	2,104,586	0	0	0	16	\$147,321	\$62,049	\$0.67	29,930.3	212.0	299.4	613.5	11,687.4
4	Eastman Dental Center	Eastman Dental	Medical	92,029	1,414,307	20,056	6,559	12.070	17	\$123,410	\$62,016	\$0.67	29,914.4	211.9	299.2	613.2	11,681.2
4	Emergency Department Fauwer Stadium	Emergency Dept/PICU Fauver	Hospital Office/Sports	175,848	4,991,867 256,300	19,340	10,157 922	13,079	18 19	\$433,002	\$118,499 \$0	\$0.67 \$0.00	57,160.1	404.8	571.8 0.0	1,171.7	22,320.2
 	Fredric Douglass Dinning Center, FDC, FDB	FAUVER	Kitchen/Dining	89.151	1.604.478	14.450	922	10.174	20	\$21,245	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	G&J Wing	G&J Wing	Hospital	245,211	4,058,737	0	0	0	21	\$284,112	\$165,241	\$0.67	79,706.9	564.5	797.3	1,633.8	31,124.4
4	Galisano Childrens Hospital at Strong	GCHaS	Hospital	271,861	5,232,009	69,473	4	35,819	22	\$497,305	\$183,200	\$0.67	88,369.5	625.9	884.0	1,811.4	34.507.1
4	Gavett Hall	Gavett	ngineering/Offices/Lab/Classroom/Office	79,685	1,266,970	20,812	9,574	0	23	\$123,841	\$53,697	\$0.67	25,901.9	183.5	259.1	530.9	10,114.3
	Genesee Hall	Genesee Hall	Dorm	71,403	531,510	7,781	0	5,066	24	\$55,626	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	GG Wing	GG Wing	Hospital	106,212	2,210,213	79,476	17,321	19,047	25	\$288,269	\$71,574	\$0.67	34,524.7	244.5	345.4	707.7	13,481.4
4	GG Wing (MCSP)	GG Wing (MCSP)	Hospital	11,801	245,579	8,831	1,925	2,116	26	\$32,030	\$7,953	\$0.67	3,836.1	27.2	38.4	78.6	1,497.9
	Gilbert Hall	Gilbert	Dorm	72,775	411,496	0	0	3,359	27	\$40,729	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Goergen Athletics Center (GAC), Zornow	Goergen Gym	Athletics/Gymnasium/Pool/Fieldhouse	244,044	3,213,807	9,513	2,148	6,373	28	\$255,747	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4 G	Goergen Hall for Biomedical Engineering and Optics	BME	Classroom/Lab/Office	113,427	2,584,883	25,056	5	16,064	29	\$239,389	\$76,435	\$0.67	36,869.9	261.1	368.8	755.7	14,397.2
	Goler House	Goler House	Apartments	359,144	0	0	0	11,739	30	\$41,675	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	Harkness Hall	Harkness	Engineering/Classroom/Lab/Office	61,990	386,027	2,913	1,547	1,343	31	\$37,444	\$41,773	\$0.67	20,150.1	142.7	201.6	413.0	7,868.3
	Helen Wood Hall	Helen Wood Hall	Office/Dorm	119,064	874,192	16,880	0	4,996	32	\$79,873	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Hill Court	Hill Court	Dorm	151,494	640,033	0	0	10,092	33	\$80,629	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Hoeing Hall	Hoeing	Dorm	43,377 72,252	163,912 750,957	0 7.858	0	3,035	34	\$22,248	\$0 \$48.689	\$0.00 \$0.67	0.0 23 485 8	0.0	0.0	0.0 481.4	9.170.9
4	Hopeman Engineering Building	Hopeman Hovt	Engineering/Classroom/Lab/Office Auditorium/Office	19,940	750,957 234,585	3,969	0 2,239		35 36	\$64,797	\$48,689	\$0.67	23,485.8	0.0	0.0	0.0	9,170.9
c	Hoyt Hall Hutchison Hall	Hoya Hutchison	Lab/Classroom/Office	313.148	9,232,963	131,724	581	0 58,466	37	\$24,590	\$526,530	\$1.68	64,397.0	1.636.7	2,260.8	4,117.2	74,492.0
3	Hylan Building	Hylan	Classroom/Office	59.914	572,798	15,912	191	4,399	38	\$603,299	\$526,530	\$0.00	0.0	0.0	0.0	0.0	0.0
	Interfaith Chanel	Interfaith Chanel	Assembly/Office	29,283	239,236	2,243	0	2.376	39	\$25.307	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	James P. Wilmot Cancer Center, JWCC	Wilmot Cancer SMH	Hospital	275,536	4,568,850	64,781	10,657	14,825	40	\$413,908	\$185,676	\$0.67	89,564.1	634.4	895.9	1,835.9	34.973.5
5	Kornberg Medical Research Building	KMRB or Kornberg	Lab/Research	235,914	9,501,958	107,634	40,778	2,526	41	\$824,895	\$396,668	\$1.68	48,514.3	1,233.0	1,703.2	3,101.8	56,119.5
	L Wing	L Wing	Hospital	777,371	1,280,639	0	0	0	42	\$89,645	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Lattimore Hall	Lattimore	Classroom/Office	81,124	985,930	18,239	66	8,206	43	\$99,402	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	LeChase Hall	LeChase	Classroom/Office	79,567	578,810	2,786	0	2,526	44	\$49,641	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Levine Pavilion	Levine	Assembly/Conference	66,517	1,117,178	16,444	569	2,526	45	\$90,113	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Lovejoy Hall	Lovejoy	Dorm	42,622	291,236	0	0	2,526	46	\$29,355	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
5	Medical Center Annex	Med Ctr Annex	Office/Lab	79,099	1,619,642	7,864	4,924	2,526	47	\$140,262	\$132,998	\$1.68	16,266.2	413.4	571.1	1,040.0	18,816.2
	Meliora Hall	Meliora Morev	Classroom/Office Classroom/Office	130,970	1,932,773	17,626	6,475	2,526 2,526	48	\$168,236 \$76,033	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
2	Morey Hall New York State Optics	Morey NYS Optics	Classroom/Office Office/Lab	59,681 4.383	237,434	11,621 1.890	14,026	2,526	49 50	\$76,033 \$16,668	\$0 \$6.745	\$0.00	3.582.9	81.0	104.2	197.4	0.0 3.609.7
4	New York State Optics O Wing	O Wing	Uffice/Lab Hospital	4,383	3,032,834	1,890	0	2,526	50	\$16,668	\$6,745	\$1.54	3,582.9 59,559.8	421.8	104.2 595.8	1,220.8	23,257.3
-	O'Brien Hall	O'Brien	Dorm	54,381	373,480	2,398	0	2,526	52	\$35,246	\$123,474	\$0.00	0.0	0.0	0.0	0.0	0.0
4	Old Cancer Center	Old Cancer Center	Hospital	162.842	2,695,367	44.297	6.840	4,639	53	\$231,906	\$109.735	\$0.67	52,932.5	374.9	529.5	1.085.0	20.669.4
2	OO Wing	OO Wing	Hospital	148,368	2,455,792	19,466	3,255	4,081	54	\$199,038	\$228,309	\$1.54	121,284.9	2,741.4	3,527.3	6,682.6	122,192.9
	Psi Upsilon	Psi U Fraternity	Dorm	13,670	41,417	0	0	502	87	\$4,681	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	Q Wing	Q Wing	Hospital	76,040	1,258,611	0	0	0	88	\$88,103	\$51,241	\$0.67	24,717.0	175.1	247.2	506.6	9,651.7
4	R North	R North	Hospital	67,853	850,016	0	0	0	55	\$59,501	\$45,724	\$0.67	22,056.0	156.2	220.6	452.1	8,612.5
	Rettner Hall	Rettner Hall	Classroom/Office	20,605	353,312	4,386	0	2,319	56	\$33,210	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Rush Rheese Library	Rush Rhees Libr	Library/Office/Classroom	349,284	2,174,743	29,867	26,057	0	89	\$246,407	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	R-Wing	R Wing	Hospital	175,565	1,349,335	40,940	1,552	11,863	57	\$144,369	\$118,308	\$0.67	57,068.1	404.2	570.9	1,169.8	22,284.3
4	S Wing	S Wing	Hospital	318,662	6,631,166	88,790	23,373	22,852	90	\$633,255	\$214,738	\$0.67	103,582.5	733.6	1,036.1	2,123.2	40,447.5
4	S Wing (MCSP) Sage Art Gallery	S Wing (MCSP) Sage Arts Center	Hospital Gallery/Office	35,407 29,821	736,796 307.198	9,866	2,597	2,539	91 92	\$70,362 \$31.685	\$23,860 \$0	\$0.67 \$0.00	11,509.2	81.5 0.0	115.1	235.9	4,494.2
4	Sage Art Gallery Saunders Research Builliding	Sage Arts Center Saunders	Gallery/Office Lab/Research	194.523	1.356.944	15.867	0	2,868	92 58		\$131.084	\$0.00	63.230.5	447.8	632.5	1.296.1	24,690.6
4	Saunders Research Building Schlegel Hall (Includes Gleason Wing)	Saunders Schlegel Hall	Lab/Research Classroom/Office	194,523	1,356,944	4,489	0	1,885	58	\$131,752 \$69.098	\$131,084	\$0.67	0.0	0.0	0.0	0.0	24,690.6
 	Schieger Hair (includes Gleason wing) Sig Ep	Schieger Hall Sig Ep	Classroom/Office Dorm	12,650	107,679	4,489	0	570	93	\$07,070	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Sigma Alpha MU	SAM Fraternity	Dorm	11.532	51 417	0	0	405	60	\$5,037	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Sigma Chi	SC Fraternity	Dorm	8,909	61,171	0	0	541	61	\$6,203	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Spurrier Gymnasium	Spurrier	Gymnasium/Classroom/Office	56,012	144,252	0	0	1,785	94	\$16,433	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Strong Auditorium	Strong Auditorium	Assembly	43,131	31,867	0	14,594	0	62	\$54,039	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
										1						1	
5	Strong Memorial Hospital	SMH	Hospital	1,030,971	23,723,418	297,981	63,177	37,327	95	\$2,034,116	\$1,733,485	\$1.68	212,013.1	5,388.3	7,443.3	13,555.0	245,248.6

				SURVI	EYED BUILDINGS Lai	Airflow Optimi:	ation										/ /
						Current Chilled	Current Steam	Current Hot						CHW mmBtu	HW mmBtu	Projected	
						Water (Tons)		Water (mmBtu)	Gas (mmBtu)		Measure Cost					Savings (mmBtu)	Savings (\$)
	Taylor Hall	Taylor	Office/Machine Shop	11,739	235,690	714	1,743	0	64	\$22,727	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Theta Chi	TC Fraternity	Dorm	7,611	44,549	0	0	492	65	\$4,867	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Tiernan Hall	Tiernan	Dorm	40,950	213,665	0	0	2,483	66	\$23,771	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Todd Union	Todd Union	Office/Post Office	54,307	201,727	1,472	1,845	0	96	\$20,753	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	U Wing	U Wing	Hospital	214,258	3,546,406	0	0	0	67	\$248,248	\$144,383	\$0.67	69,645.5	493.3	696.7	1,427.6	27,195.6
	University Facilities Center	UFC	Offices/Utility	214,258	324,454	0	0	0	68	\$22,712	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	University Health Services	UHS	Office/Medical	27,790	261,097	1,483	0	3,178	69	\$29,641	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Valentine	Valentine	Dorm	57,428	467,753	0	0	0	97	\$32,743	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Wallis Hall	Wallis	Office	49,598	444,629	3,828	5,557	1,553	70	\$56,580	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Wegmans Hall	Wegmans Hall	Classroom/Office	60,976	833,752	7,518	0	1,198	71	\$63,037	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Wilder Hall	Wilder	Dorm	78,822	339,414	0	0	3,749	72	\$37,066	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	Wilmot Cancer SMD	Wilmot	Office/Classroom/Lab	275,536	1,001,642	11,676	0	4,608	73	\$87,127	\$185,676	\$0.67	89,564.1	634.4	895.9	1,835.9	34,973.5
	Wilson Commons	Wilson Commons	Dining/Commons/Office	104,338	2,240,639	12,699	6,117	0	98	\$179,271	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	X Wing	X Wing	Hospital	62,002	1,026,256	0	0	0	99	\$71,838	\$41,781	\$0.67	20,154.0	142.7	201.6	413.1	7,869.8
4	00 Wing	00 Wing	Hospital	148,368	2,455,792	19,466	3,255	4,081	100	\$199,038	\$99,981	\$0.67	48,227.7	341.6	482.4	988.6	18,832.2
	Parking Garage	Parking Garage	Parking	0	749,346	0	0	0	101	\$52,454	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	Q Wing	Q Wing	Hospital	76,040	1,258,611	0	0	0	74	\$88,103	\$51,241	\$0.67	24,717.0	175.1	247.2	506.6	9,651.7
4	R North	R North	Hospital	67,853	850,016	0	0	0	75	\$59,501	\$45,724	\$0.67	22,056.0	156.2	220.6	452.1	8,612.5
	RC Grounds	RC Grounds	Athletics/Fieldhouse	0	47,353	0	0	0	76	\$3,315	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	RC Sports	RC Sports	Athletics/Fieldhouse	0	3,683	0	0	0	77	\$258	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Rvr Cmp Parking	Rvr Cmp Parking	Parking	0	283,826	0	0	0	102	\$19,868	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
4	S Wing	S Wing	Hospital	318,662	6,631,166	88,790	23,373	22,852	78	\$633,255	\$214,738	\$0.67	103,582.5	733.6	1,036.1	2,123.2	40,447.5
4	S Wing (MCSP)	S Wing (MCSP)	Hospital	35,407	736,796	9,866	2,597	2,539	79	\$70,362	\$23,860	\$0.67	11,509.2	81.5	115.1	235.9	4,494.2
	Sig Ep	Sig Ep	Dorm	12,650	107,679	0	0	570	80	\$9,561	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	SRB parking lot	SRB parking lot	Parking	0	10,367	0	0	0	103	\$726	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Telecom - Anx	Telecom - Anx	Hospital	0	764,918	0	0	0	104	\$53,544	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Telecom - G/T	Telecom - G/T	Hospital	0	185,324	0	0	0	81	\$12,973	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Telecom - HCrt	Telecom - HCrt	Hospital	0	138,450	0	0	0	82	\$9,692	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Telecom - SMH	Telecom - SMH	Hospital	0	169,490	0	0	0	83	\$11,864	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	U Wing	U Wing	Hospital	214,258	3,546,406	0	0	0	105	\$248,248	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Valentine	Valentine	Dorm	57,428	467,753	0	0	0	84	\$32,743	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Valentine Verizon Cell tower	Valentine Verizon Cell tower	Dorm	0	3,106	0	0	0	85	\$217	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	Wilmot Cancer SMD	Wilmot Cancer SMD	Hospital	0	1,411,320	20,011	3,225	4,579	86	\$127,619	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	X Wing	X Wing	Hospital	62,002	1,026,256	0	0	0	106	\$71,838	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0
	· ·		EXTRAPOLATION TOTAL	10.351.862	143,429,796	1.485.451	344.026	411.955	3.661	\$12,774,262	\$5.981.652	\$0.58	2.439.423	13.659	19.747	51.838	\$930.581

See Pages 115 and 116 for Aggregated Results from all selected extrapolated measures.

				SUR	/EYED BUILI	DINGS Hea	at Recove	ry Heat Pu	ımp											
					Current			Current			Current Utility					CHW mmBtu	HW mmBtu	O&M Savings	Projected	Projected
Tag #	Building Name	Building Abbreviation	Туре	Area	Electric	Chilled	Steam	Hot	Natural	Domestic	Cost	Measure Cost	Cost/sqft	Kw Savings	kWh Savings	Savings	Savings	O&M Savings	Savings	Savings
					(kWh)	Water	(MLBS)	Water	Gas	Water										(\$)
1	Ambulatory Care Facility	Ambulatory Care Facility	Hospital	224,609	4,740,048	51,190	19,472	2,587	3		\$412,981		\$0.00						0	1 1
2	Del Monte Institute	Del Monte	Lab/Research	152,227	5,667,756	60,981	19,852	2,526	12		\$479,602	\$752,029	\$4.94		-557,929	4,062	5,876		8,034	
3	Fauver Stadium	Fauver	Office/Sports	63,097	256,300	557	922	0	20		\$21,245		\$0.00						0	
4	Goergen Hall for Biomedical Engineering and Optics	GCHaS	Classroom/Lab/Office	271,861	5,232,009	69,473	4	35,819	27		\$497,305	\$572,213	\$2.10		-448,516	3,273	4,733		6,476	
5	Kornberg Medical Research Building	KMRB or Kornberg	Lab/Research	235,914	9,501,958	107,634	40,778	2,526	39		\$824,895	\$922,885	\$3.91		-770,069	5,662	8,173		11,207	
6	Schlegel Hall (Includes Gleason Wing)	Schlegel Hall	Classroom/Office	115,832	887,929	4,489	0	1,885	87		\$69,098		\$0.00						0	
7	Wallis Hall	Wallis	Office	49,598	444,629	3,828	5,557	1,553	94		\$56,580		\$0.00						0	
8	Wilder Hall	Wilder	Dorm	78,822	339,414	0	0	3,749	95		\$37,066		\$0.00						0	

	Wilder Hall	Wilder	Dorm	10,022	339,414	0	U	3,749	95		\$37,066		\$0.00						U	
					XTRAPOLATIO	NI I Heat F	e e eve me l	Jack Dumn												
					Current	Current	Current	Current	Current	Current										Projected
Tag #	Building Name	Building Abbreviation	Type	Area	Electric	Chilled	Steam	Hot	Natural	Domestic	Current Utility	Measure Cost	Cost/sqft	Kw Savings	kWh Savings	CHW mmBtu		O&M Savings	Projected	Savings
					(kWh)	Water	(MLBS)	Water	Gas	Water	Cost					Savings	Savings		Savings	(\$)
	Alpha Delta Phi	ADP Fraternity	Dorm	10,546	68,996	0	0	559	0		\$6,814	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
5	Ambulatory Care Facility	Ambulatory Care Facility	Hospital	224,609	4,740,048	51,190	19,472	2,587	1		\$412,981	\$878,660	\$3.91	0.0	-733,167.0	5,390.4	7,781.0	0.0	10,670	165,158.7
	Anderson Hall	Anderson	Dorm	74,853	344,265	0	0	3,069	2		\$34,992	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Autoclave	Autoclave	Autoclave	5,618	332,848	0	4,263	0	3		\$38,435	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
4	Bausch and Lomb Hall	Bausch & Lomb	Classroom/Lab/Office	114,228	1,584,872	35,079	7,752	0	4		\$140,425	\$350,000	\$2.10	0.0	-188,453.1	1,375.1	1,988.9	0.0	2,721	42,061.1
	Burton Hall	Burton	Dorm	33,449	160,602	0	0	1,996	5		\$18,328	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Community Living Center, Quad Annex, Sigma Phi Epsilon	Grad Living Ctr	Dorm	12,650	0	0	0	0	6		\$0	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
4	Computer Studies Building, Carlson Library	Comp Studies/Lib	Library/Classroom/Office/Lab	108,965	1,506,571	12,810	0	5,350	7		\$125,170	\$350,000	\$2.10	0.0	-179,770.2	1,311.7	1,897.2	0.0	2,596	40,123.1
	Crosby Hall	Crosby	Dorm	32,247	132,184	0	0	1,862	8		\$15,863	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
5	Danforth Dining Center	Danforth Dining	Dining/Kitchen	35,128	882,673	7,162	411	5,470	9		\$83,068	\$350,000	\$3.91	0.0	-114,664.5	843.0	1,216.9	0.0	1,669	25,830.2
	DeKiewiet	DeKiewiet	Office/Dorm	57,428	387,848	0	0	0	10		\$27,149	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
2	Delmonte Institute	Del Monte	Lab/Research	152,227	5,667,756	60,981	19,852	2,526	11		\$479,602	\$752,029	\$4.94	0.0	-557,929.4	4,062.1	5,875.9	0.0	8,034	124,150.6
	Delta Kappa Epsilon	DKE Fraternity	Dorm	9,066	29,645	0	0	465	12		\$3,726	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Dewey Hall	Dewey	Classroom/Office	122,890	953,165	9,457	4,901	0	13		\$84,648	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
-	Douglass Leadership House, Delta Upsilon, Medieval Hous	Douglass Leadership House	Dorm	8,389	35,476	0	0	359	14		\$3,758	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Drama House	Drama House	Dorm	10,221	30,607	0	0	483	15		\$3,856	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	East River Road Medical Building	ERR_MB	Medical	92,078	2,104,586	0	0	0	16		\$147,321	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Eastman Dental Center	Eastman Dental	Medical	92,029	1,414,307	20,056	6,559	0	17		\$123,410	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
-	Emergency Department	Emergency Dept/PICU	Hospital	175,848 63,097		19,340 557	10,157	13,079	18 19		\$433,002 \$21,245	\$0 \$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
-	Fauver Stadium	Fauver FDB	Office/Sports	63,097 89.151	256,300 1,604,478	557 14.450	922	0			\$21,245 \$149,240	\$0 \$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Fredric Douglass Dinning Center, FDC, FDB G&J Wing	FDB G&J Wing	Kitchen/Dining Hospital	89,151 245,211	1,604,478 4,058,737	14,450	0	10,174	20 21		\$149,240 \$284,112	\$0 \$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
-		G&J Wing GCHaS	Hospital Hospital	245,211	5,232,009	69.473	4	35.819	21		\$284,112 \$497,305	\$0 \$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
4	Galisano Childrens Hospital at Strong	GCHaS Gavett			1,266,970	20.812	9.574	35,819							-131.464.1	959.3	1.387.4		1.898	29.341.6
4	Gavett Hall	Gavett Genesee Hall	ngineering/Offices/Lab/Classroom/Office Dorm	79,685	1,266,970 531,510	7.781	9,574	5.066	23 24		\$123,841 \$55,626	\$350,000 \$0	\$2.10 \$0.00	0.0	-131,464.1	959.3	1,387.4	0.0	1,898	0.0
5	Genesee Hall GG Wing	Genesee Hall GG Wing	Dorm Hospital	106.212	2.210.213	7,781	17.321	19.047	24 25		\$55,626 \$288,269	\$0 \$415.498	\$3.91	0.0	-346.697.5	2,549.0	3,679.4	0.0	5.046	78,099.7
5	GG Wing (MCSP)	GG Wing (MCSP)	Hospital	11.801	245.579	8.831	1.925	2.116	26		\$32,030	\$350,000	\$3.91	0.0	-38.521.9	2,549.0	408.8	0.0	5,046	8.677.7
5	Gilbert Hall	GG Wing (MCSP) Gilbert	Dorm	72,775	411,496	0	1,925	3,359	26		\$32,030	\$350,000	\$0.00	0.0	0.0	0.0	0.0	0.0	561	0.0
			Athletics/Gymnasium/Pool/Fieldhouse	244.044	3.213.807	9,513	2,148	6.373	28		\$40,729	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
4	Goergen Athletics Center (GAC), Zornow	Goergen Gym BME		113.427	2.584.883	25.056	2,148	16.064	28		\$255,747	\$350,000		0.0	-187.131.6	1.365.4	1.974.9	0.0	2 702	41.766.1
4	Goergen Hall for Biomedical Engineering and Optics Goler House	Goler House	Classroom/Lab/Office Apartments	359.144	2,584,883	25,056	0	11,739	30		\$239,389	\$350,000	\$2.10 \$0.00	0.0	-187,131.6	0.0	0.0	0.0	2,702	0.0
4	Harkness Hall	Harkness	Engineering/Classroom/Lab/Office	61.990	386,027	2,913	1,547	1,343	31		\$37,444	\$350,000	\$2.10	0.0	-102,271.0	746.2	1,079.3	0.0	1,477	22,826.0
4	Harkness Hall Helen Wood Hall	Helen Wood Hall	Office/Dorm	119.064	874.192	16.880	0	4,996	32		\$79.873	\$350,000	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
-	Heien wood Hall Hill Court	Heien Wood Hall Hill Court	Office/Dorm Dorm	151.494	640,033	16,880	0	10,092	33		\$80,629	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
			Dorm	43.377	163,912	0	0	3.035	34			\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
4	Hoeing Hall Hopeman Engineering Building	Hoeing Hopeman		72.252	750.957	7.858	0	3,035	35		\$22,248 \$64.797	\$350,000	\$2.10	0.0	-119.201.2	869.8	1.258.0	0.0	1.721	26.604.7
4	Hovt Hall	Hovt	Engineering/Classroom/Lab/Office Auditorium/Office	19,940	234,585	3,969	2,239	0	36		\$24.590	\$350,000	\$2.10	0.0	-32,897.0	240.0	347.2	0.0	475	7,342.3
5	Hutchison Hall	Hutchison	Lab/Classroom/Office	313.148	9.232.963	131,724	581	58,466	37		\$24,590	\$1.225.021	\$3.91	0.0	-1.022.175.3	7,515.3	10,848.2	0.0	4/5	230,262.8
3	Hylan Building	Hylan	Classroom/Office	59,914	572,798	15.912	191	4,399	38		\$57.281	\$1,225,021	\$0.00	0.0	0.0	0.0	0.0	0.0	14,676	0.0
	Interfaith Chanel	Interfaith Chapel	Assembly/Office	29.283	239.236	2.243	191	2.376	39		\$25,307	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
5	James P, Wilmot Cancer Center, JWCC	Wilmot Cancer SMH	Hospital	275.536	4,568,850	64.781	10.657	14.825	40		\$413,908	\$1.077.885	\$3.91	0.0	-899.402.5	6.612.6	9,545.2	0.0	13,089	202,606.1
5	Kornberg Medical Research Building	KMRB or Kornberg	Lab/Research	235,914	9,501,958	107.634	40,778	2,526	41		\$824.895	\$922,885	\$3.91	0.0	-770,068.6	5,661.7	8.172.6	0.0	11,207	173,471.4
5	L Wing	L Wing	Hospital	777.371	1,280,639	0	40,778	0	42		\$89,645	\$922,000	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
4	Lattimore Hall	Lattimore	Classroom/Office	81.124	985 930	18.239	66	8 206	43		\$99,402	\$350,000	\$2.10	0.0	-133.838.2	976.6	1.412.5	0.0	1.932	29.871.5
-	LeChase Hall	LeChase	Classroom/Office	79.567	578.810	2.786	0	2.526	44		\$49,641	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Levine Pavilion	Levine	Assembly/Conference	66.517	1.117.178	16,444	569	2,526	45		\$90,113	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Lovejoy Hall	Lovejoy	Dorm Dorm	42.622	291.236	0	0	2,526	46		\$29,355	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
5	Medical Center Annex	Med Ctr Annex	Office/Lab	79,099	1,619,642	7.864	4,924	2,526	47		\$140.262	\$350,000	\$3.91	0.0	-258,194.3	1.898.3	2,740.2	0.0	2.750	58,162.8
	Meliora Hall	Meliora	Classroom/Office	130.970	1.932.773	17,626	6.475	2,526	48		\$168,236	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0,700	0.0
4	Morey Hall	Morey	Classroom/Office	59.681	237.434	11.621	14.026	2,526	49		\$76,033	\$350,000	\$2.10	0.0	-98.461.6	718.4	1.039.1	0.0	1.422	21.975.8
2	New York State Ontics	NYS Ontics	Office/Lab	4.383	108.481	1.890	0	2,526	50		\$16,668	\$350,000	\$4.94	0.0	-16.064.2	117.0	169.2	0.0	231	3.574.6
	O Wing	O Wing	Hospital	183 231	3,032,834	0,090	0	2,526	51		\$212,298	\$350,000	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	O'Brien Hall	O'Brien	Dorm	54.381	373,480	2,398	0	2,526	52		\$35,246	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
5	Old Cancer Center	Old Cancer Center	Hospital	162.842	2.695.367	44.297	6.840	4.639	53		\$231,906	\$637.032	\$3.91	0.0	-531.548.6	3.908.1	5.641.2	0.0	7.736	119.740.6
4	OO Wing	OO Wing	Hospital	148,368	2,455,792	19,466	3,255	4,081	54		\$199,038	\$350,000	\$2.10	0.0	-244,777.6	1,786.1	2,583.3	0.0	3,534	54,632.2
	Psi Upsilon	Psi U Fraternity	Dorm	13,670	41,417	0	0	502	87		\$4,681	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Q Wing	Q Wing	Hospital	76,040	1,258,611	0	0	0	88		\$88,103	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	Ó	0.0
	R North	R North	Hospital	67,853	850,016	0	0	0	55		\$59,501	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	Ó	0.0
	Rettner Hall	Rettner Hall	Classroom/Office	20,605	353,312	4,386	0	2,319	56		\$33,210	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Rush Rheese Library	Rush Rhees Libr	Library/Office/Classroom	349,284	2,174,743	29,867	26,057	0	89		\$246,407	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	R-Wing	R Wing	Hospital	175,565	1,349,335	40,940	1,552	11,863	57		\$144,369	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	S Wing	S Wing	Hospital	318,662	6,631,166	88,790	23,373	22,852	90		\$633,255	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	S Wing (MCSP)	S Wing (MCSP)	Hospital	35,407	736,796	9,866	2,597	2,539	91		\$70,362	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Sage Art Gallery	Sage Arts Center	Gallery/Office	29,821	307,198	0	0	2,868	92		\$31,685	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
4	Saunders Research Builidng	Saunders	Lab/Research	194,523	1,356,944	15,867	0	10,106	58		\$131,752	\$409,432	\$2.10	0.0	-320,923.6	2,341.7	3,386.9	0.0	4,634	71,627.3
	Schlegel Hall (Includes Gleason Wing)	Schlegel Hall	Classroom/Office	115,832	887,929	4,489	0	1,885	59		\$69,098	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Sig Ep	Sig Ep	Dorm	12,650	107,679	0	0	570	93		\$9,561	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Sigma Alpha MU	SAM Fraternity	Dorm	11,532	51,417	0	0	405	60		\$5,037	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Sigma Chi	SC Fraternity	Dorm	8,909	61,171	0	0	541	61		\$6,203	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
	Spurrier Gymnasium	Spurrier	Gymnasium/Classroom/Office	56,012	144,252	0	0	1,785	94		\$16,433	\$0	\$0.00	0.0	0.0	0.0	0.0	0.0	0	0.0
4	Strong Auditorium	Strong Auditorium	Assembly	43,131	31,867	0	14,594	0	62		\$54,039	\$350,000	\$2.10	0.0	-71,157.4	519.2	751.0	0.0	1,027	15,881.7
4	Strong Memorial Hospital	SMH	Hospital	######	#######	297,981	63,177	37,327	95		\$2,034,116	\$2,169,987	\$2.10	0.0	-1,700,893.8	12,410.9	17,950.6	0.0	24,558	379,624.5
4	Susan B. Anthony Hall	SBA	Dorm	179,432	1,321,447	5,307	0	9,055	63		\$124,945	\$377,668	\$2.10	0.0	-296,026.5	2,160.0	3,124.2	0.0	4,274	66,070.5

				SURVEYE	D BUILDINGS Hea	t Recovery Heat Pr	ımp										
Taq#	Building Name	Building Abbreviation				Current Chilled Water	Current Steam	Current Hot Water	Current Natural Gas		Measure Cost					Projected	Projected Savings
						(Tons)	(MLBS)	(mmBtu)	(mmBtu)		ivieasure cost					Savings	Savings (\$)
4	Taylor Hall	Taylor	Office/Machine Shop	11,739	235,690	714	1,743	0	64	\$22,727	\$350,000	\$2.10	-19,367.0	141.3	204.4	280	4,322.5
	Theta Chi	TC Fraternity	Dorm	7,611	44,549	0	0	492	65	\$4,867	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Tiernan Hall	Tiernan	Dorm	40,950	213,665	0	0	2,483	66	\$23,771	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Todd Union	Todd Union	Office/Post Office	54,307	201,727	1,472	1,845	0	96	\$20,753	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	U Wing	U Wing	Hospital	214,258	3,546,406	0	0	0	67	\$248,248	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	University Facilities Center	UFC	Offices/Utility	214,258	324,454	0	0	0	68	\$22,712	\$0	\$0.00	0.0	0.0	0.0	0	0.0
4	University Health Services	UHS	Office/Medical	27,790	261,097	1,483	0	3,178	69	\$29,641	\$350,000	\$2.10	-45,847.9	334.5	483.9	662	10,232.8
	Valentine	Valentine	Dorm	57,428	467,753	0	0	0	97	\$32,743	\$0	\$0.00	0.0	0.0	0.0	0	0.0
4	Wallis Hall	Wallis	Office	49,598	444,629	3,828	5,557	1,553	70	\$56,580	\$350,000	\$2.10	-81,826.7	597.1	863.6	1,181	18,263.0
	Wegmans Hall	Wegmans Hall	Classroom/Office	60,976	833,752	7,518	0	1,198	71	\$63,037	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Wilder Hall	Wilder	Dorm	78,822	339,414	0	0	3,749	72	\$37,066	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Wilmot Cancer SMD	Wilmot	Office/Classroom/Lab	275,536	1,001,642	11,676	0	4,608	73	\$87,127	\$0	\$0.00	0.0	0.0	0.0	0	0.0
4	Wilson Commons	Wilson Commons	Dining/Commons/Office	104,338	2,240,639	12,699	6,117	0	98	\$179,271	\$350,000	\$2.10	-172,136.6	1,256.0	1,816.7	2,485	38,419.4
	X Wing	X Wing	Hospital	62,002	1,026,256	0	0	0	99	\$71,838	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	00 Wing	00 Wing	Hospital	148,368	2,455,792	19,466	3,255	4,081	100	\$199,038	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Parking Garage	Parking Garage	Parking	0	749,346	0	0	0	101	\$52,454	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Q Wing	Q Wing	Hospital	76,040	1,258,611	0	0	0	74	\$88,103	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	R North	R North	Hospital	67,853	850,016	0	0	0	75	\$59,501	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	RC Grounds	RC Grounds	Athletics/Fieldhouse	0	47,353	0	0	0	76	\$3,315	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	RC Sports	RC Sports	Athletics/Fieldhouse	0	3,683	0	0	0	77	\$258	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Rvr Cmp Parking	Rvr Cmp Parking	Parking	0	283,826	0	0	0	102	\$19,868	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	S Wing	S Wing	Hospital	318,662	6,631,166	88,790	23,373	22,852	78	\$633,255	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	S Wing (MCSP)	S Wing (MCSP)	Hospital	35,407	736,796	9,866	2,597	2,539	79	\$70,362	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Sig Ep	Sig Ep	Dorm	12,650	107,679	0	0	570	80	\$9,561	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	SRB parking lot	SRB parking lot	Parking	0	10,367	0	0	0	103	\$726	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Telecom - Anx	Telecom - Anx	Hospital	0	764,918	0	0	0	104	\$53,544	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Telecom - G/T	Telecom - G/T	Hospital	0	185,324	0	0	0	81	\$12,973	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Telecom - HCrt	Telecom - HCrt	Hospital	0	138,450	0	0	0	82	\$9,692	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Telecom - SMH	Telecom - SMH	Hospital	0	169,490	0	0	0	83	\$11,864	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	U Wing	U Wing	Hospital	214,258	3,546,406	0	0	0	105	\$248,248	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Valentine	Valentine	Dorm	57,428	467,753	0	0	0	84	\$32,743	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Valentine Verizon Cell tower	Valentine Verizon Cell tower	Dorm	0	3,106	0	0	0	85	\$217	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Wilmot Cancer SMD	Wilmot Cancer SMD	Hospital	0	1,411,320	20,011	3,225	4,579	86	\$127,619	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	X Wing	X Wing	Hospital	62,002	1,026,256	0	0	0	106	\$71,838	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	· ·		EXTRAPOLATION TOTAL	10.351.862	143 429 796	1.485.451	344.026	411.955	3.661	\$12,774,262	\$14.538.192	\$1.40	-21 801 216	73.980	112 609	106.450	\$1.591.123

See Pages 115 and 116 for Aggregated Results from all selected extrapolated measures.

				SURVEYED E	BUILDINGS Retro-												
Tag #					Current Electric (kWh)	Current Chilled Water	Current Steam	Current Hot Water	Current Natural		Measure Cost	Cost/sqft		CHW mmBtu	HW mmBtu Savings	Projected	Projected Savings
						(Tons)	(MLBS)							Saviriys	Saviriys	Saviriys	(\$)
1	Rush Rheese Library	Rush Rhees Libr	Library/Office/Classroom	349,284	2,174,743	29,867	26,057	0	3	\$246,407	\$165,130	\$0.47	295,947	3,473	3,473	7,956	
2	Fredric Douglass Dinning Center, FDC, FDB	FDB	Kitchen/Dining	89,151	1,604,478	14,450	0	10,174	12	\$149,240	\$64,900	\$0.73	1,912	668	1,454	2,129	
3	Danforth Dining Center	Danforth Dining	Dining/Kitchen	35,128	882,673	7,162	411	5,470	20	\$83,068	\$24,400	\$0.69	35,919	123	246	491	

	EXTRAPOLATION Retro-Current Value Retr																
Tag #	Building Name										Measure Cost	Cost/sqft				.,	9
	Alpha Delta Phi	ADP Fraternity	Dorm	10,546	68,996			559		\$6,814	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Ambulatory Care Facility Anderson Hall	Ambulatory Care Facility Anderson	Hospital Dorm	224,609 74.853	4,740,048 344 265	51,190	19,472	2,587	1 2	\$412,981 \$34,992	\$106,188 \$0	\$0.47 \$0.00	190,310.5	2,233.4	2,233.4	5,116	98,437.5
1	Ariderson Hall Autoclave	Artoclave Autoclave	Autoclave	5,618	332,848	0	4,263	3,009	3	\$34,992	\$2,656	\$0.00	4,760.1	55.9	55.9	128	2,462.2
1	Bausch and Lomb Hall	Bausch & Lomb	Classroom/Lab/Office	114,228	1,584,872	35,079	7,752	0	4	\$140,425	\$54,003	\$0.47	96,785.0	1,135.8	1,135.8	2,602	50,061.7
	Burton Hall	Burton	Dorm	33,449	160,602	0	0	1,996	5	\$18,328	\$0	\$0.00	0.0	0.0	0.0	0	0.0
-	Community Living Center, Quad Annex, Sigma Phi Epsilon Computer Studies Building, Carlson Library	Grad Living Ctr	Dorm Library/Classroom/Office/Lab	12,650 108,965	0 1,506,571	12,810	0	5,350	6	\$0	\$0 \$51.515	\$0.00 \$0.47	92,325.7	1,083.5	1.083.5	0	0.0 47.755.2
	Crosby Hall	Comp Studies/Lib Crosby	Dorm Dorm	32.247	132.184	0	0	1.862	8	\$125,170	\$0	\$0.00	0.0	0.0	0.0	0	0.0
3	Danforth Dining Center	Danforth Dining	Dining/Kitchen	35,128	882,673	7,162	411	5,470	9	\$83,068	\$24,400	\$0.69	35,918.8	122.9	245.7	491	9,498.7
1	DeKlewlet Del Monte Institute	DeKlewlet	Office/Dorm	57,428	387,848	0	0	0	10	\$27,149	\$27,150	\$0.47	48,658.6	571.0	571.0	1,308	25,168.5
1	Del Monte institute Delta Kappa Epsilon	Del Monte DKE Fraternity	Lab/Research Dorm	152,227 9.066	5,667,756 29,645	60,981	19,852	2,526 465	11 12	\$479,602 \$3,726	\$71,968 \$0	\$0.47 \$0.00	128,981.5	1,513.7	1,513.7	3,467 0	66,715.2
1	Dewey Hall	Dewey	Classroom/Office	122,890	953,165	9,457	4,901	0	13	\$84,648	\$58,098	\$0.47	104,124.3	1,222.0	1,222.0	2,799	53,857.9
	Douglass Leadership House, Delta Upsilon, Medieval Hous	Douglass Leadership House	Dorm	8,389	35,476	0	0	359	14	\$3,758	\$0	\$0.00	0.0	0.0	0.0	0	0.0
-	Drama House East River Road Medical Building	Drama House ERR MB	Dorm Medical	10,221 92,078	30,607 2,104,586	0	0	483	15 16	\$3,856 \$147,321	\$0 \$43,531	\$0.00 \$0.47	0.0 78,017.4	0.0 915.6	0.0 915.6	2.097	0.0 40,354.2
-	East River Road Medical Building Eastman Dental Center	ERK_MB Eastman Dental	Medical	92,078	1,414,307	20,056	6.559	0	17	\$147,321	\$43,531	\$0.47	77,975.9	915.0	915.0	2,097	40,334.2
1	Emergency Department	Emergency Dept/PICU	Hospital	175,848	4,991,867	19,340	10,157	13,079	18	\$433,002	\$83,135	\$0.47	148,995.5	1,748.6	1,748.6	4,006	77,067.4
	Fauver Stadium	Fauver	Office/Sports	63,097	256,300	557	922	0	19	\$21,245	\$0	\$0.00	0.0	0.0	0.0	0	0.0
2	Fredric Douglass Dinning Center, FDC, FDB	FDB G&J Wina	Kitchen/Dining Hospital	89,151 245,211	1,604,478	14,450	0	10,174	20	\$149,240	\$64,900 \$115,928	\$0.73 \$0.47	1,911.9	668.0	1,454.4	2,129	35,974.0
1	G&J Wing Galisano Childrens Hospital at Strong	GCHaS	Hospital Hospital	245,211	5,232,009	69,473	4	35,819	21	\$284,112	\$115,928	\$0.47	207,766.7	2,438.3	2,438.3	6,193	119,146.2
1	Gavett Hall	Gavett	Engineering/Offices/Lab/Classroom/Office	79,685	1,266,970	20,812	9,574	0	23	\$123,841	\$37,672	\$0.47	67,516.9	792.4	792.4	1,815	34,922.9
	Genesee Hall	Genesee Hall	Dorm	71,403	531,510	7,781	0	5,066	24	\$55,626	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	GG Wing GG Wing (MCSP)	GG Wing GG Wing (MCSP)	Hospital Hospital	106,212 11,801	2,210,213	79,476 8,831	17,321	19,047	25 26	\$288,269	\$50,214 \$5,579	\$0.47 \$0.47	89,993.4 9,999.3	1,056.1	1,056.1	2,419 269	46,548.8 5.172.1
-	Gilbert Hall	Gilbert	Dorm	72,775	411,496	0,031	0	3,359	27	\$40,729	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Goergen Athletics Center (GAC), Zornow	Goergen Gym	Athletics/Gymnasium/Pool/Fieldhouse	244,044	3,213,807	9,513	2,148	6,373	28	\$255,747	\$115,376	\$0.47	206,777.7	2,426.7	2,426.7	5,559	106,955.1
1	Goergen Hall for Biomedical Engineering and Optics	BME	Classroom/Lab/Office	113,427	2,584,883	25,056	5	16,064	29	\$239,389	\$53,625	\$0.47	96,106.3	1,127.9	1,127.9	2,584	49,710.7
1	Goler House Harkness Hall	Goler House Harkness	Apartments Engineering/Classroom/Lab/Office	359,144 61.990	386.027	2,913	0 1.547	11,739	30 31	\$41,675 \$37,444	\$0 \$29,307	\$0.00 \$0.47	0.0 52,523.9	0.0 616.4	0.0 616.4	0 1,412	0.0 27.167.8
3	Helen Wood Hall	Helen Wood Hall	Office/Dorm	119,064	874,192	16,880	0	4,996	32	\$79,873	\$82,702	\$0.69	121,744.4	416.4	832.8	1,665	32,195.3
	Hill Court	Hill Court	Dorm	151,494	640,033	0	0	10,092	33	\$80,629	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Hoeing Hall Hopeman Engineering Building	Hoeing Hopeman	Dorm Engineering/Classroom/Lab/Office	43,377 72,252	163,912 750,957	7,858	0	3,035	34 35	\$22,248 \$64,797	\$0 \$34,158	\$0.00 \$0.47	0.0 61,218.9	0.0 718.4	0.0 718.4	0 1646	0.0 31,665.3
3	Hopeman Engineering Building Hovt Hall	Hopeman Hovt	Auditorium/Office	19,940	234,585	3,969	2.239	0 0	36	\$24,590	\$13.850	\$0.47	20.388.9	69.7	139.5	279	5,391.8
1	Hutchison Hall	Hutchison	Lab/Classroom/Office	313,148	9,232,963	131,724	581	58,466	37	\$863,299	\$148,046	\$0.47	265,329.3	3,113.8	3,113.8	7,133	137,240.7
3	Hylan Building	Hylan	Classroom/Office	59,914	572,798	15,912	191	4,399	38	\$57,281	\$41,616	\$0.69	61,262.8	209.5	419.1	838	16,200.9
3	Interfaith Chapel James P. Wilmot Cancer Center, JWCC	Interfaith Chapel Wilmot Cancer SMH	Assembly/Office Hospital	29,283 275.536	239,236 4 568 850	2,243 64,781	0 10.657	2,376	39 40	\$25,307	\$20,340 \$130.264	\$0.69 \$0.47	29,942.2 233.460.8	102.4	204.8	409	7,918.2 120.756.8
1	Kornberg Medical Research Building	KMRB or Kornberg	Lab/Research	235,914	9,501,958	107,634	40,778	2,526	41	\$824,895	\$111,532	\$0.47	199,889.2	2,345.8	2,345.8	5,374	103,392.0
0	L Wing	L Wing	Hospital	777,371	1,280,639	0	0	0	42	\$89,645	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Lattimore Hall	Lattimore LeChase	Classroom/Office	81,124 79,567	985,930 578,810	18,239 2,786	66	8,206 2.526	43	\$99,402 \$49,641	\$38,353 \$37.617	\$0.47 \$0.47	68,736.1 67,416.9	806.7 791.2	806.7 791.2	1,848	35,553.5 34,871.1
1	Levine Pavilion	Levine	Assembly/Conference	66.517	1 117 178	16.444	569	2,526	44	\$49,641	\$37,017	\$0.47	56.359.6	661.4	661.4	1,812 1,515	29.151.8
	Lovejoy Hall	Lovejoy	Dorm	42,622	291,236	0	0	2,526	46	\$29,355	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Medical Center Annex	Med Ctr Annex	Office/Lab	79,099	1,619,642	7,864	4,924	2,526	47	\$140,262	\$37,395	\$0.47	67,020.3	786.5	786.5	1,802	34,666.0
3	Mellora Hall Morey Hall	Meliora Morey	Classroom/Office Classroom/Office	130,970 59,681	1,932,773	17,626 11.621	6,475 14.026	2,526 2.526	48 49	\$168,236 \$76,033	\$90,972 \$41,455	\$0.69 \$0.69	133,918.4	458.0 208.7	916.1 417.4	1,831 834	35,414.7 16.137.9
1	New York State Optics	NYS Optics	Office/Lab	4,383	108,481	1,890	0	2,526	50	\$16,668	\$2,072	\$0.47	3,713.7	43.6	43.6	100	1,920.9
1	O Wing	O Wing	Hospital	183,231	3,032,834	0	0	0	51	\$212,298	\$86,625	\$0.47	155,250.7	1,822.0	1,822.0	4,174	80,302.9
	O'Brien Hall	O'Brien	Dorm	54,381	373,480	2,398	0	2,526	52	\$35,246	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Old Cancer Center OO Wing	Old Cancer Center OO Wing	Hospital Hospital	162,842 148,368	2,695,367	44,297 19.466	6,840 3,255	4,639	53 54	\$231,906 \$199,038	\$76,986 \$70.144	\$0.47 \$0.47	137,975.8	1,619.2	1,619.2	3,709	71,367.5 65.024.1
-	Psi Upsilon	Psi U Fraternity	Dorm	13,670	41,417	0	0	502	87	\$4,681	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Q Wing	Q Wing	Hospital	76,040	1,258,611	0	0	0	88	\$88,103	\$35,949	\$0.47	64,428.3	756.1	756.1	1,732	33,325.3
1	R North	R North	Hospital	67,853	850,016	0	0	0	55	\$59,501	\$32,079	\$0.47	57,491.8 17.458.6	674.7	674.7	1,546	29,737.4 9.030.4
1	Rettner Hall Rush Rheese Library	Rettner Hall Rush Rhees Libr	Classroom/Office Library/Office/Classroom	20,605 349,284	353,312 2.174.743	4,386 29.867	0 26.057	2,319	56 89	\$33,210 \$246,407	\$9,741 \$165.130	\$0.47 \$0.47	17,458.6	204.9 3.473.2	204.9 3.473.2	469 7.956	9,030.4
1	R-Wing	R Wing	Hospital	175,565	1,349,335	40,940	1,552	11,863	57	\$144,369	\$83,001	\$0.47	148,755.7	1,745.8	1,745.8	3,999	76,943.4
1	S Wing	S Wing	Hospital	318,662	6,631,166	88,790	23,373	22,852	90	\$633,255	\$150,653	\$0.47	270,001.6	3,168.7	3,168.7	7,259	139,657.4
1	S Wing (MCSP) Sage Art Gallery	S Wing (MCSP) Sage Arts Center	Hospital Gallery/Office	35,407 29,821	736,796 307,198	9,866	2,597	2,539	91 92	\$70,362 \$31,685	\$16,739 \$14.098	\$0.47 \$0.47	30,000.2 25,267.2	352.1 296.5	352.1 296.5	807 679	15,517.5 13.069.4
1	Sage Art Gallery Saunders Research Builliding	Sage Arts Center Saunders	Lab/Research	194,523	1,356,944	15,867	0	10,106	58	\$131.752	\$14,098	\$0.47	164,818.7	1,934.3	1,934.3	4,431	85,251.9
3	Schlegel Hall (Includes Gleason Wing)	Schlegel Hall	Classroom/Office	115,832	887,929	4,489	0	1,885	59	\$69,098	\$80,457	\$0.69	118,439.6	405.1	810.2	1,619	31,321.3
	Sig Ep	Sig Ep	Dorm	12,650	107,679	0	0	570	93	\$9,561	\$0	\$0.00	0.0	0.0	0.0	0	0.0
-	Sigma Alpha MU Sigma Chi	SAM Fraternity SC Fraternity	Dorm Dorm	11,532 8,909	51,417 61.171	0	0	405 541	60	\$5,037 \$6,203	\$0 \$0	\$0.00	0.0	0.0	0.0	0	0.0
2	Spurrier Gymnasium	Spurrier	Gymnasium/Classroom/Office	56,012	144,252	0	0	1,785	94	\$16,433	\$40,776	\$0.00	1,201.2	419.7	913.8	1,338	22,601.8
1	Strong Auditorium	Strong Auditorium	Assembly	43,131	31,867	0	14,594	0	62	\$54,039	\$20,391	\$0.47	36,544.8	428.9	428.9	982	18,902.7
1	Strong Memorial Hospital	SMH	Hospital	1,030,971	23,723,418	297,981	63,177	37,327	95	\$2,034,116	\$487,409	\$0.47	873,538.5	10,251.6	10,251.6	23,484	451,834.8
2	Susan B. Anthony Hall Taylor Hall	SBA Taylor	Dorm Office/Machine Shop	179,432	1,321,447	5,307 714	1 743	9,055	63	\$124,945	\$0 \$8 154	\$0.00 \$0.69	12 003 3	0.0	0.0 82.1	0 164	0.0 3 174 3
3	Theta Chi	TC Fraternity	Dorm Dorm	7,611	44,549	0	0	492	65	\$4,867	\$8,154	\$0.00	0.0	0.0	0.0	0	0.0
	Tiernan Hall	Tiernan	Dorm	40,950	213,665	0	0	2,483	66	\$23,771	\$0	\$0.00	0.0	0.0	0.0	0	0.0

				SURVEYED	BUILDINGS Retro-C	commissioning											
Tag#		Building Abbreviation			Current Electric (kWh)	Current Chilled Water (Tons)	Current Steam (MLBS)	Current Hot Water (mmBtu)	Current Natural Gas		Measure Cost			CHW mmBtu Savings	HW mmBtu Savings	Projected Savings	Projected Savings (\$)
1	Todd Union	Todd Union	Office/Post Office	54,307	201,727	1,472	1,845	0	96	\$20,753	\$25,675	\$0.47	46,014.2	540.0	540.0	1,237	23,800.7
1	U Wing	U Wing	Hospital	214,258	3,546,406	0	0	0	67	\$248,248	\$101,294	\$0.47	181,540.4	2,130.5	2,130.5	4,880	93,901.2
1	University Facilities Center	UFC	Offices/Utility	214,258	324,454	0	0	0	68	\$22,712	\$101,294	\$0.47	181,540.4	2,130.5	2,130.5	4,880	93,901.2
1	University Health Services	UHS	Office/Medical	27,790	261,097	1,483	0	3,178	69	\$29,641	\$13,138	\$0.47	23,546.4	276.3	276.3	633	12,179.3
	Valentine	Valentine	Dorm	57,428	467,753	0	0	0	97	\$32,743	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Wallis Hall	Wallis	Office	49,598	444,629	3,828	5,557	1,553	70	\$56,580	\$23,448	\$0.47	42,024.2	493.2	493.2	1,130	21,736.9
1	Wegmans Hall	Wegmans Hall	Classroom/Office	60,976	833,752	7,518	0	1,198	71	\$63,037	\$28,827	\$0.47	51,664.8	606.3	606.3	1,389	26,723.4
	Wilder Hall	Wilder	Dorm	78,822	339,414	0	0	3,749	72	\$37,066	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Wilmot Cancer SMD	Wilmot	Office/Classroom/Lab	275,536	1,001,642	11,676	0	4,608	73	\$87,127	\$130,264	\$0.47	233,460.8	2,739.8	2,739.8	6,276	120,756.8
2	Wilson Commons	Wilson Commons	Dining/Commons/Office	104,338	2,240,639	12,699	6,117	0	98	\$179,271	\$75,956	\$0.73	2,237.6	781.8	1,702.2	2,492	42,102.2
1	X Wing	X Wing	Hospital	62,002	1,026,256	0	0	0	99	\$71,838	\$29,312	\$0.47	52,534.0	616.5	616.5	1,412	27,173.0
1	00 Wing	OO Wing	Hospital	148,368	2,455,792	19,466	3,255	4,081	100	\$199,038	\$70,144	\$0.47	125,711.9	1,475.3	1,475.3	3,380	65,024.1
	Parking Garage	Parking Garage	Parking	0	749,346	0	0	0	101	\$52,454	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Q Wing	Q Wing	Hospital	76,040	1,258,611	0	0	0	74	\$88,103	\$35,949	\$0.47	64,428.3	756.1	756.1	1,732	33,325.3
1	R North	R North	Hospital	67,853	850,016	0	0	0	75	\$59,501	\$32,079	\$0.47	57,491.8	674.7	674.7	1,546	29,737.4
1	RC Grounds	RC Grounds	Athletics/Fieldhouse	0	47,353	0	0	0	76	\$3,315	\$0	\$0.47	0.0	0.0	0.0	0	0.0
1	RC Sports	RC Sports	Athletics/Fieldhouse	0	3,683	0	0	0	77	\$258	\$0	\$0.47	0.0	0.0	0.0	0	0.0
	Rvr Cmp Parking	Rvr Cmp Parking	Parking	0	283,826	0	0	0	102	\$19,868	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	S Wing	S Wing	Hospital	318,662	6,631,166	88,790	23,373	22,852	78	\$633,255	\$150,653	\$0.47	270,001.6	3,168.7	3,168.7	7,259	139,657.4
1	S Wing (MCSP)	S Wing (MCSP)	Hospital	35,407	736,796	9,866	2,597	2,539	79	\$70,362	\$16,739	\$0.47	30,000.2	352.1	352.1	807	15,517.5
	Sig Ep	Sig Ep	Dorm	12,650	107,679	0	0	570	80	\$9,561	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	SRB parking lot	SRB parking lot	Parking	0	10,367	0	0	0	103	\$726	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Telecom - Anx	Telecom - Anx	Hospital	0	764,918	0	0	0	104	\$53,544	\$0	\$0.47	0.0	0.0	0.0	0	0.0
1	Telecom - G/T	Telecom - G/T	Hospital	0	185,324	0	0	0	81	\$12,973	\$0	\$0.47	0.0	0.0	0.0	0	0.0
1	Telecom - HCrt	Telecom - HCrt	Hospital	0	138,450	0	0	0	82	\$9,692	\$0	\$0.47	0.0	0.0	0.0	0	0.0
1	Telecom - SMH	Telecom - SMH	Hospital	0	169,490	0	0	0	83	\$11,864	\$0	\$0.47	0.0	0.0	0.0	0	0.0
1	U Wing	U Wing	Hospital	214,258	3,546,406	0	0	0	105	\$248,248	\$101,294	\$0.47	181,540.4	2,130.5	2,130.5	4,880	93,901.2
	Valentine	Valentine	Dorm	57,428	467,753	0	0	0	84	\$32,743	\$0	\$0.00	0.0	0.0	0.0	0	0.0
	Valentine Verizon Cell tower	Valentine Verizon Cell tower	Dorm	0	3,106	0	0	0	85	\$217	\$0	\$0.00	0.0	0.0	0.0	0	0.0
1	Wilmot Cancer SMD	Wilmot Cancer SMD	Hospital	0	1,411,320	20,011	3,225	4,579	86	\$127,619	\$0	\$0.47	0.0	0.0	0.0	0	0.0
1	X Wing	X Wing	Hospital	62,002	1,026,256	0	0	0	106	\$71,838	\$29,312	\$0.47	52,534.0	616.5	616.5	1,412	27,173.0
			EXTRAPOLATION TOTAL	10,351,862	143,429,796	1,485,451	344,026	411,955	3,661	\$12,774,262	\$4,183,386	\$0.40	8,869,127	46,484	51,457	156,797	\$2,905,259

See Pages 115 and 116 for Aggregated Results from all selected extrapolated measures.

End of Document